loading page

Equivalent-Circuit Modeling of Lossless and Lossy Bi-Periodic Scatterers by an Eigenstate Approach
  • +2
  • Alberto Hernández-Escobar ,
  • Elena Abdo-Sánchez ,
  • Jaime Esteban ,
  • Teresa María Martín-Guerrero ,
  • Carlos Camacho-Peñalosa
Alberto Hernández-Escobar
Universidad de Málaga

Corresponding Author:[email protected]

Author Profile
Elena Abdo-Sánchez
Author Profile
Jaime Esteban
Author Profile
Teresa María Martín-Guerrero
Author Profile
Carlos Camacho-Peñalosa
Author Profile

Abstract

The use of an eigenstate based equivalent circuit topology is proposed for the analysis and modeling of lossless and lossy bi-periodic scatterers. It can significantly simplify the design of this kind of surfaces, since it reduces the number of elements with respect to other general circuits. It contains at most only two admittances and two transformers depending on one unique transformation ratio. The real parts of these admittances can be assured to be non-negative, an interesting aspect in the modeling of lossy surfaces such as those present in asorbers. Moreover, due to the capability of decomposition into the eigenexcitations of the structure, the circuit provides important physical insight. Different cases of scatterers have been analyzed: symmetric and asymmetric, lossy and lossless. In all these cases, the modeling of the circuit admittances has been successfully achieved with a few RLC elements, positive and frequency independent. In the case of structures with symmetries, the transformation ratio directly reflects the physical orientation of the eigenexcitations of the scatterer. Furthermore, in the case of lossy scatterers but without symmetries, the resulting equivalent circuit reveals that their eigenexcitations are not linear polarizations, but elliptic polarizations whose properties are described by the complex transformation ratio.
Dec 2022Published in IEEE Transactions on Antennas and Propagation volume 70 issue 12 on pages 11790-11800. 10.1109/TAP.2022.3209226