loading page

Large Language Models for Telecom: The Next Big Thing?
  • +3
  • Lina Bariah ,
  • Qiyang Zhao ,
  • Hang Zou ,
  • Yu Tian ,
  • Faouzi Bader ,
  • Merouane Debbah
Lina Bariah
Technology Innovation Institute

Corresponding Author:[email protected]

Author Profile
Qiyang Zhao
Author Profile
Faouzi Bader
Author Profile
Merouane Debbah
Author Profile


The evolution of generative artificial intelligence (GenAI) constitutes a turning point in reshaping the future of technology in different aspects. Wireless networks in particular, with the blooming of self-evolving networks, represent a rich field for exploiting GenAI and reaping several benefits that can fundamentally change the way how wireless networks are designed and operated nowadays. To be specific, large language models (LLMs), a subfield of GenAI, are envisioned to open up a new era of autonomous wireless networks, in which a multimodal large model trained over various Telecom data, can be fine-tuned to perform several downstream tasks, eliminating the need for dedicated AI models for each task and paving the way for the realization of artificial general intelligence (AGI)-empowered wireless networks. In this article, we aim to unfold the opportunities that can be reaped from integrating LLMs into the Telecom domain. In particular, we aim to put a forward-looking vision on a new realm of possibilities and applications of LLMs in future wireless networks, defining directions for designing, training, testing, and deploying Telecom LLMs, and reveal insights on the associated theoretical and practical challenges.