Essential Maintenance: All Authorea-powered sites will be offline 9am-10am EDT Tuesday 28 May
and 11pm-1am EDT Tuesday 28-Wednesday 29 May. We apologise for any inconvenience.

loading page

Analyzing the relative performance of RF photonic transversal signal processors based on microcombs with discrete components versus with integrated chips
  • David Moss
David Moss
Swinburne University of Technology

Corresponding Author:[email protected]

Author Profile

Abstract

RF photonic transversal signal processors, which combine reconfigurable electrical digital signal processing and high-bandwidth photonic processing, provide a powerful solution for achieving adaptive high-speed information processing. Recent progress in optical microcomb technology provides compelling multi-wavelength sources with compact footprint, yielding a variety of microcomb-based RF photonic transversal signal processors implemented by either discrete or integrated components. Although operating based on the same principle, processors in these two forms exhibit distinct performance. This letter presents a comparative investigation into their performance. First, we compare the performance of state-of-the-art processors, focusing on the processing accuracy. Next, we analyze various factors that contribute to the performance differences, including tap number and imperfect response of experimental components. Finally, we discuss the potential for future improvement. These results provide a comprehensive comparison of microcomb-based RF photonic transversal signal processors implemented using discrete and integrated components and provide insights for their future development.