loading page

Automated Detection of Hydrothermal Emission Signatures from Multi-Beam Echo Sounder Images Using Deep Learning
  • +2
  • Kazuhide Mimura ,
  • Kentaro Nakamura ,
  • Kazuhiro Takao ,
  • Kazutaka Yasukawa ,
  • Yasuhiro Kato
Kazuhide Mimura
Chiba Institute of Technology, Chiba Institute of Technology, Chiba Institute of Technology

Corresponding Author:[email protected]

Author Profile
Kentaro Nakamura
Author Profile
Kazuhiro Takao
Author Profile
Kazutaka Yasukawa
Author Profile
Yasuhiro Kato
Author Profile


Seafloor massive sulfide deposits have attracted attention as a mineral resource, as they contain a wide variety of base, precious, and other valuable critical metals. Previous studies have shown that signatures of hydrothermal activity can be detected by a multi-beam echo sounder (MBES), which would be beneficial for exploring sulfide deposits. Although detecting such signatures from acoustic images is currently performed by skilled humans, automating this process could lead to improved efficiency and cost effectiveness of exploration for the seafloor deposits. Herein, we attempted to establish a method for automated detection of MBES water column anomalies using deep learning models. First, we compared the “Mask R-CNN” and “YOLO-v5” detection model architectures, wherein YOLO-v5 yielded higher F1 scores. We then compared the number of training classes and found that models trained with two classes (signal and noise) exhibited superior performance compared with models trained with only one class (signal). Finally, we examined the number of trainable parameters and obtained the best model performance when the YOLO-v5l model with a large trainable parameters was used in the two-class training process. The best model had a precision of 0.928, a recall of 0.881, and an F1 score of 0.904. Moreover, this model achieved a low false alarm rate (less than 0.7%) and had a high detection speed (20−25 ms per frame), indicating that it can be applied in the field for automatic and real-time exploration of seafloor hydrothermal deposits.
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
2023.2.24: This work was published by IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
2023Published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing volume 16 on pages 2703-2710. 10.1109/JSTARS.2023.3247467