loading page

Techno-economics of Fiber vs
  • +3
  • Maryam Lashgari ,
  • Federico Tonini ,
  • Massimiliano Capacchione ,
  • Lena Wosinska ,
  • Gabriele Rigamonti ,
  • Paolo Monti
Maryam Lashgari
Author Profile
Federico Tonini
Author Profile
Massimiliano Capacchione
Author Profile
Lena Wosinska
Author Profile
Gabriele Rigamonti
Author Profile
Paolo Monti
Author Profile

Abstract

One of the challenges for network operators is to design and deploy cost-efficient transport networks (TNs) to meet the high capacity and strict latency/reliability requirements of today’s emerging services. Therefore, they need to consider different aspects, including the appropriate technology, the level of reconfigurability, and the functional split option. A crucial aspect of network design is assessing the impact of these aspects against the total cost of ownership (TCO), latency, and reliability performance of a given solution. For this reason, this paper proposes a framework to investigate the TCO, latency, and reliability performance of a set of fiber and microwave-based TN architectures. They are categorized based on their baseband functional split option and the reconfigurability capabilities of the equipment used. Results show that in most of the considered scenarios, a microwave-based TN exhibits lower TCO than a fiber-based one. The TCO gain may vary with the choice of the functional split option, geo-type, reconfigurability features, fiber trenching costs, and cost of microwave equipment. Finally, it was found that the considered fiber and microwave architectures have almost similar average latency and connection availability performance and are suitable to meet the service requirements of 5G and beyond 5G scenarios.