Refining seabird marine protected areas by predicting habitat
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Abstract

Conservation of breeding seabirds typically requires detailed data on where they feed at sea. Ecological niche models (ENMs)
can fill data gaps, but rarely perform well when transferred to new regions. Alternatively, the foraging radius approach
simply encircles the sea surrounding a breeding seabird colony (a foraging circle), but overestimates foraging habitat. Here,
we investigate whether ENMs can transfer (predict) foraging niches of breeding tropical seabirds between global colonies, and
whether ENMs can refine foraging circles. We collate a large global dataset of tropical seabird tracks (12000 trips, 16 species,
60 colonies) to build a comprehensive summary of tropical seabird foraging ranges and to train ENMs. We interrogate ENM
transferability and assess the confidence with which unsuitable habitat predicted by ENMs can be excluded from within foraging
circles. We apply this refinement framework to the Great Barrier Reef (GBR), Australia to identify a network of candidate
marine protected areas (MPAs) for seabirds. We found little ability to generalise and transfer breeding tropical seabird foraging
niches across all colonies for any species (mean AUC: 0.56, range 0.4-0.82). Low global transferability was partially explained
by colony clusters that predicted well internally but other colony clusters poorly. After refinement with ENMs, foraging circles
still contained 89% of known foraging areas from tracking data, providing confidence that important foraging habitat was
not erroneously excluded by greater refinement from high transferability ENMs nor minor refinement from low transferability
ENMs. Foraging radii estimated the total foraging area of the GBR breeding seabird community as 2,941,000 km2, which was
refined by excluding between 197,000 km2 and 1,826,000 km2 of unsuitable foraging habitat. ENMs trained on local GBR

tracking achieved superior refinement over globally trained models, demonstrating the value of local tracking. Our framework



demonstrates an effective method to delineate candidate MPAs for breeding seabirds in data-poor regions.
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Conservation of breeding seabirds typically requires detailed data on where they feed at sea. Ecological niche
models (ENMs) can fill data gaps, but rarely perform well when transferred to new regions. Alternatively,
the foraging radius approach simply encircles the sea surrounding a breeding seabird colony (a foraging
circle), but overestimates foraging habitat.

Here, we investigate whether ENMs can transfer (predict) foraging niches of breeding tropical seabirds
between global colonies, and whether ENMs can refine foraging circles. We collate a large global dataset of
tropical seabird tracks (12000 trips, 16 species, 60 colonies) to build a comprehensive summary of tropical
seabird foraging ranges and to train ENMs. We interrogate ENM transferability and assess the confidence
with which unsuitable habitat predicted by ENMs can be excluded from within foraging circles. We apply
this refinement framework to the Great Barrier Reef (GBR), Australia to identify a network of candidate
marine protected areas (MPAs) for seabirds.

We found little ability to generalise and transfer breeding tropical seabird foraging niches across all colonies
for any species (mean AUC: 0.56, range 0.4-0.82). Low global transferability was partially explained by
colony clusters that predicted well internally but other colony clusters poorly. After refinement with ENMs,
foraging circles still contained 89% of known foraging areas from tracking data, providing confidence that
important foraging habitat was not erroneously excluded by greater refinement from high transferability
ENMs nor minor refinement from low transferability ENMs.

Foraging radii estimated the total foraging area of the GBR breeding seabird community as 2,941,000 km?,
which was refined by excluding between 197,000 km? and 1,826,000 km? of unsuitable foraging habitat. ENMs
trained on local GBR tracking achieved superior refinement over globally trained models, demonstrating the
value of local tracking. Our framework demonstrates an effective method to delineate candidate MPAs for
breeding seabirds in data-poor regions.
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Introduction

To counter the biodiversity crisis, there is an urgent need to protect important habitats to ensure the stability
of global ecosystems. In response, the International Union for Conservation of Nature (IUCN) has called
for 30% of the Earth’s overall land and sea area to be protected by 2030. However, as of April 2023 only
2.9% of the ocean was highly protected (www.mpatlas.org; Morgan et al. 2018). There is also concern
that protected areas could be situated in locations where increased protection offers marginal benefit for
biodiversity (Devillers et al. 2015, Woodley et al. 2021). One barrier to protected area implementation is



that limited knowledge of animal distributions and abundance hampers the identification of the most critical
locations. In the marine realm, data collection is logistically and financially challenging; however, there
are numerous, pressing threats to biodiversity that include fishing, climate change, pollution, shipping and
energy generation (Halpern et al. 2008).

Seabirds are a highly threatened animal group (Croxall et al. 2012) with a marine foraging niche (they
depend upon the sea for food). Their relative detectability and accessibility (i.e. above water, colonial,
terrestrial breeding) compared to other marine species has provided sufficient data to merit global analyses
of conservation priority (Dias et al. 2019a) and designate marine protected areas (MPAs) (e.g. North Atlantic
Current and Evlanov Sea-basin MPA; Davies et al. 2021). During the breeding season, seabird distribution
is focussed around colonies, as birds regularly return to perform parental duties such as incubating eggs and
feeding chicks, and area-based conservation measures, such as MPAs, are more feasible than during more
dispersive migratory and non-breeding seasons (Oppel et al. 2018). To identify MPAs for seabirds, a spatial
representation of their marine foraging niche is required. This can come directly from bird-borne tracking
devices or at-sea surveys, which locate hotspots of occurrence or abundance to delineate candidate MPAs
(Lascelles et al. 2016). Alternatively, such data can be entered into Ecological Niche Models (ENMs), also
known as species distribution models, to make predictions beyond surveyed areas. ENMs build statistical
relationships between species space use and remotely-sensed environmental variables, and then predict these
relationships over broad areas sampled by remote sensors (e.g. satellite imagery). For seabirds, these
environmental variables describe important marine habitat and bio-physical processes such as seamounts,
frontal systems and productivity blooms, which can characterise their foraging niches, for example the
foraging niche of a seabird population could be described as specialising on upwellings at pelagic seamounts.
The ability of ENMs to predict seabird foraging niches beyond surveyed areas, has seen them regularly used
for marine spatial planning and identification of priority conservation areas (Nur et al. 2011, Zydelis et al.
2011, Lavers et al. 2014, Dias et al. 2019Db).

However, a key hurdle for ENMs is to extrapolate predictions beyond the geographical and temporal range
of training data, known as model ‘transferability’ (Randin et al. 2006, Yates et al. 2018). A growing body
of literature suggests limited ENM transferability between different regions (Redfern et al. 2017, Mannocci
et al. 2020). In seabirds, Warwick-Evans et al. (2018) found that the foraging niche of chinstrap pen-
guins Pygoscelis antarcticus was transferable between colonies at <100 km, while Péron et al. (2018) found
that foraging niche of Scopoli’s shearwater Calonectris diomedea was transferable locally but not regionally
(>200 km). Transferability at large scales (>1000’s of km) does not apply in grey petrel Procellaria cine-
rea wintering distributions (Torres et al. 2015), nor red-billed tropicbird Phaethon aethereusforaging niches
(Diop et al. 2018). These studies support contrasting regional marine habitats and differing associations
with habitat by different populations (local adaptation) as major barriers to transferability. Local adap-
tation is driven by strong philopatry in seabirds, many of which have evolved population-specific foraging
behaviours suited to local biotic and oceanographic conditions (Peck & Congdon 2005, Mendez et al. 2017,
Gilmour et al. 2018). To improve transferability, ENMs can be trained with data from different regions to
extract commonalities in local adaptation and better generalise a species’ niche (Matthiopoulos et al. 2011).
With the growing availability of multi-colony seabird tracking datasets (e.g. Ropert-Coudert et al. 2020;
www.seabirdtracking.org), it is now feasible to train such ENMs and conduct a comprehensive evaluation of
the transferability of breeding seabird foraging niches. This assessment is particularly warranted in tropical
regions, which have received significantly less effort from seabird tracking studies relative to higher latitudes
(Bernard et al. 2021), and ENMs could be particularly important for filling gaps in knowledge on seabird
distributions.

A simple, pragmatic and generally effective alternative to ENMs for defining important areas of seascape for
breeding seabirds is the foraging radius approach (Birdlife International 2010, Thaxter et al. 2012, Soanes et
al. 2016, Critchley et al. 2020). At-sea observations and/or tracking data are used to calculate the distance
breeding seabirds forage from their colony (hereafter a “foraging radius”), this is mapped with a circle
centred on the colony to represent the sea area within which the breeding seabird population feeds (hereafter
a “foraging circle”). Averaging foraging radii from multiple colonies can generalise a species’ foraging radius



which can then be applied to colonies lacking information on the at-sea distribution of breeding residents
(Thaxter et al. 2012). With a representative sample of colonies, the process can be applied globally (e.g.
https://maps.birdlife.org /marineibas). However, the foraging radius approach overestimates foraging habitat,
as not all areas within the foraging circle will be used. A foraging circle can be refined with information
relating to habitat preference, such as bathymetry (Birdlife International 2010, Soanes et al. 2016) or prey
availability (Grecian et al. 2012), where unsuitable habitat is ‘cut out’ from the circle. Extending this
approach by using a range of remotely-sensed variables commonly used in ENMs allows a more holistic
approximation of unsuitable habitat, which could improve the accuracy of foraging circle refinement. As
such, this new approach better meets a key goal of systematic conservation planning, minimising the cost
(in terms of size) of protected areas while maximising the confidence they contain core habitat (Margules &
Pressey 2000).

The Great Barrier Reef (GBR) Marine Park, Australia is arguably the most thoroughly managed large MPA
in the tropics (Fernandes et al. 2005). In addition to the mega-diverse coral reef community, for which the park
was created, the GBR’s cays support numerous globally and regionally significant breeding populations of
tropical seabirds (King 1993). However, numerous breeding GBR seabird populations are in decline (Heatwole
et al. 1996, Batianoff & Cornelius 2005, Hemson 2015, Woodworth et al. 2020). Despite this knowledge of
seabird population change, the ability of managers to understand the causes of these changes and respond
to them is limited by the lack of information on where they forage. Limited tracking studies underpin much
of what we know (Fig. 1), with no standardised boat or aerial-based seabird survey data existing (but see
CSIRO (2020) for a survey dataset from the adjacent Coral Sea). Consequently, seabird foraging resources
have not been considered in the designation of marine park zoning that dictates the location of permitted
activities within the GBR Marine Park. Overcoming these data gaps could inform future amendments to
marine park zoning and guide other management interventions, and potentially mitigate seabird population
declines.
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Fig. 1 Extent of published seabird tracking data on the Great Barrier Reef. Displayed GBR seabird breeding
sites qualify under globally or regionally significant seabird breeding areas.

Here, we collate the most comprehensive tropical seabird tracking dataset from across the globe to train
ENMs, describing foraging niche and to estimate tropical seabird foraging radii. Firstly, we determine
whether breeding seabird foraging niches can be transferred (predicted) between global colonies using ENMs.
We investigate the influence of local adaptation on transferability by testing whether nearby or oceanograph-
ically similar colonies show better transferability, and whether this can be overcome by training ENMs on
multiple colonies to generalise a ‘global’ foraging niche. Secondly, we present a framework combining ENMs
with the foraging radius approach to refine foraging circles by excluding areas of predicted unsuitable habi-
tat. We validate our framework’s robustness by testing the ability of unrefined and refined foraging circles
to include known foraging areas of colonies from our global tracking dataset. Finally, we demonstrate how
global models can inform local planning by applying our framework to the breeding seabird community of the
Great Barrier Reef to identify a network of candidate MPAs for seabirds, and explore the trade-off between
their size and the confidence in their prediction.

Methods

Tracking data

The validity of our modelling approach hinges on constructing ENMs from multiple colonies. We thus
compiled the most comprehensive database of tropical seabird tracking data to date, featuring 16 species



representing 60 colonies around the globe and totalling ~12000 individual trips (Table 1; Supporting infor-
mation). Species that had more than 10 tracking studies were modelled individually. Tropicbird Phaethon
and frigatebird Fregata species were grouped respectively (Table 1) to boost sample size and make family
level models, acknowledging that foraging differences between species within these families have been ob-
served (e.g. Mott et al. 2016). Noddy Anous species were modelled as a family group (following evidence
of foraging niche overlap; Surman & Wooller 2003, Shephard et al. 2018), and large tern Thalasseusand
Hydroprogne species were aggregated into a meta-family group for modelling. The exceptions were sooty
terns, which were modelled as an individual species (despite few tracking studies) because of their unique,
highly pelagic foraging niche among terns (Surman & Wooller 2003). Wedge-tailed shearwaters were also
modelled separately for short trips and long trips because we had good a-priori knowledge of dual-foraging
behaviours during breeding on the GBR (Congdon et al. 2005, McDuie et al. 2015) and in New Caledonia
(Weimerskirch et al. 2020), and sufficient tracking studies to do so. Both individual species (e.g. brown
booby BRBO) and family groups (e.g. large terns TERN) are hereafter referred to as “modelled species”.

Table 1 Summary of quantity and coverage of tracking data analysed for each species, and the grouping of
species with less data.

Species common name Latin name Number of colonies Number of trips  Modelled species (acronym)

Brown booby Sula leucogaster 16 2926 brown booby (BRBO)
Masked booby Sula dactylactra 12 2255 masked booby (MABO)
Red-footed booby Sula sula 13 733 red-footed booby (RFBO)
Great frigatebird Fregata minor 3 1195 frigatebirds group (FRBD)
Lesser frigatebird Fregata ariel 2 732 frigatebirds group (FRBD)

Magnificent frigatebird Fregata magnificens 4 97 frigatebirds group (FRBD)
Red-billed tropicbird Phaethon aethereus 10 1100 tropicbirds group (TRBD)
Red-tailed tropicbird Phaethon rubricauda 1 61 tropicbirds group (TRBD)
Wedge-tailed shearwater  Ardenna pacifica 8 313 wedge-tailed shearwater short t
Wedge-tailed shearwater Ardenna pacifica 7 125 wedge-tailed shearwater long tr
Sooty tern Onychoprion fuscatus 3 19 sooty tern (SOTE)

Black noddy Anous minutus 1 7 noddies group (NODD)

Lesser noddy Anous tenuirostris 1 54 noddies group (NODD)

Brown noddy Anous stolidus 3 181 noddies group (NODD)
Caspian tern Hydroprogne caspia 1 313 large terns group (TERN)
Greater crested tern Thalasseus bergii 1 14 large terns group (TERN)
Royal tern Thalasseus mazimus 1 253 large terns group (TERN)

Tracking data processing

Tracking datasets were speed filtered (removal of points > 90 km/h; (Mendez et al. 2017), and linearly
interpolated using theAdehabitatLT (0.3.24) R package (Calenge 2011). Due to differences in temporal
resolution of different datasets we interpolated each dataset to either 1, 2, 3, 5, 10, 15, or 20 minute
resolutions. We split individual foraging trips from multi-day tracks using thetrack2kba (1.0.0) R package
(Beal et al. 2021), removing small foraging trips within 4 km of the colony and under 1 hr in duration. We
also manually removed trips that spent too much time away from the colony, indicating breeding failure.
Upper trip duration limits were set at five days for boobies (Mendez et al. 2017), 12 days for frigatebirds
(Mott et al. 2016) and tropicbirds, 14 days for wedge-tailed shearwater long trips (McDuie et al. 2015) and
sooty terns (Neumann et al. 2018), three days for wedge-tailed shearwater short trips (Weimerskirch et al.
2020) and two days for noddies and terns (from inspection of data).



Foraging radii

We estimated radii and mapped foraging circles for each modelled species to predict likely foraging range
around untracked colonies (Birdlife International 2010; Thaxter et al. 2012). We first obtained the maximum
distance from the colony observed across all the foraging trips made by birds from each tracked colony. We
then took the average of these colony-specific maximum distances to generate a ‘mean maximum foraging
radius’ for each modelled species (Thaxter et al. 2012). To provide lower and upper extremes for each
modelled species, we also present the minimum and maximum of colony-specific maximum distances observed.

Ecological niche modelling

To model the foraging niche of each modelled species, we assumed a binomial response comparing the
oceanographic covariates of known foraging areas (1) against the oceanographic covariates of accessible
habitat (0). To identify known foraging areas for each dataset we performed location-based kernel density
analyses with a 1 km grid on a subset of tracking datapoints identified as representing foraging behaviour
(Miller et al. 2017; see supporting information for further details), and treated all grid points within the 50%
utilization distribution (UD) as ‘presence’ points in the model. The accessible habitat for each colony was
defined as the convex hull containing all tracking locations (all behaviours included) and curtailed to marine
regions. Areas inside convex hulls were sampled using pseudo-absence datapoints distributed randomly but
weighted by inverse distance to the colony (to constrain access to foraging habitat by central-place foraging
seabirds). Pseudo-absences were created at a rate of 3:1 to presences (Wakefield et al. 2011) and given the
same timestamp as their respective presences for dynamic covariate extraction. To account for the potential
influence of random sampling of pseudo-absences on model stability (Barbet-Massin et al. 2012), we repeated
the random selection of pseudo-absences five times, generating five replicate presence and pseudo-absence
datasets per original dataset. Each of the five replicates was modelled separately and then averaged together
for model validation and prediction.

Although tropical seabird prey opportunities are patchily distributed and ephemeral in nature (Weimerskirch
2007), their location and availability are governed by physical ocean processes at broader spatial scales (10-
100kms; Wakefield et al. 2009). Ocean covariates for modelling were created to capture broad-scale ocean
features representing attractive and /or reliable locations for tropical seabird foraging (Table 2). For dynamic
covariates, chlorophyll concentration, sea surface temperature and frontal activity, we created a long-term
(710 year) mean for each month of the year to model whether birds target specific covariate values, and also
created the long-term standard deviation over 12 months of the year to describe whether birds target areas
that are temporally dynamic/homogenous. The month in which each tracking dataset commenced was used
to select the monthly dynamic covariate layer to extract values from. The use of long-term averages in models
means that the oceanographic conditions fitted against known foraging areas of tracked birds do not reflect
the concurrent oceanography. Rather, they characterise persistent oceanographic features in the seascape.
The advantage of this approach is that a global layer for each oceanographic variable can be created, meaning
subsequent predictions of seabird foraging at each colony are all built on the same, standardised, comparable
oceanography. This is particularly important for assessing model transferability between colonies. Models
also included static covariates of bathymetry and seabed slope to allow them to describe the importance
of geographical features such as reefs, shelves and seamounts for foraging. Following the seabird foraging
niche transferability study of Péron et al. (2018), we did not include a distance-to-colony variable because it
is explicitly linked to colony-specific demographic information, such as population size (Lewis et al. 2001),
which we lacked for training and test colonies. All data handling and statistical analyses were performed in
the statistical software environment R version 3.5.1 (R Core Team 2020). For more detail on tracking and
oceanographic data processing see supporting information.

Table 2 Oceanographic data sourced for modelling.



Covariate (units) Temporal resolution

Spatial resolution

Data source (provider)

Log chlorophyll-a Monthly mean 2000-2019 4.4 km MODIS-Terra
concentration (mg C m™3) (https://oceancolor.gsfc.nasa.gov)
Sea surface Monthly mean 4.4 km MODIS-Terra
temperature (°C) 2000-2019 (https://oceancolor.gsfc.nasa.gov)
Front persistence Monthly mean 2006-2016 5.5 km SST-CCI v2.1 daily SST
(probability of front at (https://climate.esa.int /;
pixel 0-1) Miller 2009)
Mean front strength (°C Monthly mean 2006-2016 5.5 km SST-CCI v2.1 daily SST
pixel™!) (https://climate.esa.int /;

Miller 2009)
Seasonal chlorophyll-a Std Dev. across 12 4.4 km MODIS-Terra
concentration months (2000-2019) (https://oceancolor.gsfc.nasa.gov)
variability (mg m3)
Seasonal sea surface Std Dev. across 12 4.4 km MODIS-Terra
temperature variability months (2000-2019) (https://oceancolor.gsfc.nasa.gov)
(°C)
Seasonal front persistence Std Dev. across 12 5.5 km SST-CCI v2.1 daily SST
variability ([?] monthly months (2006-2016) (https://climate.esa.int /;
front probability 0-1) Miller 2009)
Seasonal mean front Std Dev. across 12 5.5 km SST-CCI v2.1 daily SST
strength variability (°C months (2006-2016) (https://climate.esa.int /;
pixel™!) Miller 2009)
Bathymetry (m) Static 0.46 km GEBCO

(www.gebco.net)
Seabed slope angle (°) Static 0.46 km Derived from GEBCO

(www.gebco.net)

We used random forests to model seabird foraging niches, parameterising each model with the 10 oceano-
graphic variables shown in Table 2. Random forests are robust to both challenges present in spatial data
(e.g. autocorrelation) and in hierarchically structured data (e.g. global trends but local variation) (Evans et
al. 2011, Doherty et al. 2016). We used two approaches for each modelled species: 1) a multi-colony model,
where datasets from multiple colonies were combined in a single model; and 2) colony-specific models, where
each colony was modelled separately. The multi-colony model was designed to learn from the foraging niches
of each colony and generalise a global foraging niche to predict foraging habitat suitability. Colony-specific
models were designed to test the ability of local foraging niche to predict local foraging habitat suitability,
investigate local adaptation across species ranges, and to make accurate models with GBR tracking where
available (Fig. 2).

To assess model predictive performance, we used the threshold-independent measure, area under the receiver
operating characteristic curve (AUC; Fielding & Bell 1997). AUC values of 0.5 are equivalent to random
prediction, 0.6-0.7 indicate poor performance, 0.7-0.8 moderate performance, and >0.8 indicate good perfor-
mance. We validated models by assessing performance (AUC) when predicting to different colonies, which
we use as our measure of model transferability. For multi-colony models, we used leave-group-out cross
validation: iterating through n colonies, we trained the model onn -1 colonies and predicted to the re-
maining colony. For colony-specific models we predicted to all other colonies. For both model types, we
calculated global transferability (mean predictive performance across all other colonies). To assess internal
model performance (colony-specific models predicting to their training colony) we performed internal spatial
cross validation. We used the 4-fold clock method, where each dataset was split spatially into quarters (by
k-means clustering of data coordinates), and models iteratively trained on three quarters of the data with
predictive performance assessed on the remaining quarter (Guillaumot et al. 2019).



For both multi-colony and colony-specific random forest models, hyperparameters were tuned to optimise
predictive performance between colonies. Model parameters, mtry (number of environmental covariates ran-
domly chosen per node: limits tree strength and correlation) and minimum node size (number of datapoints
per tree node: limits tree depth and thus model complexity) were tuned across values 2, 3, 4, 5, 6 and 5,
10, 20, 50, respectively. Models were firstly tuned for optimal predictive performance on GBR test data (for
available species), and secondarily to generalise across all other colonies. When assessing model predictive
performance locally, the same hyperparameters were tuned to optimise predictive performance on the train-
ing colony during internal spatial cross validation. Random forest models were constructed using the ranger
(0.11.2) R package (Wright & Ziegler 2017) and tuned using the caret (6.0-82) R package (Kuhn 2008).

To investigate local adaptation in each modelled species we first described inter-colony transferabil-
ity by summing the two colony-specific model AUC values of each colony pair (AUCcqionya - colonyB +
AUCcolonyB - colonya ), before entering pairwise colony sums into a distance matrix. We then tested whether
geographically closer colonies were more transferable by correlating the inter-colony transferability matrix
with a matrix of pairwise colony geographical distance, and whether colonies with more similar oceanographic
habitat were more transferable by correlating the colony transferability matrix with a matrix of pairwise
colony oceanographic distance (matrix of Euclidean distances between colonies from mean oceanographic
variable values within their accessible habitat). We tested significance of correlations with Mantel tests. To
help visualise groups of colonies that were transferable to each other we performed hierarchical clustering
(using the average method) on the inter-colony transferability matrix.
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Modelled species Modelling units in this study, representing either
individual species or groups of species.

A) Predict habitat suitability

from an ecological niche

model (ENM) around colony x Enown foraging area The foraging area(s) identified in each tracking dataset
_ _ using the 50% UD from kemel analyses.

Colony-specific model A random forest ENM predicting habitat suitability
trained on the foraging niche of a single colony.

Multi-colony model A random forest ENM predicting habitat suitability
trained on multiple colonies to generalise a “global’
foraging niche.

Transferability The ability of a random forest ENM to predict suitable

Local transferability habitat outside the training region, as measured by AUC.

Inter-colony We differentiate between:

transferability . local transferability. the ability of colony-specific

B) Place foraging circle, Global transferability models to predict their own foraging niche via clock
calculate percentiles of habitat spatial cross validation or multi-colony global
suitability within circle and foraging niche to predict that of an individual

colony (via leave group out cross validation);

. inter-colony transferability, the ability of colony-
specific models to predict the foraging niche of
another colony;

. global transferability, the average ability of models
to predict foraging niche at multiple other colonies.

map as contours

Colony foraging radius  The maximum distance from the colony of origin

Colony foraging circle observedin a breeding seabird population. Termed
‘radius’ when referring to the distance and ‘circle’ when
mapped.

Global foraging radius ~ Mean-maximum distancefrom colony: the average of
Global foraging circle colony-specific manmum  distances from multiple

C) Select percentile of colonies. Termed ‘radius’ when referring to the distance
foraging habitat suitability and “circle’ when mapped.

based on ENM U’ans].?a’.abﬂrr}-' Refinement Reducing the area of a foraging circle by excluding areas
or desired areato delimit a Transferability- of unsuitable habitat to produce a refined foraging circle.
refined foraging circle supported refinement The amount of unsuitable habitat excluded (percentile

Arealimited refinement selected) can be:
= transferability-supported, which uses ENM
transferability to balance refined foraging circle size
with refinement confidence;
area-limited, where refined foraging circle size is
specified by the user.

Refinement confidence Probability that a refined foraging circle includes known
foraging areas (30% UD).

Refined foraging circle  Remaining area of a foraging circle after unsuitable
habitat has been excluded. Refined foraging circles are
attributed with refinement confidence, and can be seenas
candidate MPAs for their respective seabird colony.
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Fig. 2 Schematic of analytical framework and study glossary. Steps A-C show how a refined foraging circle
(green) can be predicted for a seabird colony (yellow triangle). If tracking data originates from the colony
then this is used to train a colony-specific model to predict habitat suitability and to inform a colony foraging
circle; if not, habitat suitability is predicted by a multi-colony model and a global foraging circle is applied.
Methods of refinement apply to both colony foraging circles and global foraging circles.

A framework integrating the foraging radius approach with ecological niche mod-
els

We integrated models of seabird foraging niche with the foraging radius approach by excluding predicted
unsuitable foraging habitat within foraging radius circles to produce “refined foraging circles”. Taking a
precautionary approach to minimise erroneously excluding good foraging habitat from within foraging circles,
we specified that the area of unsuitable foraging habitat excluded within circles was dependent upon ENM
transferability, which we term “transferability-supported refinement”. This allowed greater foraging circle
refinement with more transferable models. The first step of our framework is to predict foraging habitat
suitability and clip it to within the foraging circle of a colony of interest, limiting the foraging habitat
available to the population. This allows us to derive percentiles of habitat suitability within the foraging
circle which are mapped as contours. The second step scales ENM transferability values onto the percentiles
of predicted foraging habitat suitability, delineating a refined foraging circle from habitat suitability values
equal or above to the selected percentile. We scale transferability to percentiles ((AUC-0.5)/(0.9-0.5))*(0.9-
0), such that AUC [?] 0.5 (prediction no better than random) takes the 0*® percentile of foraging habitat
suitability values, thus defaulting to the unrefined foraging circle. Higher AUC values take higher percentiles
up until AUC [?] 0.9, which is set to an upper limit of the 90** percentile (a threshold proposed for translating
seabird ENM predictions into marine Important Bird Areas by Dias et al. (2019b), thus allowing models
with excellent transferability (AUC [?] 0.9) to delineate refined foraging circles with the top 10% of foraging
habitat suitability values.

Transferability-supported refinement simply offers a suggested percentile of habitat suitability with which
to refine foraging circles, but planners may wish to select a different percentile to create a smaller or larger
refined foraging circle. We term this “area-limited refinement” and anticipate that it may be necessary to
use when transferability-supported refinement produces refined foraging circles that are still considered too
large for area-based management.

Framework validation and attributing refinement confidence

To validate our framework, we simulated increasing foraging circle refinement at each colony in our global
tracking dataset to estimate “refinement confidence™ the probability of known foraging areas (50% UDs)
being included in refined foraging circles. The results allowed us to estimate how well unrefined global
foraging circles capture known foraging areas and model the rate this inclusion declines when refining for
different transferability ENMs. For each modelled species and colony (Table 1), we predicted foraging
habitat suitability using the corresponding multi-colony model, trained on all colonies except the colony
being predicted to. We predicted models to each colony using the same oceanographic variables and same
month used in model training, assessed transferability using the multi-colony leave group out cross validation
AUC value, and mapped foraging habitat suitability predictions onto a raster with two km cell size. At each
colony, we refined the global foraging circle using the percentile selected by the model transferability AUC
value, and also simulated refinement increasing from the 0'" percentile (unrefined foraging circle) to the 90!
percentile at five percentile intervals. Refined foraging circle polygons were obtained by binarizing foraging
habitat suitability rasters with the specified percentile value, and tidied with R package smoothr (0.1.1)
(Strimas-Mackey 2021) to remove small ‘crumbs’ and holes in polygons. In each iteration, we calculated the
percentage of known foraging areas tracked from the colony that were included in the refined foraging circle.
We fitted logistic regression models with percentage of known foraging area inclusion as the response variable
and foraging habitat suitability percentile and its interaction with model transferability as explanatory
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variables, allowing the slope to vary within a species-colony random effect. Logistic regression models were
fitted for each modelled species separately, and all combined, using R package Imej (1.1-21) (Bates et al.
2015); random effects were dropped from TERN and SOTE regression models due to too few colonies.

The intercept and slopes of logistic regression models allowed refinement confidence to be predicted given
model transferability and the percentile of habitat suitability selected for refined foraging circle delineation.
This firstly allowed us to validate whether the AUC-percentile scaling was appropriate, under transferability-
supported refinement we would expect to see high refinement confidence for all refined foraging circles,
regardless of transferability (poor models refine a little, excellent models refine a lot; all retain known
foraging areas). Secondly, logistic regression model coefficients allowed us to explore the trade-off between
refined foraging circle size and refinement confidence as coefficients predict refinement confidence for any
given size of refined foraging circle. When refining a foraging circle for species x at untracked colony vy, its’
size can be suggested from transferability-supported refinement (using the multi-colony global transferability
value) or specified by area-limited refinement. Having the associated refinement confidence predicted from
logistic regression model coefficients for refined foraging circles of different sizes allowed us to judge the
amount of refinement most appropriate during our Great Barrier Reef case study.

Foraging circle refinement on the Great Barrier Reef

To demonstrate the application of our framework, we refine foraging circles for the breeding seabird com-
munity of the Great Barrier Reef. From these we identify three networks of candidate MPAs (unrefined
foraging circles, transferability-supported refined foraging circles, and area-limited refined foraging circles)
to demonstrate the trade-off between total area and refinement confidence. For species without tracking
data on the GBR, we predicted habitat suitability using multi-colony models. The remaining species had
tracking data from one or two breeding sites on the GBR (Fig. 1). For these species, habitat suitability was
predicted by colony-specific models to corresponding tracked colonies and neighbouring colonies within the
same designated breeding site (see supporting information), and multi-colony models to the remaining area.
We predicted models upon annual averages of monthly dynamic oceanographic variables, as the modelled
species breed year-round across the GBR (but most show seasonal breeding peaks), with the exception of
wedge-tailed shearwaters for which oceanographic variables were averaged over their distinct breeding season
(December-April). Predictions were mapped across the GBR and Coral Sea using a raster with two km cell
size. We placed foraging circles around breeding sites from significant seabird areas on the GBR. Significant
seabird areas were either designated as internationally-recognised Key Biodiversity Areas (KBAs) or pos-
sessed regionally significant breeding populations of one or more species (see supporting information). For
the seabird species listed at each breeding site we applied the corresponding global foraging circle, unless the
breeding site was part of a significant seabird area with a tracked colony, in which case the colony foraging
circle was applied.

Following our framework, we conducted transferability-supported refinement of global foraging circles using
multi-colony model inter-colony transferability values and colony foraging circles using colony-specific model
local transferability values. To investigate the effect of further refinement, we conducted area-limited refine-
ment on any refined foraging circle produced by transferability-supported refinement that was over 100,000
km?, until all refined foraging circles fell below 100,000 km?(representing a maximum layer size in a hypothet-
ical conservation planning exercise). The refinement confidence in colony-specific models was obtained using
the inclusion of known foraging areas (50% UD) from tracked GBR breeding sites within refined foraging
circles while the refinement confidence in multi-colony models was determined using the logistic regression
model coeflicients from our global framework validation exercise. To compare differences between differ-
ent refinement approaches, we created three networks of candidate MPAs from unrefined foraging circles,
transferability-supported foraging circle refinement, and area-limited foraging circle refinement (<100,000
km?). We summarised differences between networks by comparing the total foraging area required for the
GBR breeding community, dissolving overlapping refined foraging circles shared by multiple breeding sites,
and by comparing refinement confidence under each approach. Finally, we selected the most appropriate
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refinement approach for each species and merged results to create the most suitable network of candidate
MPAs for seabirds on the GBR.

Results

Foraging niche transferability

Multi-colony models were not able to successfully generalise the foraging niche of modelled species across all
colonies, showing generally poor global transferability (mean AUC: 0.56, range 0.4-0.82; Table 3). However,
leave-group-out cross validation showed that multi-colony models could predict suitable foraging habitat at
some individual colonies (Fig 3).

Exploration of inter-colony transferability revealed that colony-specific models were transferable to one,
or sometimes several, other colonies, but not all colonies (Fig. 3). For many modelled species this issue
manifested as clustering in colony transferability: groups of colonies that could predict to one another, but
poorly to other groups of colonies (Fig. 3-J), and partially explains low global transferability of colony-specific
models (Table 3). Inter-colony transferability was not explained by geographical distance or oceanographic
similarity between colonies (19 of 20 Mantel tests p > 0.05; supporting information). However, with the
exception of noddies, all multi-colony models had slightly better global transferability than the colony-
specific model average (Table 3), indicating multi-colony models generalised information from disparate
colony clusters, boosting transferability.

We found that multi-colony models frequently (species mean: 41%; Table 3) matched or outperformed
colony-specific models at local prediction (multi-colony leave-group-out cross validation vs colony-specific
spatial cross validation; multi-colony row values vs diagonal values in Fig. 3). This finding indicates that the
global foraging niche was able to predict suitable foraging habitat at approximately 40% of colonies, with
comparable or better accuracy than models of the local foraging niche, although this was strongly species
dependent (0% for noddies, 66% for frigatebirds and terns; Table 3). However, all of the colony-specific
models from GBR tracking were superior to their multi-colony model equivalent (brown booby from Raine
Island and Swain Reefs, Fig. 3A; masked booby from Swain Reefs, Fig. 3E; wedge-tailed shearwaters from
Heron Island on short trips, Fig. 31 and long trips, Fig. 3G; and noddies from Heron Island, Fig. 3C).

Despite poor overall global transferability, we observed differences between modelled species (Table 3).
Booby species had similar multi-colony global transferability (AUC: 0.53-0.55) and showed clustering of
inter-colony predictive performance (Fig. 3A, E, F). Brown and masked booby colony-specific models had a
greater range of transferability than red-footed booby but the same overall average (AUC: 0.51). Frigatebirds
and wedge-tailed shearwater short trip multi-colony models (AUC: 0.61 and 0.58, respectively) showed better
global transferability than boobies, and the greatest transferability increase over the colony-specific model
average. Both of these modelled species showed clustering of inter-colony predictive performance, the former
demonstrating examples of good inter-species and inter-colony transferability (Fig. 3G, I). Tropicbirds and
wedge-tailed shearwater long trip multi-colony models had poor global transferability, equivalent to that of
boobies (AUC: 0.56 and 0.54 respectively). Sooty terns and noddies showed the poorest global transferability
(AUC: 0.48 and 0.40 respectively), with the latter’s multi-colony model being outperformed by the colony-
specific model average. Terns showed the best global transferability between colonies (AUC: 0.82) but were
limited by sample size (Fig. 3B).

Table 3 Summary of model transferability and foraging radii. Global transferability is the predictive perfor-
mance of a model averaged over all colonies (MEAN column; Fig. 3). Local prediction gives the percentage of
colonies where the multi-colony model matched or outperformed self-prediction by the colony-specific model.
Foraging ranges are summarised across tracked colonies (for colony breakdown see supporting information),
and inclusion of known foraging areas in global foraging circles are averaged across all tracked colonies.
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Local

prediction
(% of Probability
colonies of known
Colony- where Global foraging
specific Multi-colony  multi-colony (mean- area (95
Modelled global trans- model global AUC [?] Global Global maximum) CI) inside
species (n ferability transferabil-  colony- minimum maximum foraging global
training (mean AUC ity specific foraging foraging radius (km foraging
colonies) + sd) (AUC) AUC) radius (km)  radius (km) =+ sd) circle
BRBO 0.51£0.05 0.55 25% 45.3 190.3 111 £ 35 0.99
(16) (0.98,1)
MABO 0.51+0.06 0.53 8% 68.8 290.6 171 + 65 0.99
(12) (0.97,1)
RFBO 0.51£0.02 0.54 54% 96.9 473.1 273 £ 125 0.99
(13) (0.97,1)
FRBD (9) 0.53+0.06 0.61 66% 28.4 1081.6 556 £+ 435 1(0.98,1)
TRBD 0.52+0.05 0.56 54% 344.3 801.5 531 + 174 0.99
(11) (0.96,1)
WTST (8) 0.53£0.06 0.58 62% 185.5 298.2 254 £ 42 0.98
(0.96,0.99)
WTLG 0.52+0.03 0.54 43% 509.3 1166.2 755 £ 286 0.99
(7) (0.93,1)
SOTE (3) 0.41+0.07 0.48 33% 198.4 895.3 535 + 349 0.89
(0.76,0.95)
NODD (5) 0.49+0.05 0.40 0% 54.8 269.1 144 + 78 0.98
(0.87,1)
TERN (3) 0.76£0.01 0.82 66% 38.6 159.7 109 + 63 0.98
(0.98,0.99)
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Fig. 3 Model validation and transferability for modelled species (A-J). Matrix values describe predictive
accuracy via area under the receiver operator characteristic curve (AUC); AUC values (0-1) have been
multiplied by 100 to save space. Reading by row shows how well each model trained on colony-specific
data predicts foraging habitat suitability at all other colonies, reading by column shows how well foraging
habitat suitability at each colony is predicted by models trained with data from all other colonies. Row
names denote each colony-specific model and the multi-colony model. The ‘MEAN’ column gives global
transferability of each colony-specific model and the multi-colony model by averaging the predictive ability
across all colonies in the row (excluding the self-prediction value in colony-specific models). Local prediction
is compared between colony-specific model self-prediction (diagonals) and multi-colony models (bottom row)
by colour of AUC value: green shows model is better than the other; red shows model is worse than the
other; black shows models are comparable (AUC values within 0.05 of each other). AUC value background
colour denotes performance: grey (no better than chance/very poor); yellow (poor); light orange (moderate);
dark orange (good); red (excellent). Dendrograms show clustering of pairwise colony AUC values; closely
clustered colonies predict one another better. Family group models (B, C & G) have species codes added
to colony names: CRTE = crested tern, CATE = caspian tern, ROTE = royal tern, LENO = lesser noddy,
BLNO = black noddy, BRNO = brown noddy, GRFR = great frigatebird, LEFR = lesser frigatebird, MAFR
= magnificent frigatebird. All colonies in the family group model for tropicbirds (H) represent red-billed
tropicbird, with the exception of the Ashmore Reef (Australia) colony, which is red-tailed tropicbird (denoted
with *).

Tropical seabird foraging radii

When considering all species and colonies, foraging radii ranged from 28.4 to 1166.2 km (Table 3). By
increasing foraging range, modelled species were generally ordered: terns, brown booby, noddies, masked
booby, wedge-tailed shearwater short trip, red-footed booby, tropicbirds, sooty tern, frigatebirds, wedge-
tailed shearwater long trip. We found that the global foraging circle for each species contained a high
percentage (89-100%) of known foraging areas from each tracked colony (Table 3).
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Validating foraging circle refinement

We found an average of 89% of known foraging areas were included within refined foraging circles when
using transferability-supported refinement of global foraging circles around each colony from our tracking
dataset (Fig. 4). Our AUC-percentile scaling was effective at limiting the exclusion of erroneously predicted
foraging habitat in poorer transferability models giving 80-99% known foraging area inclusion when the 45"
percentile of habitat suitability or below, was used to delimit refined foraging circles. For refined foraging
circles delimited with habitat suitability above the 45*" percentile, our scaling maintained known foraging
area inclusion at ~80%, showing that greater foraging circle refinement was effectively offset by the more
accurate prediction of foraging habitat by higher transferability models.

Simulating increasing refinement of global foraging circles around each colony from our tracking dataset
demonstrated that in the absence of transferability-supported refinement, refined foraging circles delimited
by less transferable models always had a lower probability of including known foraging areas than those
delimited by more transferable models (Interaction between percentile of foraging habitat suitability and
model transferability: y?; = 100.1, p < 0.001; Fig. 4). Simulation results for individual modelled species
demonstrated the same pattern but there were differences between species due to ecology and sampling
effort (Table 4, visualised in supporting information). Inclusion of known foraging areas in global foraging
circles set the baseline probability for inclusion prior to refinement and differed between species (e.g. high
in frigatebirds, low in sooty terns — despite similar foraging ranges; Tables 3 & 4). The steepest declines in
known foraging area inclusion with foraging circle refinement were seen in masked and brown boobies and
tropicbirds, whereas terns retained the highest inclusion of known foraging areas under refinement because
their multi-colony model had good global transferability. Improving model transferability gave the greatest
boost to inclusion of known foraging areas within refined foraging circles in tropicbirds, brown booby, sooty
tern and masked booby, whereas frigatebirds known foraging area inclusion was least affected by model
transferability (Table 4). The noddies model did not include the interaction term with transferability as all
multi-colony model predictions were below 0.5 AUC.
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Fig. 4 Probability of known foraging area inclusion within refined foraging circles refined by multi-colony
models with different transferability (AUC). Coloured lines (£ 95% CI) represent the interaction between
inclusion of known foraging areas in refined foraging circles, when simulating refinement over all possible
percentiles of predicted foraging habitat suitability, and multi-colony model transferability (five transfera-
bility values selected for demonstration; regression equation provided to predict on log odds scale). Black
rings show the known foraging area inclusion observed at tracked colonies when refined foraging circles were
refined using the percentile of habitat suitability selected by transferability-supported refinement. The black
line (+ 95% CI) displays the trend through these rings (from a generalised additive model), showing overall
high known foraging area inclusion and effective offset of greater refinement by more accurate models.

Table 4. Species-specific logistic regression model coefficients for predicting probability of known foraging
area inclusion within refined foraging circles. Intercepts give the probability of known foraging area in-
clusion within unrefined global foraging circles. Coefficients are presented on the log odds scale and can
predict probability of known foraging area inclusion for a desired percentile of habitat suitability va-
lue (p ) from a multi-colony model with transferability (¢ ) using the equation: exp(Bo+(B1*p )+(B2*p*t
))/(1+ exp(Bo+(B1*p )+(B2*p*t ))). For example, the probability of masked booby (MABO) known for-
aging areas being included in a refined foraging circle refined with the 30" percentile (0.3) of foraging
habitat suitability and predicted from a poor transferability model (e.g. AUC=0.64) is: exp(4.39+(-
15.42%0.3)+(13.1*0.3%0.64)) / (1+exp(4.39+(-15.42*0.3)+(13.1*0.3*0.64) ) )= 90%.

Species  Bo Intercept [3; foraging habitat suitability percentile [32 interaction between foraging habitat suitability perc

BRBO  4.844+0.45 -18.83£2.02 18.4443.28
MABO 4.3940.54 -15.42+1.84 13.1£3.04
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Species  Bo Intercept [3; foraging habitat suitability percentile (2 interaction between foraging habitat suitability perc

RFBO  4.58+£0.57 -11.58£2.21 8.23+3.84
FRBD 6.4+1.37 -11.13£2.98 4.51+£3.48
TRBD 4.840.8 -19.96£1.88 21.4+2.71
WTST 3.97+0.43 -11.28+2.47 7.58+4.08
WTLG 4.22+0.8 -12.49£1.68 8.64+1.76
SOTE 2.09£0.47 -12.184+4.13 16.9£8.02
NODD 3.76£0.95 -9.38+1.42 NA
TERN  4.12+0.18 -9.18+0.57 7£0.65

Total foraging area of the Great Barrier Reef breeding seabird community

The total foraging area of the Great Barrier Reef breeding seabird community was estimated at 2,941,000
km? by global foraging circles, of which 197,000 km? was predicted unsuitable foraging habitat and excluded
following transferability-supported refinement (Table 5). There were large differences in the total area of
unsuitable habitat excluded from foraging circles between species due to radius size (Table 3), proximity
of GBR colonies (overlap of foraging circles; Fig. 5a) and model transferability (Fig. 5b). We saw the
greatest refinement in species with large foraging radii (e.g. wedge-tailed shearwater long trips, frigatebirds,
tropicbirds) and species which had better model transferability (e.g. terns, Fig. 5b). The better local
prediction of GBR colony-specific models over multi-colony models afforded locally tracked species greater
transferability-supported refinement (Fig. 5). This led to greater total unsuitable habitat exclusion when
locally tracked sites were well represented and transferability was higher (e.g. wedge-tailed shearwater
short trips compared to brown booby and masked booby; Fig 5; Table 5). By contrast, noddies had the
highest number of breeding colonies but unsuitable foraging habitat could only be excluded at one site with
local tracking because their multi-colony model transferability was too poor (AUC<0.5) for foraging circle
refinement. Sooty terns were the only species for which we were unable to use transferability-supported
refinement for any foraging circles due to their poor multi-colony model transferability and absence of GBR
tracking data. Refined foraging circles on the GBR produced through transferability-refined refinement had
high refinement confidence, with a 96% average probability of including known foraging areas (Table 5).
This was higher than the 89% average from our global validation exercise (Fig. 4) due to the contribution
of locally tracked GBR colonies, which all had 100% inclusion of known foraging areas in refined foraging
circles.

After transferability-supported refinement had been completed, six modelled species still contained some
colonies with refined foraging circles that exceeded 100,000 km? (Fig. 5b). Using area-limited refinement to
drop these refined foraging circles below 100,000 km? excluded a further 1,629,000 km? of predicted unsuitable
foraging habitat from the community (Table 5). However, this came at a cost of reducing refinement
confidence, with the average inclusion of known foraging areas in refined foraging circles dropping from 97%
to 55% in these species. Sooty tern, tropicbirds and frigatebirds all required large area-limited refinement
to meet the 100,000 km? limit, greatly reducing their refinement confidence (16-40% inclusion; Table 5).
Wedge-tailed shearwater long trips required the greatest refinement to meet the area limit and highlighted
the power of tracking data from the GBR; refined foraging circles delineated by the 90" percentile of habitat
suitability dropped predicted inclusion of known foraging areas to 6% in multi-colony models but only to
87% in colony-specific models (Table 5). Area-limited refinement of wedge-tailed shearwater short trips and
red-footed booby foraging circles to meet the 100,000 km? limit was achieved with minor reduction in known
foraging area inclusion (77-95%). Applying the most appropriate foraging circle refinement approach to each
modelled species (none for sooty tern, area-limited for wedge-tailed shearwater and red-footed booby, and
transferability-supported for the remainder) created a network of refined foraging circles for the breeding
seabird community of the GBR that balanced size against refinement confidence (Fig. 6).

20



BRBO MABO

Brown booby Masked booby
BRBO MABO

0 025 05 07509 0 025 05 07509

RFBO

8, 98% inclusion

15014 150182

100 100

-20

504 50+

Red-footed Wedge-tailed
shearwater
04 01
0 025 05 07509 0 025 05 07509
o
£ WTLG FRBD
= L
k] 600 1
®» 2000 .
o
% . k)
@ 15001 400 .
o .
F=
= 1000
5 w0 2001
) 5 J
Wedge-tailed SO LTS N\ | e e
shearwater .g) o4 o4
long trip (WTLG ©
5 0 025 05 07509 0 025 05 07509
s
TRBD SOTE
. 600 g

N\

400 4004

2004 2001

Sooty Tern

SOTE 0 025 05 07509 0 025 05 0.7509

NODD TERN

60

4048
r-20 2041
Noddies 04
NODD
0 025 05 0.7509 0 025 05 0.7509
Predicted habitat suitability threshold percentile
P Transferability-supported Low predicted foraging
[ Global foraging circle
\:l eing + foraging circle refinement - habitat suitability
) Colony foraging circle + Area-limited [ High predicted foraging
foraging circle refinement habitat suitability

Fig. 5 Foraging circle refinement on the Great Barrier Reef, Australia. Panel a) shows foraging circles and
refined foraging circles (over more suitable predicted habitat), mapped for each species using their GBR
breeding sites. Panel b) plots increasing simulated foraging circle refinement at each GBR breeding site, and
where the thresholds used for refined foraging circles mapped in a) lie in relation to the trade-off between size
and refinement confidence. If GBR colonies have local tracking data then colony foraging circles are refined
using GBR. colony-specific models (yellow); otherwise global foraging circles are refined using multi-colony
models (blue). Unrefined foraging circles are mapped and their areas shown at habitat suitability percentiles
of 0. Refined foraging circles from transferability-supported refinement are shown in green. Refined foraging
circles from area-limited refinement are shown in red for colonies that need further refinement to get below
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a 100,000 km? limit (purple dotted line). Greater foraging circle refinement reduces the confidence that
refined foraging areas include known foraging areas, as demonstrated for a red-footed booby (RFBO) colony
(see supporting information for breakdown of predicted known foraging area inclusion at all GBR breeding
sites).

Table 5 Summary of foraging area of the Great Barrier Reef breeding seabird community. Total foraging
area is estimated from unrefined global foraging circles and refined foraging circles from transferability-
supported refinement and area-limited refinement (<100,000km?). The foraging areas generated by both
refinement methods are supported by associated refinement confidence (predicted probability that refined
foraging circles contain known foraging areas). All species totals represent total foraging area of all colonies,
with overlapping areas dissolved. For a breakdown of results per colony see supporting information.

Species n breeding sites (n with tracking data) n breeding colonies Area of global foraging circles (km?) Area of
BRBO 6 (2) 19 181,000 147,000
MABO 3 (1) 10 239,000 195,000
RFBO 3 4 269,000 252,000
FRBD 3 3 1,231,000 951,000
TRBD 2 2 988,000 868,000
WTST 4 (1) 14 455,000 318,000
WTLG 4 (1) 14 2,936,000 2,265,00
SOTE 6 9 1,420,000 1,420,00
NODD 7 (1) 25 328,000 313,000
TERN 9 22 277,000 85,000

All species 11 37 2,941,000 2,744,00

22



been peer reviewed. Data may be preliminary.

This a preprint and has not

doi.org/10.22541/au.168903191.10497767 /v1

https:

The copyright holder is the author/funder. All rights reserved. No reuse without permission

2023

Jul

Posted on 10

e GBR seabird
breeding site

GBR World
Heritage Area

" Reef

Species [ |2 [ 5 M 8
riChn&Sl:I:,)-G-g
L e o

Fig. 6 Network of candidate MPAs for the breeding seabird community of the GBR, that balances size of pro-
tected area against refinement confidence (probability of including known foraging areas). Refined foraging
areas are delineated for each modelled species and overlapped to show richness hotspots, see supporting infor-
mation where species-specific boundaries are mapped. Breeding sites are omitted that exclusively contained
seabird species we could not model (e.g. small terns, see supporting information)

Discussion

Relying on the most comprehensive tropical seabird tracking dataset to date, we investigated whether ENMs
can transfer (predict) foraging niches of breeding tropical seabirds between global colonies, and whether
ENMs can be combined with the foraging radius approach (Thaxter et al. 2012) to refine foraging circles
around breeding colonies. We found little ability to generalise and transfer ENM predictions across all
colonies for any tropical seabird species. However, we frequently observed clusters of colonies that predicted
well to one another, but poorly to other colony clusters. Despite the limited ability of ENMs to predict for-
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aging niche in new regions, they were able to refine foraging circles by excluding predicted areas of unsuitable
foraging habitat. We found inclusion of known foraging areas was almost certain in unrefined foraging cir-
cles, and remained high when foraging circle refinement was specified by model transferability, where neither
greater refinement from high transferability models nor minor refinement from poor transferability models
erroneously excluded important foraging habitat. When applied to the Great Barrier Reef, this framework
was able to reduce, with confidence, the area required to protect foraging resources of the breeding seabird
community.

ENM transferability

Limited ENM transferability can be caused by differences in the range and/or combinations of environmen-
tal variables between training and test datasets (extrapolation); poor description of underlying processes by
explanatory variables in models (misspecification); and differences in pressures (e.g. competition, predation,
local marine productivity etc) between training and test populations (local adaptation) (Randin et al. 2006,
M. McPherson & Jetz 2007, Torres et al. 2015, Péron et al. 2018). Extrapolation likely impacted transfe-
rability of colony-specific models, as they were more likely to encounter novel environmental values when
predicting to test colonies. By contrast, training of multi-colony models across numerous colony-specific envi-
ronmental ranges reduced the likelihood of extrapolation when predicting to test colonies, and could explain
their slightly better global transferability compared to colony-specific models (Table 3).

Misspecification of models could have contributed to limited global transferability, as we tried to predict
seabird foraging with long-term averages of oceanographic variables. Our goal here was to characterise
seabird foraging associations with persistent oceanographic features in the seascape rather than ephemeral
ocean phenomena, as predictive maps representative across space and time are likely to be the most pertinent
for conservation scientists and managers (Guisan et al. 2013). The downside of this approach is that foraging
areas selected by GPS-tracked birds do not reflect the concurrent oceanography in our models, which could
miss foraging association with fine scale dynamic features (e.g. intra-seasonal upwellings), known to attract
tropical seabirds (Kai et al. 2009, Miller et al. 2018). Model misspecification is supported by a general inability
of colony-specific models to predict their own foraging niche (diagonal values in Fig. 3) and attributed to
using long-term oceanographic variables because similar studies using high-resolution oceanographic variables
produced good self-prediction (Péron et al. 2018). Future marine transferability studies should consider
their study objective (Yates et al. 2018) (e.g. informing management or ecological understanding) and the
dynamism of their ocean region (e.g. temperate shelf break vs pelagic frontal system) when selecting spatial
and temporal scale of ocean covariates to use in ENMs.

We consider local adaptation a major cause of limited transferability in this study because multi-colony
models did not provide a great improvement in transferability over the colony-specific model average. This
finding suggests a limited ability of multi-colony models to generalise patterns in local adaptation of foraging
niche from multiple colonies (Gilmour et al. 2018), and boost their transferability (Matthiopoulos et al. 2011).
This could be explained by local adaptation causing homogenisation: when models fitted at large spatial
scales average the responses of populations from contrasting habitats, and fail to capture and predict local
extremes (hotspots and coldspots) (Paton & Matthiopoulos 2016). Model homogenisation likely affected all
species known for local adaptation: frigatebirds (Mott et al. 2016); tropicbirds (Diop et al. 2018); wedge-
tailed shearwater (Weimerskirch et al. 2020); and in particular boobies, known for their extreme foraging
plasticity (Mendez et al. 2017, Gilmour et al. 2018).

We failed to explain inter-colony transferability with two factors describing local adaptation (geographic
distance and oceanographic similarity; Redfern et al. 2017, Gilmour et al. 2018), suggesting colony demogra-
phic information could be an important missing factor (Paton & Matthiopoulos 2016). Breeding colony size
is known to be a major driver of local adaptation in seabird foraging behaviours, where density dependent
competition forces greater foraging ranges at larger colonies (Ashmole 1963, Lewis et al. 2001). Competi-
tion pressure may also come from neighbouring breeders, such that populations segregate foraging areas
(Bolton et al. 2018), and from different species (Oppel et al. 2015, Mendez et al. 2017). However, including
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demographic covariates within ENMs requires complex modelling (Wakefield et al. 2017), which given their
interaction in driving local adaptation may extrapolate poorly beyond the training region.

We modelled seabird foraging niches excluding a distance-to-colony variable (Péron et al. 2018), which is
commonly included in seabird ENMs. Distance-to-colony is often the most important explanatory variable
(Oppel et al. 2017, Miller et al. 2019) in seabird ENMs but encodes local adaptation as it is driven by
colony-specific demographic information (Lewis et al. 2001). Tt is difficult to see how ENMs dominated
by distance-to-colony could accurately predict foraging areas at unknown colonies unless training and test
colonies had similar demographic pressures. Furthermore, if modelling multiple colonies together, model
homogenisation would cause an average distance-to-colony to be predicted, potentially yielding the same
result as the foraging radius approach (predicting a colony buffer). Our results show that modelling seabird
foraging niches using long-term ocean variables alone yields generally poor transferability, and further study is
needed to assess whether including distance-to-colony boosts transferability and generates spatial predictions
useful for informing management.

Refining foraging circles

Minimising the cost of protected areas while maximising the confidence that they appropriately serve a species
(e.g. contain core habitat) is a key goal of systematic conservation planning (Margules & Pressey 2000), and
the refinement of seabird foraging circles presents a good example of this challenge. We demonstrate high
confidence that known foraging areas are included within presented global foraging radii estimates (Table 3).
However, foraging circles from these radii are too large to implement practical conservation measures across,
particularly for wider ranging seabird species (Soanes et al. 2016, McGowan et al. 2017), for which an area-
based conservation approach may not be efficient or desirable (Oppel et al. 2018). Although we acknowledge
that cost and area are not analogous within conservation planning, smaller protected areas for seabirds
reduce likelihood of conflict with other marine users (e.g. fishers) and require lower monitoring/policing
effort (work hours, fuel etc) relative to larger areas. Using predicted habitat suitability to refine foraging
circles provides a way of reducing protected area size, but the confidence in predictions must be considered
so that conservation efforts are not allocated to the wrong areas. Our framework accounts for confidence
by making the level of foraging circle refinement dependent upon ENM transferability. As we found that
inclusion of known foraging areas remained high when foraging circles were refined using transferability-
supported levels, we can be confident that neither greater refinement from high transferability models nor
minor refinement from poor transferability models erroneously exclude important foraging habitat.

Even minor refinement of foraging circles adds information to marine spatial planning when multiple breeding
seabirds are considered together. Overlaying unrefined foraging circles from multiple species just shows
increasing overlap of concentric circles towards colonies, informing planners only that areas of sea surrounding
the most seabird species-rich islands are the most important. These can be improved by weighting foraging
circles with their breeding populations and distributing birds over an accessibility surface (inverse colony
distance) within the circle (Critchley et al. 2018), but this still lacks ecological realism. The refinement of
foraging circles with ENMs integrates habitat preferences into the planning process. For GBR seabirds, this
reveals that areas offshore from colonies, particularly open sea adjacent to outer reefs, are likely foraging
hotspots for multiple species (Fig. 6).

Our study of foraging circle refinement presents several tools for tropical seabird conservation, whose use we
advocate in a hierarchical manner based on local data availability. Firstly, we present the most comprehensive
collation of tropical seabird foraging radii to date. The estimates presented for each species can be used to
represent foraging ranges for any population in the world without local tracking, and the colony-specific
foraging ranges presented in the supporting information form a valuable resource for users interested in
specific regions. Foraging radii alone have important applications, particularly the mean-maximum foraging
range, such as assessing seabird population connectivity with planned offshore energy generation projects
(Woodward et al. 2019). Secondly, where a candidate seabird protected area is required for a tracked colony,
our framework can be followed to generate a colony foraging circle and refine it using a colony-specific model
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trained with the tracking data. Thirdly, where candidate seabird protected areas are required for untracked
colonies and tracking data exist from several colonies in the same region, a global foraging circle can be
estimated and refined with a multi-colony model trained on the regional tracking data. For species without
any local tracking (frigatebirds, tropicbirds, red-footed booby, sooty tern and terns in our GBR study),
we advise cautious application of a global multi-colony model. The generally poor transferability of global
ENMs would only prescribe minor refinement of global foraging ranges, but we nonetheless advise local
expert opinion or distribution data (e.g. at-sea surveys) should be used to verify that predicted ‘unsuitable’
habitat is indeed unsuitable. Refined foraging circles can be considered candidate MPAs for their respective
seabird population. As distinct polygons they can be considered individually or overlapped, to identify multi-
species foraging hotspots, in higher level marine spatial planning exercises, to ensure seabird representation
in multi-taxa MPA delineation. It should be noted that our foraging circle refinement framework is ENM
neutral, and users should select environmental covariates and model algorithms of their preference.

Advancing regional knowledge of seabird foraging areas

ENMs trained on GBR tracking allowed better refinement than globally trained models, demonstrating the
value of local tracking data. A key recommendation from our study is collection of more seabird tracking
data at regional level. If there was a representative (good coverage of species and sites) GBR database of
seabird tracking information, there would be no need to apply model predictions from across the world
to the GBR as we have done here. Coordination of a systematic regional seabird tracking campaign offers
the most efficient solution to credibly identify known foraging areas for the GBR seabird community, as
demonstrated by projects in the UK (FAME and STAR; Wakefield et al. 2017). Key breeding populations
should be prioritized for tracking, but it is essential that colonies from the same species are tracked in
different areas of the GBR. Our observation that foraging habitat suitable for brown boobies from Swain
Reefs could not predict that of conspecifics from Raine Island (and vice versa; Fig. 6A) highlights the limits
of model transferability within the same region. Furthermore, it may be necessary to investigate whether
models of foraging niche are transferable between neighbouring colonies, in particular when partitioning of
foraging areas between colonies is observed, as shown for wedge-tailed shearwaters breeding in New Caledonia
(Weimerskirch et al. 2020). Selected colonies should be tracked during years of typical ocean conditions with
a good sample of birds (>30; Soanes et al. 2013, Lascelles et al. 2016) to ensure the observed foraging niche
is representative of the populations’ true foraging niche. A systematic seabird tracking campaign would
dramatically reduce uncertainty in where seabirds forage on the GBR, enabling better focused management
actions and inclusion of seabird foraging areas in higher level planning such as zoning of MPAs within the
GBR. Nonetheless, the globally-informed predictions of habitat suitability and foraging radii presented here
form the best working hypotheses of where seabirds forage on the GBR, and are a valuable starting point
for management and protection of seabird foraging resources.
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