loading page

Real-time video image processing based on optical Kerr microcombs
  • David Moss
David Moss
Swinburne University of Technology

Corresponding Author:[email protected]

Author Profile


Advanced image processing will be crucial for emerging technologies such as autonomous driving, where the requirement to quickly recognize and classify objects under rapidly changing, poor visibility environments in real time will be needed. Photonic technologies will be key for next-generation signal and information processing, due to their wide bandwidths of 10’s of Terahertz and versatility. Here, we demonstrate broadband real time analog image and video processing with an ultrahigh bandwidth photonic processor that is highly versatile and reconfigurable. It is capable of massively parallel processing over 10,000 video signals simultaneously in real time, performing key functions needed for object recognition, such as edge enhancement and detection. Our system, based on a soliton crystal Kerr optical micro-comb with a 49GHz spacing with >90 wavelengths in the C-band, is highly versatile, performing different functions without changing the physical hardware. These results highlight the potential for photonic processing based on Kerr microcombs for chip-scale fully programmable high-speed real time video processing for next generation technologies.