loading page

Achieving 90% In Data-Centric Industry Deep Learning Task
  • Tong Guo
Tong Guo

Corresponding Author:[email protected]

Author Profile

Abstract

In industry deep learning application, our manually labeled data has a certain number of noisy data. To solve this problem and achieve more than 90 score in dev dataset, we present a simple method to find the noisy data and re-label the noisy data by human, given the model predictions as references in human labeling. In this paper, we illustrate our idea for a broad set of deep learning tasks, includes classification, sequence tagging, object detection, sequence generation, click-through rate prediction. The experimental results and human evaluation results verify our idea.