loading page

A Reconstruction Filter for Saturated Accelerometer Signals Due to Insufficient FSR in Foot-mounted Inertial Navigation System
  • Chi-Shih Jao ,
  • Andrei M. Shkel
Chi-Shih Jao
University of California

Corresponding Author:[email protected]

Author Profile
Andrei M. Shkel
Author Profile

Abstract

In pedestrian inertial navigation, one possible placement of Inertial Measurement Units (IMUs) is on a footwear. This placement allows to limit the accumulation of navigation errors due to the bias drift of inertial sensors and is generally a preferable placement of sensors to achieve the highest precision of pedestrian inertial navigation. However, inertial sensors mounted on footwear experience significantly higher accelerations and angular velocities during regular pedestrian activities than during more conventional navigation tasks, which could exceed Full Scale Range (FSR) of many commercial-off-the-shelf IMUs, therefore degrading accuracy of pedestrian navigation systems. This paper proposes a reconstruction filter to mitigate localization error in pedestrian navigation due to insufficient FSR of inertial sensors. The proposed reconstruction filter approximates immeasurable accelerometer’s signals with a triangular function and estimates the size of the triangles using a Gaussian Process regression. To evaluate performance of the proposed reconstruction filter, we conducted two series of indoor pedestrian navigation experiments with a VectorNav VN-200 IMU and an Analog Device ADIS16497-3 IMU. In the first series of experiments, forces experienced by the IMUs did not exceed the FSRs of the sensors, while in the second series, the forces surpassed the FSR of the VN-200 IMU and saturated the accelerometer’s readings. The saturated readings reduced the accuracy of estimated positions using the VN-200 by 1.34× and 3.37× along horizontal and vertical directions. When applying our proposed reconstruction filter to the saturated measurements, the navigation accuracy was increased by 5% horizontally and 50% vertically, as compared to using unreconstructed signals.
01 Jan 2022Published in IEEE Sensors Journal volume 22 issue 1 on pages 695-706. 10.1109/JSEN.2021.3130120