loading page

Improved S-AF and S-DF Relaying Schemes using Machine Learning based Power Allocation over Cascaded Rayleigh Fading Channels
  • Yahia Alghorani ,
  • samuel pierre
Yahia Alghorani
Lakehead University, Lakehead University

Corresponding Author:[email protected]

Author Profile
samuel pierre
Author Profile


We investigate the performance of a dual-hop intervehicular communications (IVC) system with relay selection strategy. We assume a generalized fading channel model, known as cascaded Rayleigh (also called n*Rayleigh), which involves the product of n independent Rayleigh random variables. This channel model provides a realistic description of IVC, in contrast to the conventional Rayleigh fading assumption, which is more suitable for cellular networks. Unlike existing works, which mainly consider double-Rayleigh fading channels (i.e, n = 2); our system model considers the general cascading order n; for which we derive an approximate analytic solution for the outage probability under the considered scenario. Also, in this study we propose a machine learning-based power allocation scheme to improve the link reliability in IVC. The analytical and simulation results show that both selective decode-and-forward (S-DF) and amplify-and-forward (S-AF) relaying schemes have the same diversity order in the high signal-to-noise ratio regime. In addition, our results indicate that machine learning algorithms can play a central role in selecting the best relay and allocation of transmission power.
Dec 2021Published in IEEE Transactions on Intelligent Transportation Systems volume 22 issue 12 on pages 7508-7520. 10.1109/TITS.2020.3003820