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Abstract

In this study, a higher-order new approach numerical method for solving singularly perturbed parabolic reaction-diffusion
problems has presented. To discretize time variable, we used the Crank-Nicolson method on uniform mesh and space variable,
we used hybrid numerical method comprising a cubic spline tension method in the inner regions and a central difference method
in the outer region on Shishkin mesh. The proposed method is proved to be uniformly convergent irrespective of the perturbation

parameter. Three numerical examples are computed to validate the theoretical findings.
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1 | INTRODUCTION

Singularly perturbed problems arise in the modeling of fluid dynamics, elasticity, quantum mechanics, reaction
diffusion process, chemical-reactor theory, plasma dynamics, meteorology, diffraction theory, aerodynamics,
modeling of semi-conductor, hydrodynamics and many other allied areas. It is well-known fact that the
solution of singular perturbation problems exhibits a multi-scale character (non-uniform behaviour), that is,

there are thin transition layer(s) where the solution varies rapidly or jumps abruptly in some parts of the

*All the authors have made equal and substantive contributions to the article and assume full responsibility

for its content. All the authors read and approved the final manuscript.
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domain, which is known as boundary layer (inner) region while away from the layer(s) the solution behaves
regularly and varies slowly, which is commonly known as outer region. In solving these types of problems using
classical numerical methods on a uniform mesh, large oscillations may arise and pollute the solutions when
the perturbation parameter becomes small in entire domain of interest due to the boundary layer behaviour.
There is a vast literature about non-classical numerical methods. In the context of finite difference methods,
we can group these methods into two. The first is fitted mesh finite difference methods and the second is fitted
operator finite difference methods. Both types of methods have been used in the literature to solve singularly
perturbed problems. In this study, we consider the following singularly perturbed parabolic reaction-diffusion

problem
Ley(x,6) = ye(x, ) — eyux(x, t) + alx, t)y(x, ) = f(x,t),  (x,t) € Q=QF xQM =(0,1)x (0, T], (1.1)
subject to the initial condition
Y(x,0) = ¢p(x), 0<x<1, (1.2)
and boundary conditions

y0,8)=¢y(t), 0<t<T,
y(Lt)=¢r(t), 0<t<T

(1.3)

where €(0 < &€ < 1) is perturbation parameter. The coefficient a(x,t), the source function f(x,t) and the
boundary functions ¢,(x), ¢;(t) and ¢,(t) are sufficiently smooth and bounded where a(x,t) is assumed to
satisfy the condition a(x,t) > a >0, (x,t) € Q. The solution y of 7 is expected to exhibit twin layers
of width O(ve) at x = 0 and x = 1. Under suitable continuity and compatibility conditions on the data, the
initial-boundary value problem 7 has unique solution y(x,t).

Singularly perturbed problems of type with initial-Dirichlet boundary conditions have been studied
extensively in the literature using different numerical methods, to mention a few of recent studies, see [}, 2]
[31, 41 51 6, [7, [8] 9} 10} [T, @2) 13} 14} 15]. There are various numerical method exist in literature for singularly
perturbed parabolic partial differential equations. Inspired by the preceding works and as far as the authors
knowledge is concerned, the proposed new hybrid finite difference method have not been implemented for the

problem of the type (1.1]
numerical method for the initial-boundary value problem

so far. Therefore, our aim in this work is to provide a higher-order g-uniform
. In this approach, the time derivative

is discretized by Crank-Nicolson method, and the space derivative is discretized by a new approach hybrid

numerical method with high order, which is the combination of cubic spline in tension method in the inner
regions and central difference method in the outer region. The convergence analysis of the discrete problem is
established very well. Three numerical experiments are conducted in order to validate our theoretical results.

The remaining parts of this study are outlined as follows. Section 2 is devoted to some properties of
continuous problem and its bounds of derivatives. In Section 3, we fully discretize the problem. The parameter-
uniform convergence analysis of the fully discrete problem is discussed in Section 4. In Section 5, three
numerical examples are solved using the present method. The paper ends with a brief conclusion in Section 6.

Through out this paper C denotes a generic positive constant independent of &, the meshes (x;, t;) and the

step sizes h;, At. The norm ||.|| denotes the supremum norm.
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2 | PROPERTIES OF CONTINUOUS PROBLEM

In this section, we present some bounds for the analytical solution y(x,t) of (L.1)—(L.3) and its derivatives.

The problem admits the following continuous maximum principle which ensures the stability of the solution

for the problem in (1.1)—(1.3).

Lemma 2.1 (Continuous maximum principle) Let ¢ be a sufficiently smooth function which satisfies ¢ > 0 on
0Q. Then L.¢ >0 on Q implies that & > 0, ¥(x,t) € Q.

Lemma 2.2 Let y be the solution of equation (1.1)—(1.3)) then we have

Iyl < &~ [IF]l + max{lgo (x| [ (O, I (0]}
Theorem 2.3 Assume that the coefficient of the parabolic partial differential equation, and the initial boundary
condition in (L.1))—(1.3)) are sufficiently smooth, and satisfies the necessary compatibility condition stated in

Theorem 3 [I]. Then, the problem (1.1)—(L.3) has unique solution y(x,t) € Cj(@), where

/+jy
axi ot/

C:(Q) = min {y : € Cg(ﬁ)}

for all non negative integers /,j with 0 </ +2j < 4 here Cg(@) is the set of holders continuous functions.

Furthermore, the derivative of the solution u satisfy for all non negative integers i, j such that 0 </ +2j <4,

” 0i+jy

| < cein
ax'aot/ Il —

We shall decompose the solution y as y = v+w, where v, w are respectively the smooth and singular components.

The smooth and singular components v, and w satisfy the following bounds.

Theorem 2.4 Let y(x,t) be a solution of problem (1.1))—(1.3), and assume that the coefficient of the parabolic
PDE, and the initial and boundary value conditions given in (1.1)—(1.3) are sufficiently smooth, and satisfy

the necessary compatibility conditions. Then, for all non-negative integers i, j such that 0 </ +2j <4 we have

di+j .
Ve, Vi) eQ
ox'ot)
ﬁ' < Cs—i/Ze—x/\E and OH"/ Wr. < CE_i/28_<1_X)/‘E
oxioti |~ ’ oxioti| ™ ’

where C is a constant independent of .

3 | DERIVATION OF NUMERICAL SCHEME

In this section, we first discretize time derivative by the Crank-Nicolson method and then we introduce a
layer-adapted mesh of Shishkin type to discretize the space derivative using the hybrid numerical method
comprising cubic spline difference method in the inner regions and central difference method in the outer

region.
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3.1 | Time semi-discretization
Let the time domain [0, T] be divided into M equal parts with uniform time step At such that
QY ={tj:tj = jAt,j =0,1,...,M,At = T/M},
where M denotes the number of mesh elements in the time direction. Uniform meshes with step size At, Q{V’

with M mesh elements are used on the interval [0, T]. We utilize the Crank-Nicolson method to discretize the

time derivative as follows and we obtain the system of linear ordinary differential equations

Y(x,0) = ¢p(x), X €Q, ( )
. . i j ; ; . . 3.1
1 _yi vitleyvl, Yy*1+(ay 1 £
YAtY —a( 2+ )+(a)/2+(a>’:f 2+f’ (. tj41) € (0.1)x [0, T,
subject to the boundary conditions
YN 0) = ¢y(tje1), 0<j <M, (3.2)

Yj+1(1)=¢r(tj+1), 0<j<M.

where Y/*1 = yv(x, ti+1) and Y/*1 is the numerical solution at the (j + 1)th time level. For each time step,

equation (3.1)-(3.2) can be rewritten as

_eyit? 1 eI y/ 1 YA = B,
% + (E - )y/+1 _ 82x + (E - 7)YJ t— . () €@DX[0.T], (3.3)
subject to the initial and boundary conditions, respectively
Y(x,0) = ¢p(x), x €Q,
Y 0) = di(tjer). 0<j <M, (3.4)

Yj+1(1) =¢r(tj+1), 0<j<M.

The local truncation error of the Crank-Nicolson method for the time semi-discretization is given by e;11 =
y(x, tig1) = YJ*1(x). This error measures the contribution of each time step to the global error of the time

semi-discretization.

Lemma 3.1 If
i
‘M <C, (x,t)eQ, 0<i<2
ox!

then the local error bound in the time direction is given by

lejsillo < C(AL)>.
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Proof We have
At )
Y, tie1) = y(x, tivr2) + 7)%()(, tiv12) + O(At9), (3.5a)
At
y(x, t)) = y(x, tjp1/2) + 7}’1‘()& tiv1/2) + o(At?), (3.5b)
From (3.5)), we have

X, tiv1)— y(x, t; At
y(x, tjp1) = y(x, tj) =y tj+ =)+ O(At?) (3.6)
At 2
Using (1.1)) in (3.6)), we have

y(x, tie1) = y(x, t;)

At At At At
Iy = eyux(x, t; + 7) —a(x, tj + ?)y(x, tj+ 7)+ Flx, t + ?) +0(At?),

where

At a(x, tjy1) +alx, t;
a(x, t + 7) = W + O(AtQ), (3.73)
At b(x,tit1) + b(x, t;
blx.tj +2) = W + O(At?), (3.7b)
A f(x,tiz)+f(x,t;
fx,t; + %) = w + O(AL?), (3.7¢)
At X, ti+ 1)+ y(x, t;
y(x, tj+ 7) = W + O(Atz). (3.7d)
It can be seen that
llejs1ll < Cr(AE). (3.8)

The global error is the measure of the contribution of the local error estimate at each time step and is given

by e; = y(x,t;) = Y(x, t)).

Lemma 3.2 Under the hypothesis of Lemma, (3.1)), the global error estimate at t; is given by
IEjllo < CAE%,  j < T/AL.

Proof Using the local error estimate up to the j# time step, the global error estimate is given by

J
IEjlo =11 el since j < T/At,
p=1

< llerll +lleall + ... + llejll,

< CijAf3,  using

< Ci(jAt)AL2,

< Cy TAtZ, since jAt < T,
<CA?, C=(CT,
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where C is a positive constant and independent of At and e.

3.2 | The Space Domian Discretization

Shishkin mesh is a piecewise uniform mesh such that the space domain [0, 1] is divided into three sub-intervals

Q,=1[0,0),Q; =[0,1-0] and Q, = (1 — 0, 1]. We define a mesh transition parameter o as
. (1
o = min {Z,UO\/EIH N},

where og > 2/+/a is a positive constant. The mesh is equidistant on [0, 1 — o] with N/2 mesh elements and
gradually divided into N/4 mesh elements on the intervals [0,0) and (1 -0,1]. Let QY = {X/}/,io be the set of

mesh points. Now, a piecewise uniform mesh points is defined as

ih, 0<i<N/4,
xi =30+ (1= NJ4)H, N/4 <i<3N/4,
(1-0)+(i—3N/4h, 3N/4<i<N.

where the mesh size in [0, 1-0] is given by H = 2(1-20)/N and in [0,0) and (1-0, 1], it is denoted by h = 40/N.

We denote the local mesh sizes by hj = xj.1 — x;, for i = 1,---, N and the mesh diameter with A; = (hj_1 + h;)/2.

Next subsection gives the details of fully discrete problem.

3.3 | Fully Discretized Numerical Method

Discretizing problem (3.3) in the outer region [0, 1 — o] using the central difference method and obtain

Jj+1 Jj+1 J+1 J+1 j+1 J J J J
e (Y oY Y - )+(L+‘?f )Y.jﬂ :i(ym_yi .y _Yi—1)
2h; hj hi At 2 /7 2h; hi‘ ﬁH / (3.9)
1 2\ . T
+ (7 _ ;) jp i T
At 21 2 ’
After rearranging the terms in (3.9) for j = %, cee %,j =0,---,M -1, we obtain the following scheme in the
outer region
Y e e = syl syl e sty v (3.10)
where the coefficients are given by
3j+1
- =3 c £ i 1 n -&
rpE——,  r{= 0+ =, =
hi—1(hi + hj-1) hihj—y 2 At hi(hj + hj-1)
& e e A oam e
"ohi(hi+ b))t T kb At 27 " hithi + b))’
7
¢ A

2
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We discretized problem (3.3)) in the inner regions [0, o) and (1 — o, 1] using the cubic spline in tension method.

We have

J+1
_ng . (7 . j+1 _ M
2 At 2

k72

i1 ; i JH )
a, ) _ My (1 EZ)YjJrfk +f/<.

where Mf“ = (YXX){:+1 for k =i,i £ 1. Equation (3.11) can be written as

_ J+1 J j j+1 J+1 J
eM! =aM,+(L_i)Yj_(L+i)j+1+ﬁ f
2 2 At 27 At 2 ! 2
From (3.12), we have
et e ) i AN A e
1 _ 1 1 _Fia\ys _ (L —1 )y —1 i
7 T+ (7 P )YH ( t 2 )YH ; ;
—sMJH eM a] ..” i -
i+ _ i+1 1 _ v J _ [ i+1 J+1 i1 i
-z +(B 2 )Y,+1 ( it 2 )Yi+1
From cubic spline in tension method, we have
J+1 _ Y_/+1 Yj+1 _ Yj+l
j+1 j+1 j+1 1 i -1
A1/7,'_1 /\4{71 +/\2(h,'_1 + /‘l,‘)MI{ +/11h’-M1!+1 = I+ hi ! i ! .
! I—

Substituting (3.12)) and (3.13) into and after rearranging the terms fori=1,-- -,

1,j=0,---,M -1, we obtain the following difference scheme in the inner regions
Y/+1+r Y/+1+r Yf“—s Yf +5¢ Y/+s Y/H+g,
where the coefficients are given by
j+1 j+1
- - N Arhi-q (471 +l) o= ;4_/\2(3/,‘
2hi_q(hj + hi—1) (i + hy) At) T 2hihig 2
j+1
o -€ Avh; (‘#H L)
" 2hithi + him1) - (hic + hy) At
_ £ Arhiy ( 1 3{71) c —£ ( 1
T = — c— " Lil—
Si 2hi_1(h; + hi_y) * (hi—1 + hy) \ At 2/ Si 2hih;_q *h At
o e N Arh; (L 3 a, )
! 2h,’(/‘l,‘ + hj_ 1) (/‘l,‘ 1+ h') At 2 )
Athi_q P J+1 4 Arh; A
_ f; —(f; f; _—
B e AL (VRN AR e AR

Combining the difference schemes (3.10)) and (3.15)), we obtain the following hybrid difference method

j+1 —vJ+1 1 1
R A o AN ALl CAUER R S L S

Y _1and & +1,-

+q,

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



8 F.W. Gelu, G.D. Kebede, B.S. Birlie AND M.B. Dangaro

fori=1,---,N-1,j=0,---,M -1 with the discrete initial and boundary conditions
YO = ¢p(x)), 1<i<N-1,
14+1 Pb(xi) - (3.17)
Y9 = gi(tie), Y =dr(ti), 0<j<M-1,
Wherethecoeﬁicientsfori:1,-~-,%—1 and 3TN+1,~-~,N—1,j:0,~-~,M—1 are given by
j+1 j+1
rr= —¢ + Athi-i (a{:r1 +l) re= S 42 (£+L)
f _2h,'_1(h,' +hi—1)  (hi-y+h)\ 2 At) i~ 2hih;_4 2 2 At)
j+1
o —€ L+ Mhi ("”fﬂ +l)
! 2h,’(h,‘ + h,'_1) (h,'_1 + h,') 2 At)
P —— S R A N Y-
i _2h,'_1(h,' +hi—1)  (hi—1 + k) \At 2 ) i 2hih;_4 2 At 2/
o & hn (l_afﬂ)
! 2h,’(h,‘ + h,'_1) (h,'_1 + h,') At 2 )
AMhict it o A2 et Arhi J+1 gl
=——(f, +f )+ =(F +f)+ ———(f, +f
S 2(h,'_1 + hi)( i-1 1—1) 2 ( i i ) 2(h,'_1 + hi)( i+1 /+1)’
and the coefficients for / = %, cee %,j =0,---,M -1 are given by
j+1
e S —ZF + x e . —
T Thic(hi+his)” T ik 2 At T T hihi+hi)
j G+ 4
B S S N S S S A
"his(hi+his) T mihi At 27 T hi(hi + hisy)’ 2

Thomas algorithm is employed to solve (3.16]) and (3.17)), which is more efficient and reduce the calculation

time over the usual matrix inverse method [I16].

Remark 3.1 [I7] The proposed method gives a second-order convergent solution for arbitrary Ay and A, with

A+ Ay = % and a fourth-order convergent solution for Ay = 1172,/\2 = %

4 | CONVERGENCE ANALYSIS

In this section, we derive the truncation at the inner regions, outer region and the transition points. Now, the
truncation error in the inner regions, that is, on the subintervals 0 </ < N/4 and 3N/4 <i < N is given by

Ty = (r,.'Y.fJ;1 +rey Ty r;'YjH) - (s[‘Y’.{1 +seY v styl g) (4.1)

i- i+1
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b, - Ay g1 Arh; 1
where ¢ = W(f+ +f D+ z(fﬁ +fj)+m(flf:1 +f,j+1) From (3.3]), we have

Mhict et | Arhi 1 g
(f' + fi—l) Z(h, 1+ h;: )(f/H + f/+1)

I £ f
2(hj—y + hj) i ( )+

2

_ elhiq v, )j+1 /‘131 hicv i eArhi
- XX

J+1 Y., )
2 + ) a7 h) Ty

4.2
. /\1#_1/7[71 J 8/\2()/ ),+1 a_, Yj+1 EAQ(Y )j AZZ’YJ *2)
2(hi_1 + hj) ! e 2 e
eArh; Yy 4 A ath j+1__ EAh; Vig) + A‘#th Vi
 2hjzg + by 2(/7/ VR Y 2Ry + hy) T T 2(hig + ) Y
Using (4.2) in (4.1), we obtain
- oyt J+T J+1 -vJ J J
T,,y_(r,. Y+ ey ,’fY’Jr1 )—(s,.Y,. +s7Y +s; Y/+1)
j+1
eArhio v ),+1 Ma’ hisg J+1 eArhi—y V)
2hir + i) " 2hizy +hi) TN T 2k + )
(4.3)

A 3?_1 hi—1 J 8/\2

_ i1 A2 ja N E/\z i A2
T AR S U A L A A S Sy

eArh; j+1 af+1 hi i eArh; i 3f+1 hi

_— - / Yex V. , — ——m—Y7 .
2y + ) T By 4 ) T 2 ) e 2 )

Using the Taylor series expansion for the terms YJ+ s )’/:11 up-to O(h’) in the space direction in (4.3), we obtain

the following truncation error for any time level

Tiy = To,;Yi(t) + T1i(Ya)i(t) + Toi(Yax)i(t) + T3, (Yexx)i(t) + Tai(Yaexxx)i(t) + Tsi(Yexxxx)i(t) + Te i (Yxxxxx)i(t), (4-4)
where the coeflicients are give by

Toi =4S 40t - Araj—1(t)hi—q B Azai(t) _ Avaj1(t)h;
T T (ki + hy) 2 2(hj—1 + hyi)

4.5a
3 (sT tsCasta Arai—1(t)hj- . Aza;(t) . Arai1(Dh; ) (4.52)
for ot 2(hir + hy) 2 2(hj—1 + hy)
hai (DR, Aai(th? Maj_i(t)h? Aajp1(t)h?

.= _h: - .t i1 . T — h:st -1 _ ! 4.5b
oo = i s~ e hy (P R s a4

_ (h,?_1 . hj,* eArhi_ ehy . shhi Mai(th A 3/+1(t)/7,3)
2 2 " 20 2bhi+him) 2 2hi+his)  Ahio +hi) Athior + hy) (4.50)

h

N (_h,z—1 - —’257’ shhia  ehy  ehhi Aaii(Oh) A ai+1(l‘)h?)
2 7270 2hi+his) 2 Ahi+his) Ahi+ b)) Athic + ) )
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= (-h?ﬁ1 — Ii,—_*’ B el h?f1 N g h/z Araj_q (f)hj-t1 B A1aj (i’)h;—1 )
! 3! ! Kl 2(/1,‘ + h,'_1) 2(h,’ + h,'_1) 12(/1,'_1 + h,') 12(h,'_1 + h,') (4 5d)
. (h,{1 o hjﬁ ' el h? ~ eAh? | Aaiq (A ~ Araj (t)h? )
31 7 3T Yohi + hisl)  2(hiq + ) 120k + b)) 120k + b))
Tei = (h?—l . li,«_‘" . S/\1h?71 . €/\1h? _ Aq a,-_1(t)hf71 B Aq a,-+1(t)hf )
! 41 7 417 4(h,' + h,'_1) 4(/1,' + h,'_1) 48(h,'_1 + /1,') 48(/1,'_1 + h,') (4 56)
N (—h?_1 - h? 4 E/\1h?_1 . 8/\1/7? /118,‘_1(t)/7?_1 /\1a,-+1(t)hf )
4 i AT T A+ ki) Mk + ki) 48(hi+his)  48(hiy + k) )
Toi = (—hi1 . ir.‘" _ ey h:}—l N eAq :"l:.1 Arai—q (l’)hi1 B Aq a,-+1(t)h,§ )
! 5! ! 50 12(h,' + h,'_1) 12(h,’ + h,'_1) 5!2(h,'_1 + h,') 5!2(h,;1 + h,') (4 5f)
N (hi1 - ﬁg*’ el /77.171 . el hj.i N A1aj_q (t)h?71 A18j41 (t)h? )
5070 81T 12(hy + hiy)  12(hi—1 + h)  512(hp + hisy)  S512(hi—y + hi))
(R shh | e h? Maia(Ohl . Aapa (k]
Tsiz(—r. + =+ + - - )
’ 6! ! 6!/ 48(h,‘ + h,;]) 48(h,‘ + /71;1) 6!2(h,',1 + h,‘) 6!2(/7,',1 + /7,‘) (4 5g)
—h@_ H g h?_ e I Araj_q (t)h?_ Aajs (t)h?
+ ( i-1 5T — gt i-1 + i _ -1 i )
6! ! 6!/ 48(/7[ + /7,‘,1) 48(/7,',1 + h[) 6!2(/7,‘ + h/,1) 6!2(h,‘,1 + /7,') ’

Using (3.16) in (4.5a}), To,; = 0. Similarly, using (3.16] in (4.5b), T = 0. Simplifying (4.5c)) using (3.16]) gives

f:h’?_1 ehf
Tyi =

eArhi_

8/\1/7,' 8/\2

“ahi_q(hi + hiy)  4hi(hi + hisy)
—& A A >4 A1 Az

B A I R I

4

Again, simplifying (4.5d) using (3.16]) yields

ghi_1hi(h* = h?)  eAy(h? - h?)

2(hj + hi-1)

ghi_1hi(h%, — h?)

2(/1,' + h,'_1) 2’

- 1
=y g(/u +A9) - % + %(;ﬁ +22). since Ay +dz = 7.

ey (h? - h2_,)

T3 = + + + s
T N2highi(hi + his) - 2(hi+hiz)  12hihi(hi + i) T 2(hi + hizy)

£ A £ A
= 15 k=t = b)) = 5 (hicy = hi) + 5 (i = ) = - (hia = ),

=e(hj_q - h,-)(% - M).
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Sine hj_1 = h; = h on the interval 0 </ < N/4 and 3N/4 <i < N, we easily seen that T3; = 0. Equation (4.5€] is
simplified as

—f;h‘.‘_1 eh* el h3_1 g4 m

Tai= J - J + = + ‘
© 48h;_((hi + hi_1) A48hi(hi + hi_1)  4(hi+hi1)  4(hi +hiq)

eht eh? shh? | e b}

- - + + ,
48h;_1(hi + hi—1) 48hi(hi + hi—1)  4(h; + hi—1)  4(hi—1 + hy)
—e(h ) e+ h)  —e(BP, + R ek +hD)
+ + ,
48(hj_1 + h;) 4(hi—1 +hj))  48(hji—1 + hy) 4(hj—1 + hj)
—e(h}  + k) eA(R, +h)
+ s
24(hj_1 + h)) 2(hi—1 + hi)

3 3
- a5
hi_1 + hj 4! 21 ]

To obtain fourth-order method in the space direction, using Remark (3.1) for Ay = 117, we obtain T4; = 0.
Equation (4.5f) is simplified as

_ehiahith, ) eh(hE, - A . ehiihi(ht, ) eh(h}, — D)
2x 5!h,'_1 h/(h,’ + /1,'_1) 12(h,'_1 + h,') 2x 5!/1,'_1/1,'(h,' + h,'_1) 12(h,'_1 + h,‘) ’
e(ht , —hH  er(ht, - HhH

TSk + i) 6(hit +hy)

4 4
. s(u)[l -4
hi_1 + hj 5! 61

Sine hj_1 = h; = h on the interval 0 </ < N/4 and 3N/4 <i < N, we easily seen that Ts; = 0. Equation (4.5g) is
simplified as

Ts

—ehithi(h> | + ) eM(B + B ehiahi(h + R eh(R | +R)

- 2% 6!h,‘,1 h,'(h[ + h,',]) 48(h,‘,1 + h,') - 2% 6!/1,',1h,'(h,‘ + h,‘,1) 48(h,‘,1 + h,‘) ’
. (B, +h?) . eh(h, + 1)
6!(h,‘ + h,'_1) 24(/1,'_1 + h,’) ’

5 5
-l e &
h,'_1 +h,‘ 6! 41

Te.i

Therefore, in the inner regions, that is, on the subintervals 0 </ < N/4 and 3N/4 < i < N, the truncation error

in (4.4) reduces to

5 5
T-y——s(hM +hi)[1 A
iy =

. -5
e E](Ymm)m + O(N). (4.6)

Similarly, on the interval N/4 < i < 3N/4, the truncation error in the outer region is given by

- _ ey cyJj+1 vt [y cylJ +vJ
T/,Y—(’i AR AR AN Bl UR AR R R (4.7)
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ATV
where ¢ = +——. From (3.3), we have

J+1 g j+1 j+1 / -
o+ f _E(Yxxﬂ . a yit! _EM + in (4.8)
2 2 2 i 2 2

Using ({4.8) in , we obtain

j+1 j+1 j j
)+5(YXX)1 - af y/*! +57(YX2X)¢ - in (4.9)

AU PEavIL Y cyJ+1 +yJ+1 oz cyl o tyl
77,Y—(’fY/—1+’iY/ H0Y )T \S Y Y s 2 5 Vi R

i+1 i+1

+

Using the Taylor series expansion for the terms Y/J— y/* up-to O(A°) in the space direction in (4.9), we obtain

1
12 i
the following truncation error for any time level

Tiy = To,;Yi(t) + T1,i(Ya)i(t) + T2,i(Yex)i(t) + T3,;(Yexx)i(t) + Tai(Yaxxx)i(t), (4.10)

where the coefficients are give by

i(t i(t
Toj=r+rf+rf- a’; ) _ (si’ +sS+s] - a,é )), (4.11a)
Tii=—hiiry +hirf + (hicis;y = his}), (4.11b)
2 2 2 2
T, = hig _ ﬁ+ £ _hf—17_h7i+ £ 4.11
2=\ i )\ s Ty T g) (4.11c)
-k, h n I
o= () (et i
4 4 4 4
T, = hia - ﬂ+ —hia - ﬂ+ 411
4 = 41 r+ 4!r,- + 2 s; - 4!5, . (4.11e)

Using (3.16]), we can easily seen that To; =0,77; =0,T,; =0. Using (3.16) in (4.11d) and simplified to obtain

f;h{1 eh’ eh{1 em
T3,i = ! - ! + ! - ! 5
3thica(hi + hi—1)  3hi(hi + hi—1) 3y (hi + hi—1)  3lhi(hi + hi1)
g(h? - h) e(h? - h)

= + .
3lhji_q(hi + hi1)  3hi—1(hi + hj—y)

Sine hj_1 = h; = H on the interval N/4 < i < 3N /4, we easily seen that T3, = 0. Equation (4.11€]) is simplified
to obtain

—eh;.‘_1 sh:.‘ z’:h:.‘_1 Sh?
© Alhiy(hi + ki) Ahi(hi+ his)  Ahioi(hi+ his)  Ahi(hi + hig)’

3 3
:;S(hi—1 +h/)
12 h[,1+h,‘ ’

Ta,i

Therefore, for outer region, that is, on the interval N/4 < i < 3N /4, the truncation error in (4.10)) reduces to

3

by + -3
(m)(yxxxx)/(t) +O(N™7). (4~12)

-

Ti,Y:E
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Finally, the truncation error at the transition points is bounded by

Tl < C(N73 + N—00V&)  j= N/4,3N/4 and H > VE,
iyl <

C(N7'e + N90Va), j=N/4,3N/4 and H < e.

Theorem 4.1 Let Y(x;,t) be a hybrid scheme to the solution of (3.16)—(3.17) and y(x, t) is the solution to the

continuous problem. Then, the parameter-uniform error estimate satisfies the bound

Tl < CN*(InNy, 0<i<B 3N <j<n,
=

CN72(InN)2, N/4 <i <3N/4.

where C is a constant independent of € and N.

Proof The truncation error is given by

B[ A -5 Fo N 3N _;
_g(hi—lﬁ’i)[a - ﬂ](yxxxxxx)i(t) +O(N™), 0<i< 7, <i<N, (4.13)

L +h3 .
;—g( ey s )(me),-(t) +O(N73), NJ/4 <i<3N/4.

Since the argument depends on whether o = 1/4 or o = 2v/eIn N < 1/4, there arises two cases.

Case (i): When o = 1/4, the mesh is uniform with spacing 1/N, that is, h; = 1/N and 2veln N > 1/4 gives
£71/2 < CIn N. From this, we get £~' < (Cln N)2. In this case, we use a classical analysis to prove convergence.
Using the classical bound in Theorem together with yields

B 4k 2
e( i1 i [i——‘]Ce“‘, 0<i<N 3N ;cn,
Tyl < hll'p_;#l;;) 81 — A 7 (4.14)
&7 )ee, N/4 <i<3N/a.
Since hj_1 = hj = 1/N, it follows from (4.14) that
CeN™Ce™), 0<i<f W <j<n,
[Tivl < (4.15)
CeN2(Ce™?), N/4<i<3N/4
Using the fact that ' < (Cln N)?, we obtain
CN*In*N, 0<i<f W <icn,
Tyl < (4.16)

CN2In?N, N/4<i<3N/4.

Case (ii): If Q; lies in the inner regions, then mesh spacing h; = %" and o = 2v/eIn N. Using the bounds in the
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Theorem (2.4]) together with the estimates in (4.13)), we have

B +h?
e =1
hj_1+h;

[l - %]Ce“‘(e‘xi/‘/g+ e (1IVe)  g<i< X W <i<N,

6! )
[Tyl < PERE (4.17)
%(h'/,:‘1+h'l,)C(1 +ed), NJ4 <i<3N/4.
Since e ¥i/Ve < ¢ 0/Ve = g 2InN — N2 and e (1=X)/VE < g70/VE = g=2InN — =2 44 considering Ay = 1172, we
have
n_+h?
Cs(h’f‘ — )(Ce‘4N‘2), 0<i<i 3 <i<n,
ITiyl < R (4.18)
Ce(F25m )1 + &), N4 <i <3N/
=170
Since h; = hi_1 = 8yeN~"In N and the fact that y& < CN~', we obtain the estimate from (4.17)
CN™*In* N, O<i<f M <ic<n,
[Tivl < (4.19)

B +h3 3 .
Ce(h’_ +,;_)(C(1+e D, NJ4<i<3N/4
i-1 i

On the other hand, for the subinterval [o,1 — o], that is, for the outer region the mesh spacing is h; =

2N~'(1-20)=2N"' = CveN~"InN < CN~'. Using this in (4.19) and the fact that v& < CN~" gives us

Tl CN*In*N, 0<i<f W <jicn,
iyl <

(4.20)
CN72, N/4 <i<3N/4.

It follows from classical estimates that the truncation error at the transition points is given by

2

1o}
Tujar! < [e( 5z - 6%)y
"

< Ce(xjp1 — Xi1)|y]

B

, if xi=0, xi=1-0.

For x; =0 and N2 < ¢ and xj41 — xj_1 < 4N~ we obtain

[Thyayl < CN"‘s(1 +e7112 +s"1/2[1 +e! {e"x/v"’/g + e_(l_x)/v"’/g}]),
<CcN! (a 12612 4 N“’O‘/E),

<CN "W+ CN™V&  since Ve < CN'and og > 2/Va,

< CN72,
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When & < N™2, we obtain

T <2e "
ITwjayl<2e max [y”]

< C(s +  max {e”‘/‘a/a + e"“"x)/‘a/a}),

X1 SXSXjpq
< Ce+ CN™00V,
< CN'We+ CN™V@ gince V& < CN'and oo > 2/Va,
<CN72

The same analysis holds for the errors in the case when x; = 1 — 0. Combining the above estimates for both

the cases, we have

Tl < CN*(InNYY, 0<i<f 3N <j<n,
LYl=

CN72(InN)2, N/4 <i <3N/4.
This completes the proof.

Remark 4.1 If Ay = 117, then the truncation error bound in space direction is given by

Tl < CN™#(InNY, 0<i<f 3N <j<n,
LYl =

CN=2(InN)2, N/4 <i <3N/4.
Remark 4.2 If Ay = 13, then the truncation error bound in the space direction is given by
ITivl < CN"2(InN)?,  1<i<N.

We have the following main convergence theorem.

Theorem 4.2 Let y(x,t) be the solution of continuous problem and Y(x;,t) be the solution of the discrete

problem. Then, the parameter-uniform error estimate for A; = 117 is given by

2 -4 4 i< N 3N
Tivl < C(At“+ N™*(InN)*), 0<i<F,% <i<N,

C(At2 + N™2(In N)?3), N/4 <i <3N/4.
Similarly, for Aq = 13, the parameter-uniform error estimate is given by
ITiyl < C(Af2 + N2(InN)?), 0 <i<N,
where C is a constant independent of € and the mesh parameters N and At.
Proof The proof follows from the bound given in Lemma for time and Theorem for space.

Now, we illustrate the theoretical findings in the previous sections in practice via numerical experiments.
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5 | NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiment in order to corroborate the applicability of the proposed
method. Since the exact solution for the first two examples are not known, we use the double mesh principle

to calculate maximum point-wise errors using the following formula

N,M N.M 2N 2M
E."7 = max Y™ (xj, t;) =Y Xi, t7)|,
€ OsisN;te[O,T]| (xi. £7) (xi. )]
where YNM(x;, t;) denotes the numerical solution obtained at (N, M) mesh points where Y2N2M (x. t;) denotes
the numerical solution at (2N,2M) mesh points. Whereas the exact solution for the third example is known,

we use the following formula to calculate the maximum point-wise errors.

ENM

ly(xint)) = YNM(xi, 1),

= max
0</<N;te[0,T]
where YVNM(x;, t;) denotes the numerical solution obtained at (N, M) mesh points where y(x;,t;) denotes the
exact solution at (N, M) mesh points. The numerical g-uniform rate of convergence and e-uniform maximum
point-wise errors were calculated using the following formulas, respectively

ENM

and = rnangN’M.
£

EN,M
M= log, ( )

E2N.2M

Example 5.1 Consider singularly perturbed reaction-diffusion problem

) 92 2
Foesh+ oy =1 (x)eONxO1]

= — € +
y(x,0)=0, x €[0,1],
y©,)=0, y(1,6)=0, te[01]

Example 5.2 Consider singularly perturbed reaction-diffusion problem

2
S -e 5+ By =e —1+sin(nx), (x,t)€(0,1)x(0,1],

ot ox2
y(x,0)=0, x €[0,1],
y(0,t)=0, y(1,t)=0, t €[0,1].

Example 5.3 Consider singularly perturbed reaction-diffusion problem

2
4 —5% +(1+xe )y =f(xt), (x,t)€(0,1)x(0,1],
y(x,0)=0, x €[0,1],

y(0,t)=0, y(1,t)=0, t €[0,1].
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where the function f(x, t) is chosen from the exact solution
e~ XIVe L g=(1-x)/\e
xt)=(1—-¢et (— — cos?(nx )
Y0 == (——= = (rx)
TABLE 1 ESN’M, ENM and rMM for Example by taking different values A1 and A;.
el N =32 N =64 N =128 N = 256 N =512
M =20 M =80 M =320 M = 1280 M = 5120
_ 1 _5
M=, =75
1072 3.2061e-04 1.9830e-05 1.2227e-06 7.4955e-08 2.1541e-08
10~ 1.4930e-03 2.1583e-04 2.5044e-05 2.6872e-06 2.6825e-07
1076 1.4876e-03 2.1495e-04 2.4943e-05 2.6756e-06 2.6714e-07
1078 1.4871e-03 2.1486e-04 2.4933e-05 2.6744e-06 2.6703e-07
10710 1.4871e-03 2.1486e-04 2.4933e-05 2.6744e-06 2.6702e-07
ENM 1.4930e-03 2.1583e-04 2.5044e-05 2.6872e-06 2.6825e-07
PR 2.7902 3.1074 3.2203 3.3245 -
M=%, =13
1072 1.3294¢-03 2.9970e-04 7.3178e-05 1.8186¢-05 4.5431e-06
10 1.0369e-02 3.6253e-03 1.1162e-03 3.6037e-04 1.1285e-04
107 1.0369e-02 3.6210e-03 1.1162e-03 3.6037e-04 1.1285e-04
1078 1.0369e-02 3.6206e-03 1.1162e-03 3.6037e-04 1.1285e-04
10710 1.0369e-02 3.6206e-03 1.1162e-03 3.6037e-04 1.1285e-04
ENM 1.0369e-02 3.6253e-03 1.1162e-03 3.6037e-04 1.1285e-04
rV-m 1.5161 1.6995 1.6310 1.6751 -
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TABLE 2 EEN’M, ENM and rMNM for Example by taking different values A7 and Aj;.

el N =32 N =64 N =128 N =256 N =512
M =20 M =80 M =320 M = 1280 M = 5120
A=, =73
1072 1.6830e-04 1.4261e-05 1.8287¢-06 3.9577e-07 1.0124e-07
1074 1.7124¢-03 2.2853e-04 2.7441¢-05 2.9485¢-06 2.9566e-07
1076 1.6986¢-03 2.2650e-04 2.7204¢-05 2.9238¢-06 2.9318e-07
1078 1.6973e-03 2.2630e-04 2.7180e-05 2.9214¢-06 2.9293¢-07
10710 1.6971e-03 2.2628e-04 2.7178e-05 2.9211e-06 2.9291e-07
ENM 1.7124e-03 2.2853¢-04 2.7441¢-05 2.9485¢-06 2.9566e-07
A 2.9056 3.0580 3.2183 3.3180 =
A= %,/‘2 =1
1072 2.1362¢-03 5.1533e-04 1.2767e-04 3.1846¢-05 7.9598e-06
1074 1.7877e-02 5.9003¢-03 1.9218e-03 6.2063¢-04 1.9548¢-04
1076 1.7877e-02 5.8870e-03 1.9207e-03 6.2064¢-04 1.9548¢-04
1078 1.7877e-02 5.8857¢-03 1.9207e-03 6.2064¢-04 1.9548¢-04
10710 1.7877e-02 5.8856¢-03 1.9207e-03 6.2064¢-04 1.9548e-04
ENM 1.7877e-02 5.9003¢-03 1.9218e-03 6.2064¢-04 1.9548¢-04

rN-M 1.5992 1.6183 1.6306 1.6667 -
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TABLE 3 EEN’M, ENM and rMNM for Example by taking different values A1 and A;.

el N =32 N =64 N =128 N =256 N =512

M =20 M =80 M =320 M = 1280 M = 5120
_ 1 _ 5

M=, =753

1072 1.7107e-04 4.3569¢-05 1.0945e-05 2.7392¢-06 6.8497e-07
10~ 2.1995e-04 3.2123e-05 5.3836e-06 1.0814e-06 2.4712e-07
1076 3.1893e-04 6.2553e-05 1.3368e-05 2.6919e-06 4.5630e-07
10-8 3.3294e-04 6.8598e-05 1.6096e-05 3.8895¢-06 9.3073e-07
10710 3.3436e-04 6.9229e-05 1.6394e-05 4.0343e-06 1.0011e-06
ENM 3.3452e-04 6.9299¢-05 1.6427¢-05 4.0507e-06 1.0092e-06
A 2.2712 2.0768 2.0198 2.0050 -

A= %,/‘2 = 1§

1072 5.4732e-04 1.3431e-04 3.3265e-05 8.3053e-06 2.0755e-06
1074 5.4209e-03 1.7450e-03 5.9812e-04 1.9483e-04 6.1688¢-05
1076 5.4261e-03 1.7470e-03 5.9871e-04 1.9502e-04 6.1741e-05
1078 5.4266e-03 1.7472e-03 5.9877e-04 1.9503e-04 6.1746e-05
10710 5.4266e-03 1.7472e-03 5.9878e-04 1.9504e-04 6.1747¢-05
gNM 5.4266e-03 1.7472e-03 5.9878e-04 1.9504e-04 6.1747e-05
rN-M 1.6350 1.5449 1.6183 1.6593 -
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FIGURE 1 Surface plot of Example for N =64,M =80 and Ay = 15,4y = -
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FIGURE 2 Surface plot of Example for N =64,M =80 and Ay = 15,4y = -

N

The maximum point-wise and e—uniform errors with their respective rate of convergences are presented in
Tables ) and for Examples , and , respectively. From these Tables, one can observe

that the proposed method gives higher-order accuracy using Ay = 11—2 and Ay = % and almost second-order

accuracy using Ay = % and A = %, which confirms Remark (

, and for Example

the two end points as € — 0. The maximum point-wise errors for Examples (|

Numerical simulations in terms of surface

plots in Figures

) show the formation of boundary layers at
and are plotted

using log-log scale as can be seen in Figures @) showing the e-uniform convergence. From all the tables of

values, we deduce that when the mesh points increases the maximum point-wise errors decreases.

6 | CONCLUSION

A higher-order new numerical method for singularly perturbed parabolic reaction-diffusion problems is pre-
sented in this study. The time variable is discretized using the Crank-Nicolson method on a uniform mesh,
and the space variable is discretized using the hybrid difference method on a Shishkin mesh, which consists

the cubic spline in tension method in the inner regions and the classical finite difference method in the outer
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FIGURE 3 Surface plot of Example for N=64,M =80 and A; = -,y = 2.
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region. The proposed method’s stability and convergence analysis are very well established. The numerical

results show that the proposed method is a higher-order e—uniformly convergent method. Three numerical

examples are solved to validate the theoretical results. The numerical results shown in the tables and figures

show that the proposed method works well.
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