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Abstract—This paper investigates and implements a procedure
for parameter identification of salient pole synchronous machines
that is based on previous knowledge about the equipment and
can be used for condition monitoring, online assessment of the
electrical power grid, and adaptive control. It uses a Kalman filter
to handle noise and correct deviations in measurements caused by
uncertainty of instruments or effects not included in the model.
Then it applies a recursive least squares algorithm to identify
parameters from the synchronous machine model. Despite being
affected by saturation effects, the proposed procedure estimates
8 out of 13 parameters from the machine model with minor
deviations from data sheet values and is largely insensitive to
noise and load conditions.

Index Terms—synchronous machines, parameter identification,
condition monitoring

I. INTRODUCTION

Synchronous machines (SMs) are the bulk of power gener-
ation worldwide. In Norway, 95% of the electricity production
comes from hydro power [1], in which the use of salient
pole, SMs is the norm. Therefore, the proper understanding of
these devices is essential for planning, operation, and control
of the power system [2]. Examples of tasks requiring ade-
quate modeling and parametrization of SMs include load flow
analysis, state estimation, stability assessment and tuning of
grid controls and protection settings. These tasks are important
for transmission system operators or generation companies to
operate their resources optimally and reliably.

Traditionally, SM parameters are calculated by manufac-
turers in the design phase using detailed information of the
machine [3], [4] or by recursive methods such as finite-
element analysis [5], [6]. Calculations are later validated
during commissioning through acceptance or performance
tests as described in IEEE and IEC Standards [7], [8]. These

The authors thank SINTEF Digital for supporting this research.

methods for parameter identification are well-proven and have
been used for decades to operate the power system reliably.
However, they have two major shortcomings.

The first is considering that many parameter values in
the system equations are constants and do not vary with
time. However, several effects may impact the values of SM
parameters over time. For example, the field current level
determines the saturation of the magnetic core [9], and load
conditions affects the magnetic equivalent air-gap length [10].
The historical reason for adopting such restrictions is simplify-
ing equations and procedures for parameters calculation, due
to the limited computational resources when the theory for
SMs was developed.

The second shortcoming is requiring the machine to be in
standstill or off-line for performing the majority of parameter
estimation tests. Since this means loss of income for genera-
tion companies, tests are only executed during commissioning
or planned stops. This limits greatly the amount of data and
possible operational conditions that can be measured. In Nor-
way, the transmission system operator (Statnett) requires the
registration of generators’ parameters for at least two weeks
before commissioning, and an update with measured values
after the machine starts commercial operation [11]. Yet, there
is no requirement for periodical updates nor registration of
distinct parameter values for different operational conditions.

Automated procedures for parameter identification of SMs
have been overcoming some of these shortcomings in the last
two decades [6], [12]–[14]. Those procedures were encouraged
by the popularization of system identification techniques and
their easy access in mathematical tools such as MATLAB©

[15]. Methods are varied, but approaches can be summarized
in: 1) analysis of transient data, such as short-circuit or
load rejections; 2) frequency response tests, with injection of
perturbations in standstill, off-line or on line operation. Suc-



cessful examples of such automated procedures are described
in industry standards [2], [7].

This paper presents the following contributions: 1) the pro-
posed automated procedure for parameter estimation can run
with the machine online, and without taking it out of service,
performing difficult and time-consuming tests or involving
large perturbations; 2) the required input data are datasheet
values and common measurements available in a power plant,
i.e. there is no need to install additional transducers in the
machine; 3) the algorithm is robust to noise and deviations in
measurements caused by uncertainty of instruments or effects
not included in the model.

II. SYNCHRONOUS MACHINE MODEL
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Fig. 1. Equivalent circuits of a synchronous machine in per unit and the dq0
reference frame

Fig. 1 presents the equivalent circuits of a SM in per unit and
the dq0 reference frame. This model is thoroughly described
in the literature, such as sections 11.1 and A.1 of [16], and
will not be reviewed for the sake of brevity. Eq. (1) introduces
the SM dynamic model and table I describes its variables.

vdq0fDQ = −Rsmidq0fDQ − Lsm
d

dt
idq0fDQ (1)

where vdq0fDQ =
[
vd vq v0 −vf 0 0

]T
,

idq0fDQ =
[
id iq i0 if iD iQ

]T
, and

Rsm =


R ωLq ωLaq

−ωLd R −ωLad −ωLad

R+ 3RN

Rf

RD

RQ



Lsm =


Ld Lad Lad

Lq Laq

L0 + 3LN

Lad Lad + lf Lad

Lad Lad Lad + lD
Laq Laq + lQ


A. State space representation

By inspection of eq. (1), it would be natural to assume
u = vdq0fDQ, y = x = idq0fDQ, A = −Lsm

−1Rsm,
B = −Lsm

−1, C = I, D = 0. Nonetheless, it is more
natural to assume u =

[
id iq i0 vf 0 0

]T
, since

the armature currents are defined by loads and the field

TABLE I
DEFINITION OF SYMBOLS USED IN EQUATIONS AND FIGURES

Var. Definition Var. Definition

fn rated frequency lQ q-axis leakage inductance
i0 zero sequence current Lq q-axis synchronous induct.
id d-axis current p pair of poles
iD d-axis damper winding

current
R armature winding resist.

if field current RD d-axis damper
winding resist.

Ifn rated field current Rf field winding resist.
iq q-axis current RN neutral grounding resist.
iQ q-axis damper winding

current
RQ q-axis damper winding

resist.
L0 zero sequence induct. Sn rated armature

apparent power
Lad d-axis armature

magnetizing induct.
Un rated armature

line-to-line voltage
Laq q-axis armature

magnetizing induct.
v0 zero sequence voltage

lD d-axis leakage induct. vd d-axis voltage
Ld d-axis synchronous

induct.
vf field voltage

lf field leakage induct. vq q-axis voltage

ll armature leakage induct. Zb base impedance = U2
n

Sn

LN neutral grounding induct. ω rotor speed

voltage is delivered by the excitation system. Thus, y =[
vd vq v0 if iD iQ

]T
and matrices A,B,C,D must

be redefined for a proper state-space representation.
This can be achieved without major changes to the structure

of eq. (1) by extending the model presented in fig. 1 [17].
Let suppose a balanced, star-connected load with resistance
Rdl = 104Zb is inserted at the machine terminals, as shown
in fig. 2. This dummy load with very high resistance can be
understood as a measurement device. With that, the armature
voltages in the (d, q, 0) reference frame can be expressed as
vd = Rdl(id − idt), vq = Rdl(iq − iqt), v0 = Rdl(i0 − i0t).

Ld

Rididt

vd Rdl Lq

Riqiqt

vq Rdl

3LN

L0

3RNRi0i0t

v0 Rdl

Fig. 2. Synchronous machine with a resistance Rdl connected at its terminals

Notice that Rdl is considerably larger than the real load of
the machine, therefore the difference between the terminal cur-
rents idt, iqt, i0t and armature currents id, iq, i0 is negligible.
Re-arranging eq. (1) with these considerations, one obtains:

vdl = −Rsmdlidq0fDQ − Lsm
d

dt
idq0fDQ (2)

where vdl =
[
Rdlidt Rdliqt Rdli0t vf 0 0

]T
and

Rsmdl =
R+Rdl ωLq ωLaq

−ωLd R+Rdl −ωLad −ωLad

R+ 3RN +Rdl

Rf

RD

RQ





Hence, the following state space is defined:

u = vdl x = idq0fDQ

y =
[
vd vq v0 if iD iQ

]T
A = −Lsm

−1Rsmdl B = Lsm
−1 (3)

C = diag
[
Rdl Rdl Rdl 1 1 1

]
D = diag

[
−1 −1 −1 0 0 0

]
It is quite uncommon to measure the damper winding

currents of a SM. For this reason, a transfer function for the
observer for damper windings (ODW) currents is derived by
applying the Laplace transform to rows 5 and 6 of eq. (2), and
manipulating the expressions further to obtain:

iD = − sLad

s(Lad + lD) +RD
(id + if ) (4)

iQ = − sLaq

s(Laq + lQ) +RQ
iq (5)

III. OPTIMAL OBSERVER WITH KALMAN FILTER

In the proposed procedure, a Kalman filter (KF) corrects
and filters measurements using prior knowledge about the
SM model and its parameters. In addition to eq. (3), three
additional matrices must be specified to define a KF [18]:

• Q, a SxS matrix (S=number of states) in which the
diagonal elements represents the noise covariance of the
states, also called process noise covariance matrix;

• R, a YxY matrix (Y=number of outputs) in which the
diagonal elements represents the noise covariance of
the outputs, also called measurement noise covariance
matrix;

• N, a SxY matrix in which the elements represents the
noise cross-covariance between states and outputs, also
called process and measurement noise cross-covariance
matrix.

It is assumed N = 0, i.e. the noise is white and there
is no cross-correlation between the noise of states and
outputs. The other matrices are empirically defined as
Q = diag

[
0.05 0.05 0.05 0.05 0.03 0.03

]
and R =

diag
[
0.05 0.05 0.05 0.05 0.05 0.05

]
. Notice that the

choice of diagonal Q and R matrices represents a naive
assumption that state and output changes are uncorrelated.

These values produce robust results in several load condi-
tions with and without noise, as seen in table III. However, fine
tuning might be required for better performance, according to
the level of noise, measurement accuracy and precision in the
field. In practice, these values are also affected by the variance
of A,B,C,D elements.

A. Model validation

A simulation in MATLAB/Simulink is implemented to
validate the KF and the ODW. It contains a load connected to
a SM model in pu from the Simscape Power Systems (SPS)
library [19], which is used as benchmark. Parameters of a real
synchronous machine are taken from examples 3.1, 3.2 and 8.1

of [20] and listed in table II. Saturation effects are included
in the SPS SM model.

TABLE II
PARAMETERS OF THE BENCHMARK SYNCHRONOUS MACHINE

Parameter Value Parameter Value

Sn 555 MVA Lad 1.66 pu
Un 24 kV Laq 1.61 pu
fn 60 Hz lD 0.1713 pu
Ifn 1300 A lQ 0.7252 pu
p 1 pair Rf 0.0006 pu
R 0.003 pu lf 0.165 pu
ll 0.15 pu

The rotor speed is assumed constant, i.e. the prime mover
and its turbine governor are not modeled because the mechani-
cal dynamics are much slower than the electrical and have little
influence in the results. The field voltage is provided by an
DC1C type excitation system as described in [21]. The choice
of parameters for the automatic voltage regulator (AVR) gives
a fast and stable response, without overshoot in the terminal
voltage.

The outputs of the SM, i.e. armature and field measurements
va, vb, vc, vf , ia, ib, ic, if together with the rotor mechanical
angle γ, are fed into a measurement block that: 1) adds
band-limited white noise and re-samples measurements into
a lower sample frequency (400 Hz) in order to make them
more realistic; 2) applies the dq0-transformation and converts
the values to per-unit. Finally, the output of the measurement
block is fed into the proposed ODW and KF.

The simulation runs with the following load conditions,
where P represent the active power, Q the reactive power and
the per-unit base is given in table II:

• Case 1: P = 0 pu, Q = 0 pu (no load);
• Case 2: P = 0.5 pu, Q = 0.5 pu;
• Case 3: P = 0.5 pu, Q = -0.5 pu;
• Case 4: P = 0.9 pu, Q = 0.4359 pu (rated load).

In addition, the following noise power density (Np) scenar-
ios are used for each simulation case: no noise Np = 0, stan-
dard noise Np = 10−10 W/Hz, high noise Np = 10−9 W/Hz.
Those noise scenarios correspond respectively to signal-to-
noise ratio (SNR) equal to ∞, 50dB and 40dB when the
measured signal is 1 pu.

In all cases and noise scenarios, the simulation starts at rated
armature voltage. In order to observe transient behavior, a step
of +5% is applied to the reference of the AVR at time t = 17
seconds. The initial states of the SM are calculated using the
Machine Initialization tool from SPS in order to avoid loss of
synchronism [19]. However, initial states of the ODW and the
KF are zero, so it is necessary some seconds of simulation
to achieve steady state. This is done to demonstrate the KF
robustness to wrong initial conditions and large transients.

Table III benchmarks the proposed KF against the SPS SM
by presenting the goodness of fit between the two models. For
that, it uses the normalized mean square error (NMSE) as cost



function which is defined as:

NMSE = 1− ‖xref − x‖2

‖xref − xref‖2
(6)

where ‖ indicates the Euclidean or L2 norm of a vector. NMSE
costs vary between −∞ (bad fit) to 1 (perfect fit).

Note that the NMSE of vd and iQ are very low in case
1 (no load) because their values tend to zero and, since the
noise power is constant, the SNR is extremely low. This makes
NMSE measurement not relevant for these cases, so they are
excluded from the standard deviation (std dev) calculation.

TABLE III
NMSE VALUES FOR ALL SIMULATION CASES AND NOISE SCENARIOS

WITH SATURATION

Variable Case 1 Case 2 Case 3 Case 4 Mean Std dev

No noise scenario

vd KF 1.000 1.000 1.000 1.000 1.000 9.93e-10
vq KF 1.000 1.000 1.000 1.000 1.000 2.39e-09
if KF 1.000 1.000 1.000 1.000 1.000 8.56e-06
iD ODW 0.609 0.637 0.997 0.975 0.804 2.10e-01
iD KF 0.612 0.620 0.995 0.964 0.798 2.11e-01
iQ ODW 1.000 1.000 1.000 1.000 1.000 6.43e-08
iQ KF -437 0.995 1.000 0.999 0.998 2.66e-03

Standard noise scenario

vd KF -489 0.954 0.996 0.984 0.978 2.18e-02
vq KF 0.996 0.994 0.988 0.988 0.991 4.13e-03
if KF 0.999 1.000 0.995 0.999 0.998 2.34e-03
iD ODW 0.448 0.431 0.907 0.753 0.635 2.34e-01
iD KF 0.559 0.551 0.965 0.889 0.741 2.17e-01
iQ ODW -5263 0.859 0.991 0.932 0.927 6.63e-02
iQ KF -2305 0.945 0.997 0.975 0.972 2.59e-02

High noise scenario

vd KF -4890 0.540 0.963 0.844 0.782 2.18e-01
vq KF 0.961 0.937 0.884 0.876 0.915 4.13e-02
if KF 0.988 0.995 0.946 0.994 0.981 2.33e-02
iD ODW -1.005 -1.437 0.096 -1.253 -0.900 6.87e-01
iD KF 0.066 -0.080 0.692 0.211 0.222 3.35e-01
iQ ODW -52633 -0.414 0.909 0.321 0.272 6.63e-01
iQ KF -19133 0.496 0.968 0.759 0.741 2.37e-01

IV. ALGORITHM FOR PARAMETER ESTIMATION

Eq. (1) shows that, in matricial form, a synchronous ma-
chine can be reduced to an impedance with a resistive part
Rsm and an inductive part Lsm. Given this model structure
and the set of process signal vdq0fDQ, idq0fDQ, the goal is
to estimate the elements of matrices Rsm,Lsm. For that, an
approximation or error criterion is required.

The literature has some accounts of error criteria for param-
eter identification of synchronous machines, such as KF [22],
recursive least squares (RLS) [12], [23], Prony method [24],
among others.

In this paper, the error criterion applied is the RLS. The
main reasons for this choice are: 1) RLS is readily available
in the System Identification Toolbox of Simulink; 2) near
real-time execution is possible with RLS due to its recursive
nature and low computational effort when compared to other

methods. This is essential when considering direct imple-
mentation in existing intelligent electronic devices (IEDs) or
phasor measurement units (PMUs); 3) benchmarks exist in the
literature for comparison of results.

Considering simultaneous estimation of the 13 parameters
of the synchronous machine with RLS estimation generates
poor results [12], simplifications are required. Thus, steady-

state is assumed, i.e.
d

dt
idq0fDQ = 0. Therefore, parameters

from matrix Rsm can be estimated using RLS, but not Lsm.
However, notice that 4 out of 8 parameters from Lsm are also
present in Rsm.

Another practical simplification is to remove the armature
resistance R from rows 1 and 2 of matrix Rsmdl. The
arguments for this are: 1) R is not used for the calculation
of any standard parameter of the SM (refer to table IV); 2)
R in pu is usually two to three orders of magnitude smaller
than other parameters in these rows (ωLd, ωLad, ωLq, ωLaq),
what makes a reliable estimation challenging [25].

Considering all assumptions above, eq. (1) can be re-
arranged into:

vRLS = −RRLSidq0fDQ (7)

where vRLS =
[
vd −Rid vq −Riq v0 −vf 0 0

]T
and

RRLS =


ωLq ωLaq

−ωLd −ωLad −ωLad

R+ 3RN

Rf

RD

RQ


Notice that in vRLS, the armature voltages vd, vq are

compensated with the voltage drops in the armature resistance
Rid, Riq . Also R + 3RN is estimated in the third row. In
summary, eq. (1) is only re-arranged to avoid the estimation
of R individually.

The leakage reactances lf , lD, lQ are not estimated by the
RLS algorithm. Hence, they are assumed constants for calcu-
lation of standard parameters. This is reasonable considering
they represent a flux path through air and are less affected by
saturation or temperature changes.

Finally, the steady-state condition is detected in run-time
by monitoring that damper windings currents are below a
certain level, as those flow only in transient conditions. Fine
tuning in the field of this threshold might be required for
better performance, according to the noise level, measurement
accuracy and precision of each application.

For validation of the parameter estimator, the simulation file
runs at exactly the same conditions as described in sec. III-A.
The output of the KF is fed into six RLS estimators, i.e. one
for each line of RRLS, as seen in fig. 3. The estimators use
a memory time of 3 seconds and sampling frequency of 400
Hz. Results are evaluated measuring the error in percentage
from values in table II.

Table V presents a summary of these evaluations. Re-
sults are shown before and after the AVR step in order to
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Fig. 3. Overview of the proposed parameter identification procedure

TABLE IV
STANDARD PARAMETERS OF A SALIENT-POLE SYNCHRONOUS MACHINE
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Parameter Definition
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LaqlQ
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)

demonstrate the effectiveness of the steady-state detection and
robustness of the procedure to transient effects.

V. DISCUSSION

Table III points to a mean correlation close to unity between
KF and SPS in the no noise scenario for all variables except
iD. Also in the standard noise scenario, correlation between
KF and SPS is relatively close to unity and with small std
dev, except for iD. This shows the two models are nearly
equivalent.

Note that saturation changes the value of Lad, which is
the main component of the zero and pole of iD transfer
function in the ODW, as shown in eq. (4). This variation

of Lad makes the state transition function non linear, and
improper for a KF to handle. The main result is that the KF
does not compensate saturation for iD. On the other hand,
the KF effectively compensates saturation for vq, if in the
no and standard noise scenarios. As expected, performance
is degraded in the high noise scenario due to a lower SNR.

Therefore, saturation effects must be considered and in-
cluded in future work. An alternative for that would be using
an extended or unscented KF, which can handle non linear
state transition functions, and compensate the value of Lad

dynamically [26]. Alternatively, a more advanced non linear
model of the machine including saturation in its derivation can
be used [27], [28].

Moreover, the KF improves iD, iQ measurements consider-
ably when the machine load increases, due to a better SNR.
This is very noticeable in the standard and high noise scenario.
Not least, notice in table III that the low std dev between
all cases indicates the correlation is not sensitive to the load
conditions.

As seen in table V, the proposed procedure summarized
in fig. 3 estimates parameters of the SPS SM machine with
relative small percentage deviations from the datasheet values,
and are in line with those reported in the literature [12]. The
low std dev between all cases indicates the estimation is not
sensitive to the load connected to the machine. In addition,
noise power has small influence in the quality of the parameter
estimation. This seems to be an advantage of the KF over
other filtering techniques reported in the literature [12], [23].
However, this finding must be corroborated by experimental
results in a real SM to prove its value.

The proposed strategy to disable and reset the RLS algo-
rithm during transients is successful, as results are similar
before and after the AVR step. No instability is observed in
the estimated parameters for all cases and noise scenarios, also
for long time simulations of 300 seconds in all noise scenarios
(not included in the results for sake of brevity).

Nonetheless, note that the errors of ωLd, ωLad are con-
siderable due to the saturation effect. Surprisingly, there is
no direct correlation between the amplitude of this deviation



TABLE V
PERCENTAGE ERRORS IN THE LAST 5 SECONDS OF ESTIMATION USING DATA SHEET VALUES AS BASELINE - BEFORE AND AFTER THE STEP

Param. Case 1 Case 2 Case 3 Case 4
mean std dev mean std dev mean std dev mean std dev

before after before after before after before after before after before after before after before after

No noise scenario

ωLd 0.00 0.00 0.00 0.00 -1.63 -0.90 0.00 0.00 -4.04 -4.03 0.00 0.01 -3.26 -2.96 0.00 0.00
ωLq 0.26 -0.01 0.00 0.00 -0.87 -0.97 0.03 0.01 -0.22 -0.26 0.01 0.00 -0.79 -0.85 0.02 0.00
R+ 3RN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ωLad -0.08 -3.51 0.01 0.01 3.26 1.84 0.00 0.00 5.17 5.17 0.01 0.01 5.20 4.76 0.00 0.00
Rf 0.52 0.02 0.10 0.00 0.00 -0.04 0.00 0.01 0.00 -0.33 0.00 0.09 0.00 -0.07 0.00 0.02
RD -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ωLaq 0.02 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 -0.02 0.00 0.00 0.00
RQ 0.00 0.00 0.00 0.00 -0.02 -0.02 0.00 0.00 -0.02 0.00 0.00 0.00 -0.02 -0.01 0.00 0.00
T ′
d0 -0.54 -1.65 0.10 0.00 1.51 0.89 0.00 0.01 2.40 2.73 0.00 0.08 2.41 2.28 0.00 0.02

T ′
d -0.34 -0.05 0.10 0.00 -0.61 -0.66 0.02 0.02 -0.12 0.17 0.01 0.09 -0.53 -0.53 0.01 0.02

T ′′
d0 -0.03 -1.60 0.00 0.00 1.44 0.82 0.00 0.00 2.27 2.28 0.00 0.00 2.28 2.09 0.00 0.00

T ′′
d 1.01 -0.16 0.02 0.01 -3.63 -4.19 0.13 0.04 -0.69 -0.96 0.04 0.00 -3.20 -3.57 0.07 0.02

X′
d 0.35 -1.65 0.01 0.01 0.03 -0.81 0.05 0.02 1.98 1.88 0.01 0.00 1.03 0.70 0.03 0.01

X′′
d 1.41 -0.22 0.02 0.02 -4.97 -5.74 0.18 0.06 -0.97 -1.34 0.06 0.00 -4.39 -4.89 0.10 0.02

T ′′
q0 0.02 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00

X′′
q 0.64 -0.03 0.01 0.01 -2.32 -2.63 0.08 0.03 -0.54 -0.70 0.03 0.00 -2.09 -2.30 0.05 0.01

Standard noise scenario

ωLd -0.02 -0.01 0.00 0.00 -1.64 -0.91 0.00 0.00 -4.04 -4.04 0.00 0.01 -3.26 -2.97 0.00 0.00
ωLq 0.22 -0.02 0.01 0.01 -0.88 -0.97 0.03 0.01 -0.22 -0.26 0.01 0.00 -0.79 -0.85 0.02 0.00
R+ 3RN -0.06 -0.04 0.06 0.03 -0.02 -0.03 0.04 0.03 -0.02 -0.03 0.04 0.03 -0.02 -0.03 0.04 0.03
ωLad -0.08 -3.51 0.01 0.01 3.25 1.84 0.00 0.00 5.17 5.17 0.00 0.01 5.20 4.76 0.00 0.00
Rf 0.41 0.12 0.08 0.02 -0.03 0.01 0.01 0.01 -0.08 -0.22 0.02 0.09 -0.03 -0.03 0.01 0.02
RD -0.03 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.02 0.00 0.00 -0.01 -0.01 0.00 0.00
ωLaq 0.03 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 -0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00
RQ -0.01 0.00 0.00 0.00 -0.03 -0.02 0.00 0.00 -0.03 -0.01 0.00 0.00 -0.03 -0.02 0.00 0.00
T ′
d0 -0.43 -1.74 0.08 0.02 1.54 0.85 0.01 0.01 2.48 2.62 0.02 0.09 2.44 2.23 0.01 0.02

T ′
d -0.27 -0.15 0.08 0.02 -0.58 -0.71 0.03 0.02 -0.04 0.05 0.03 0.09 -0.52 -0.58 0.02 0.02

T ′′
d0 -0.02 -1.59 0.00 0.00 1.45 0.83 0.00 0.00 2.28 2.29 0.00 0.00 2.29 2.10 0.00 0.00

T ′′
d 0.85 -0.22 0.04 0.02 -3.68 -4.21 0.14 0.04 -0.71 -0.96 0.05 0.00 -3.27 -3.61 0.09 0.02

X′
d 0.29 -1.68 0.02 0.01 0.00 -0.82 0.06 0.02 1.97 1.87 0.02 0.00 0.99 0.68 0.03 0.01

X′′
d 1.15 -0.31 0.06 0.04 -5.06 -5.78 0.20 0.06 -1.01 -1.36 0.07 0.01 -4.50 -4.95 0.12 0.03

T ′′
q0 0.03 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.02 0.01 0.00 0.00 0.03 0.03 0.00 0.00

X′′
q 0.53 -0.07 0.02 0.02 -2.35 -2.65 0.09 0.03 -0.56 -0.71 0.03 0.00 -2.13 -2.32 0.05 0.01

High noise scenario

ωLd -0.19 -0.11 0.04 0.03 -1.70 -0.97 0.02 0.02 -4.08 -4.06 0.01 0.01 -3.31 -3.01 0.01 0.01
ωLq 0.01 -0.13 0.05 0.03 -0.91 -0.97 0.03 0.01 -0.22 -0.25 0.01 0.00 -0.81 -0.85 0.02 0.00
R+ 3RN -0.62 -0.39 0.56 0.34 -0.16 -0.31 0.41 0.33 -0.16 -0.34 0.41 0.33 -0.23 -0.33 0.41 0.32
ωLad -0.07 -3.50 0.01 0.01 3.22 1.81 0.01 0.01 5.15 5.15 0.00 0.00 5.17 4.73 0.01 0.01
Rf 0.24 0.32 0.06 0.06 -0.11 0.11 0.03 0.03 -0.27 0.03 0.08 0.11 -0.09 0.06 0.03 0.03
RD -0.18 -0.09 0.03 0.02 -0.11 -0.09 0.02 0.02 -0.13 -0.11 0.03 0.03 -0.12 -0.09 0.02 0.02
ωLaq 0.11 0.04 0.01 0.01 0.11 0.11 0.03 0.03 0.05 0.05 0.01 0.01 0.15 0.13 0.03 0.03
RQ -0.06 -0.03 0.01 0.01 -0.08 -0.07 0.01 0.01 -0.07 -0.04 0.01 0.01 -0.10 -0.08 0.02 0.02
T ′
d0 -0.26 -1.93 0.06 0.05 1.61 0.74 0.04 0.03 2.67 2.37 0.08 0.11 2.49 2.14 0.03 0.03

T ′
d -0.30 -0.46 0.04 0.05 -0.61 -0.87 0.07 0.04 0.10 -0.22 0.09 0.12 -0.58 -0.75 0.06 0.05

T ′′
d0 0.14 -1.51 0.03 0.02 1.54 0.89 0.02 0.02 2.40 2.37 0.03 0.03 2.38 2.17 0.02 0.02

T ′′
d -0.22 -0.74 0.22 0.15 -4.21 -4.52 0.22 0.11 -0.87 -1.05 0.07 0.02 -3.90 -4.01 0.19 0.11

X′
d -0.19 -1.92 0.10 0.07 -0.25 -0.98 0.10 0.05 1.85 1.79 0.04 0.02 0.71 0.48 0.08 0.06

X′′
d -0.55 -1.16 0.35 0.24 -5.89 -6.30 0.33 0.17 -1.40 -1.61 0.14 0.07 -5.47 -5.59 0.28 0.18

T ′′
q0 0.13 0.06 0.02 0.01 0.16 0.14 0.03 0.03 0.10 0.08 0.02 0.02 0.20 0.17 0.04 0.04

X′′
q -0.22 -0.44 0.15 0.11 -2.70 -2.86 0.14 0.07 -0.72 -0.81 0.06 0.03 -2.54 -2.59 0.12 0.08



and the saturation level, as one would expect. This fact is
clearly seen in results of case 3, which has the largest errors
for ωLd, ωLad but the lowest saturation level, and must be
investigated further.

VI. CONCLUSION

The focus of this paper was the investigation and imple-
mentation of a procedure for reliable parameter identification
for salient pole synchronous machines that can be used for
condition monitoring, online assessment of the power grid, and
adaptive control. Focus is given to a procedure that can: 1) run
with the machine online, and without taking it out of service,
performing difficult and time-consuming tests or involving
large perturbations; 2) use common measurements available in
a power plant without installing additional transducers in the
machine; 3) be robust to noise and deviations in measurements
caused by uncertainty of instruments or effects not included
in the model.

In order to achieve that, a KF was implemented to filter
and correct measurements using prior knowledge about the
synchronous machine model and its parameters. Validation of
the KF shows good correlation with the SM model available in
SPS. The results also demonstrates the correlation is sensitive
to saturation effects, but insensitive to the load condition.
The goodness of fit is maintained under a ”standard” noise
scenario. As one would expect, performance degrades in the
”high” noise scenario, specially when the SNR is extremely
low.

Outputs of the KF are then fed into a RLS algorithm
that is able to reliably identify 8 out of 13 parameters from
the SM: R + 3RN , Rf , RD, RQ, ωLd, ωLad, ωLq, ωLaq . The
parameters not being estimated are: R,L0 + 3LN , lf , lD, lQ,
in which R,L0 + 3LN are not relevant for calculation of
standard parameters and the leakage reactances lf , lD, lQ can
be assumed as constants.

Despite current limitations, results are promising and, when
validated experimentally, the proposed procedure might be
used for practical condition monitoring applications, such
as detection of broken damper winding, turn-to-turn short
circuit and air-gap eccentricity. Another possibility is using
the proposed procedure to calculate standard parameters in
multiple load conditions based on measurements from existing
protection IEDs, without the use of special test equipment.
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