loading page

A Collaborative Learning Tracking Network for Remote Sensing Videos
  • +5
  • Xiaotong Li ,
  • Licheng Jiao ,
  • Hao Zhu ,
  • Fang Liu ,
  • Shuyuan Yang ,
  • Xiangrong Zhang ,
  • Shuang Wang ,
  • Rong Qu
Xiaotong Li
XiDian University

Corresponding Author:[email protected]

Author Profile
Licheng Jiao
Author Profile
Shuyuan Yang
Author Profile
Xiangrong Zhang
Author Profile
Shuang Wang
Author Profile

Abstract

With the increasing accessibility of remote sensing videos, remote sensing tracking is gradually becoming a hot issue. However, accurately detecting and tracking in complex remote sensing scenes is still a challenge. In this paper, we propose a collaborative learning tracking network for remote sensing videos, including a consistent receptive field parallel fusion module (CRFPF), dual-branch spatial-channel co-attention (DSCA) module, and geometric constraint re-track strategy (GCRT). Considering the small-size objects of remote sensing scenes are difficult for general forward networks to extract effective features, we propose a CRFPF-module to establish parallel branches with consistent receptive fields to separately extract from shallow to deep features and then fuse hierarchical features adaptively. Since the objects and their background are difficult to distinguish, the proposed DSCA-module uses the spatial-channel co-attention mechanism to collaboratively learn the relevant information, which enhances the saliency of the objects and regresses to precise bounding boxes. Considering the interference of similar objects, we designed a GCRT-strategy to judge whether there is a false detection through the estimated motion trajectory and then recover the correct object by weakening the feature response of interference. The experimental results and theoretical analysis on multiple data sets demonstrate our proposed method’s feasibility and effectiveness. Code and net are available at https://github.com/Dawn5786/CoCRF-TrackNet.
Mar 2023Published in IEEE Transactions on Cybernetics volume 53 issue 3 on pages 1954-1967. 10.1109/TCYB.2022.3182993