loading page

Boundary Preserving Twin Energy-Based-Models for Image to Image Translation
  • Piyush Tiwary ,
  • Kinjawl Bhattacharyya ,
  • Prathosh AP
Piyush Tiwary
Indian Institute of Science

Corresponding Author:[email protected]

Author Profile
Kinjawl Bhattacharyya
Author Profile
Prathosh AP
Author Profile


Domain shift refers to change of distributional characteristics between the training (source) and the testing (target) datasets of a learning task, leading to performance drop. For tasks involving medical images, domain shift may be caused because of several factors such as change in underlying imaging modalities, measuring devices and staining mechanisms. Recent approaches address this issue via generative models based on the principles of adversarial learning albeit they suffer from issues such as difficulty in training and lack of diversity. Motivated by the aforementioned observations,  we adapt an alternative class of deep generative models called the Energy Based Models (EBMs) for the task of unpaired image-to-image translation of medical images. Specifically, we propose a novel method called the Boundary Preserving Twin EBMs (BPT-EBM) which employs a pair of EBMs in the latent space of an Auto-Encoder trained on the source data. While one of the EBMs translates the source to the target domain the other does vice-versa along with a novel boundary preserving loss, ensuring translation symmetry and coupling between the domains. We theoretically analyze the proposed method and show that our design leads to better translation between the domains with reduced langevin mixing steps. We demonstrate the efficacy of our method through detailed quantitative and qualitative experiments on image segmentation tasks on three different datasets vis-a-vis state-of-the-art methods.