loading page

Traffic Sign Classification Using Deep and Quantum Neural Networks
  • Sylwia Kuros ,
  • Tomasz Kryjak
Sylwia Kuros
Author Profile
Tomasz Kryjak
AGH University of Science and Technology

Corresponding Author:[email protected]

Author Profile

Abstract

Quantum Neural Networks (QNNs) are an emerging technology that can be used in many applications including computer vision. In this paper, we presented a traffic sign classification system implemented using a hybrid quantum-classical convolutional neural network. Experiments on the German Traffic Sign Recognition Benchmark dataset indicate that currently QNN do not outperform classical DCNN (Deep Convolutuional Neural Networks), yet still provide an accuracy of over 90% and are a definitely promising solution for advanced computer vision.