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Abstract

This paper proposes a Lyapunov optimization-based online distributed (LOOD) algorithmic framework for active distribution

networks with numerous photovoltaic inverters and invert air conditionings (IACs). In the proposed scheme, ADNs can track

an active power setpoint reference at the substation in response to transmission-level requests while concurrently minimizing

the utility loss and ensuring the security of voltages. In contrast to conventional distributed optimization methods that employ

the setpoints for controllable devices only when the algorithm converges, the proposed LOOD can carry out the setpoints

immediately relying on the current measurements and operation conditions. Notably, the time-coupling constraints of IACs

are decoupled for online implementation with Lyapunov optimization technique. An incentive scheme is tailored to coordinate

the customer-owned assets in lieu of the direct control from network operators. Optimality and convergency are characterized

analytically. Finally, we corroborate the proposed method on a modified version of 33-node test feeder.
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Abstract—This paper proposes a Lyapunov optimization-based  online 
distributed (LOOD) algorithmic framework for active distribution 
networks with numerous photovoltaic inverters and invert air condi-
tionings (IACs). In the proposed scheme, ADNs can track an active 
power setpoint reference at the substation in response to transmis-
sion-level requests while concurrently minimizing the utility loss and 
ensuring the security of voltages. In contrast to conventional distrib-
uted optimization methods that employ the setpoints for controllable 
devices only when the algorithm converges, the proposed LOOD can 
carry out the setpoints immediately relying on the current measure-
ments and operation conditions. Notably, the time-coupling con-
straints of IACs are decoupled for online implementation with Lya-
punov optimization technique. An incentive scheme is tailored to 
coordinate the customer-owned assets in lieu of the direct control 
from network operators. Optimality and convergency are character-
ized analytically. Finally, we corroborate the proposed method on a 
modified version of 33-node test feeder.   
Index Terms—Active distribution networks, online distributed opti-
mization, photovoltaic, inverter air conditionings. 

I. INTRODUCTION 
CTIVE distribution networks (ADNs) integrated with high 
penetrations of distributed energy resources (DERs) provide 

increasing flexibility for power systems and accommodate ad-
vanced ancillary services such as automatic generation control, 
fast ramping, and power reserves [1]. However, coordinating nu-
merous DERs to achieve some objectives while considering their 
distinct dynamics and constraints in a time-varying environment is 
extremely challenging. Moreover, since the customer-owned 
DERs are not directly dispatched by the utilities, an incen-
tive-based scheme instead of the direct control from network op-
erators is required. 

There has been extended studies on optimal coordination of 
DERs with the ADN in the literatures. Some works such as [2] 
design a centralized solver for the formulated optimization prob-
lems, which is valid for the small-scale application and utili-
ty-owned assets. Refs. [3]--[5] present distributed optimization 
frameworks, where multiple subproblems need to be solved itera-
tively until the convergence for each time slot. We term such 
scheme as solving the problem in a batch fashion [6]. In this case, 
the system profiles are presumed to be stationary and unchanged 
during the whole iterative procedure. However, if we use a small 
time-slot duration to track the optimal setpoints for DERs in the 
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fast variation environment, the batch fashion will be communica-
tionally costly and rarely feasible to yield the convergency before 
the system profiles change [6]. Additionally, if the batch mode is 
applied to design an incentive scheme, various rounds of bargains 
between ADN operators and customers are required before re-
vealing the optimal price [5], which may be user-unfriendly. 

Alternatively, the online convex optimization (OCO) has 
emerged as a promising paradigm. Unlike conventional batch 
fashion, a limited number of iterations are performed at each time 
slot in OCO. The generated coordination signals or setpoints are 
applied directly without waiting for convergency. Based on this 
computationally affordable online method, DERs can continuous-
ly pursue the trajectory of the time-varying optimizers using a 
small sampling time in the fast variable environment. For instance, 
Enyioha et al. [7] propose an online decentralized algorithm for 
the transmission-level economic dispatch. However, it only con-
siders the active power balancing of large generation units while 
DERs are not involved. Refs. [8] and [9] coordinate the networked 
microgrids and DERs to minimize the system cost and loss, re-
spectively. A unified online feedback-based controller for DERs is 
presented in [6] to pursue a given objective. To provide auxiliary 
services, a primal-dual-based algorithm is proposed in [10] to re-
alize a virtual power plant. Zhou et al. [11] present an incen-
tive-enabled online optimization framework.  

For online ADN optimization, the aforementioned algorithms 
cannot well integrate the energy storage devices with 
time-coupling dynamics. For instance, the inverter air conditioning 
(IAC) is thermal storage devices whose power setpoints can be 
adjusted continuously to provide control flexibility to the ADN 
[12]. The main barrier for integrating IACs is that they feature 
constraints of the states of temperatures, coupling their power set-
points within the entire operating period. OCO refs. [10] and [11] 
avoid DERs with the time-coupling constraints to advocate a fast 
online controller. Li et al. [13] propose an online algorithm for the 
optimization problems considering switching costs but only fo-
cuses on the temporal coupling between two successive time slots 
without considering the whole time span. Model predictive control 
(MPC) is leveraged to coordinate networked battery energy stor-
ages [14]. The predictive-based approach is also tailored in an 
OCO framework in [15]. However, MPC-based framework can 
only employ a limited number of time windows ahead to avoid 
prohibitively high computational complexity with larger predictive 
window sizes. Some researchers leverage stochastic gradi-
ent-based methods to transfer these time-coupling constraints [2], 
[16]. However, [2] is designed in a centralized manner while [16] 
only considers coordinating batteries at the transmission level. 
Furthermore, they are not formulated in an OCO framework. 

This paper investigates a Lyapunov optimization-based online 
distributed (LOOD) algorithmic scheme to achieve an incen-
tive-based DER coordination. In the proposed algorithm, the net-
worked customer-owned DERs are coordinated to provide the 
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active power tracking service at the substation, while simultane-
ously minimizing the utility loss and maintain node voltages 
within an acceptable range. Compared with most existing ADN 
online optimization works, the main innovations of our developed 
method are summarized as follows: 

(1) The proposed method can integrate numerous DERs with 
time-coupling constraints and tailor their distinct attributes to the 
OCO framework. Unlike the greedy decoupling methods and 
MPC-based scheme, the time-coupling constraints are decoupled 
from a long-term vision to each time slot in LOOD. It provides the 
most cost-efficient result since the whole time period is sighted, 
while also advocates the real-time deployment due to the existence 
of the closed-form solution for the IAC.   

(2) We design a proper incentive scheme to coordinate DERs in 
lieu of direct controlling. A first-order filter is applied in the incen-
tive generator to alleviate potential fluctuations of the incentives 
and corresponding responses to smoothen the control and conver-
gence process. 

(3) We conduct a rigorous mathematical analysis to demon-
strate the impact on the optimality and convergence of our algo-
rithm caused by the step size, weight coefficients, and initializa-
tion of virtual queues. In particular, the relaxation for the 
time-coupling constraints is proved to cause no violation in our 
setting. 

The remainder of this paper is organized as follows. Section II 
formulates a mathematical model to coordinate networked DERs. 
In Section III, LOOD is proposed. The performance analysis is 
analytically characterized in Section IV. Case studies and bench-
marks are described in Section V. Concluding remarks are sum-
marized in Section VI.  
Notations:  

We denote the L2-norm of a vector as .  denotes a 
projection operator onto set .    
Definitions:  
1). We define the time-average value  of a variable  as its 
mean over the whole time period, such that  . 
2). A function  is l-Lipschitz continuous on  if 
there is a constant  such that 
   (1) 
3). A function  is -strongly convex if for all  and  in 
the feasible set and some constant , we have 
   (2) 
4). A function  is strongly concave if  is strongly con-
vex.  

II. SYSTEM MODELS 
Consider a distribution network with high penetration of DERs. 

All the control actions are performed in a discrete-time manner 
with a time interval . The time slots are indexed by t in 

. Let  collect all the nodes in the 
network excluding the substation which is denoted by node 0. The 
sets of nodes connected with PV inverters and IACs are denoted 
by and , respectively. In this paper, each node 

 in the distribution system is regarded as a customer.  

A. Node Models 
Two representative types of DERs, i.e., the PV inverter and 

IAC, are modeled through defining their feasible sets and utility 

loss functions. 

1) PV Inverter Model 
The PV is connected to the network through an inverter. Let 

 be the maximal available active power output of PV i at 
time slot t and  be the rated apparent capacity of inverter i. 
The active power output  and reactive power output  
belong to a feasible set  given by: 

   (3) 

If , we have  and  for .  
A quadratic function with coefficient  is designed to penalize 

the active power curtailment of PV. As injecting reactive power is 
not economic for customers, we also penalize the reactive power 
generation/absorbing as a quadratic function with a coefficient  
as follows: 
  (4) 

2) IAC Model 
Unlike the conventional fixed speed ACs, power consumptions 

of IACs can be continuously adjusted by regulating the operating 
frequency of the compressors. Compared with fixed speed air 
conditioners, IACs are more flexible and widespread. We consider 
various IACs may connect to one node, and each IAC is installed 
in an independent room. So, we index the IACs connected to node 

 as , where the cardinality  repre-
sents the number of connected IACs at i. Note that as the operat-
ing power is a linear function of its frequency [12], the operating 
power  of IAC  at time slot t is regarded as the optimi-
zation decision variable. The operating power  is confined in a 
box set . We further define . 
Then with the lower and upper bound vectors and  the 
feasible set for IACs is formulated as the following compact form: 
   (5) 

We consider IAC working in the cool mode. The IAC features 
the indoor temperature  following a given dynamic, which can 
be depicted by the simplified equivalent thermal parameters (ETP) 
model [12]. Let  denote the equivalent thermal capacity 
( ),  be the equivalent thermal resistance ( ), and 

 be the cooling rate (W) of the IAC. Since only one IAC is 
installed in an independent room, the indoor temperature evolves 
as follows: 

(6)
where   is a constant,   is the ambient tem-
perature at time slot t. The cooling rate can be modeled as the 
following linear function of the operating power [12]: 
   (7) 
where  and  are constant coefficients for a given IAC a.  

For further discussion, the ETP model can be equivalently for-
mulated as: 

   (8) 

where  and denote the temperature increase part and de-
crease part from time slot t to t+1, respectively. The increase part 
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is caused by the ambient heat radiation, which can be estimated at 
each time slot. The decrease part is a function of the operating 
power  to be optimized. 

To satisfy the temperature requirements, is restricted by: 
   (9) 
where  and  are the lower and upper temperature limits. 
Note that constraints (9) are temporarily coupled. Therefore, mak-
ing decisions at time slot t will impact the future temperatures and 
decisions. To cope with the time-coupling constraints, we will 
tailor the Lyapunov optimization approach to an online adaptation 
in Section III. 

To better control temperature, we define a utility loss function 
of all IAC of node i at time t as a quadratic function penalizing the 
deviation of the actual temperature from the setpoint: 
   (10) 
where  is a positive cost coefficient and  is the tempera-
ture setpoint defined as the median value of and .  

Here we focus on cool mode of the IAC. Nevertheless, heat 
mode can be modeled similarly and is omitted here.  

3) Aggregate Model for Nodes 
Let  collect all the decision variables 

at node . We can present the feasible set of  as: 
   (11) 
Note that only comprises some simple constraints excluding 
the time-coupling temperature constraints. 

Then, we define the total utility loss of the customer i as the 
accumulation of that of each DER: 

   (12) 

B. Network Model 
For each node in the ADN, the aggregate active power injection 
 and reactive power injection  can be calculated by: 

   (13a) 

   (13b) 
with  and  being the active and reactive power consump-
tion of the inelastic loads of node i, respectively, which are pre-
sumed to be accurately predictable in real-time operations. For 
notational simplicity, we collect all the node active and reactive 
power by vector  and , respectively. Let  denote the volt-
age magnitude of node i at time t, and collect the voltage magni-
tudes of all nodes at time t by a vector . The 
active power at the substation at time slot t is denoted by .  

To develop a computationally affordable controller to advocate 
the online implementation, power flow linearization is leveraged 
to model the AC power flow equations, given by: 
   (14a) 
   (14b) 
where , , , , , 
and  can be obtained by numerous linearization methods 
with high accuracy, such as approaches in [8] -- [10]. To cope with 
the inaccuracy caused by the approximation, the real-time meas-
urements of voltage and active power at the substation, denoted by 

and , respectively, are leveraged as feedback to reduce 
modeling errors, as will be shown later.  

C. Problem Formulation  
The optimization problem can be formulated as a time-average 

utility loss minimizing problem  as follows: 
   (15a) 

   (15b) 
   (15c) 

   (15d) 

   (15e) 
   (15f) 
where the objective function is the time-average value of with 

being the expectation of the summarized utility 
losses of all customers at time slot t. We define a set 

collecting all random varia-
bles in (15). In practice, even though can be accurately esti-
mated or obtained in real time, its realization is unknown in the  
since  is formulated and solved from a long-term view. Thus, 
the expectation  is taken over the vector  for . Constraint 
(15b) confines the voltage to an acceptable range. Constraint (15c) 
tracks the power setpoint reference at the substation  given 
by the transmission-level operator in real time with a permitted 
tracking error .  is a binary indicator to switch on the 
tracking service when it is required. 

III. LOOD ALGORITHM 

A. Virtual Queue-Based Reformulation 
The online implementation requires solving  at each time slot. 

To decouple the time-coupling constraints from a long-term time 
horizon, the technique of virtual queues (see e.g., [2], [17]) is lev-
eraged to reformulate . 

1) Virtual Queue Definition 
By summarizing (8) over time from 1 to T and taking the ex-

pectation of each term, we get: 
   (16) 
Divide both sides of (16) by T and take  to get:  
   (17) 

as and  are both bounded by .  
Remark 1: Constraint Eq. (17) is a relaxed version of (15e). If we 
replace Eq. (15e) in   by (17) and denote the pertinent optimizer 
as , we must have .  

To address the relaxed temperature constraints in (17), we can 
define a virtual queue  for  and  as: 
   (18) 
The arrival rate of the queue is the injected temperature while the 
departure rate is the cooling temperature at time slot t.  Following 
the rate stability theorem [17], we place (17) with: 
   (19) 

In most existing researches such as [2], the initial value of the vir-
tual queue  is set to zero because it handles the 
time-averaging constraints without any relaxation. Differently, the 
original constraints must be satisfied at each time slot in . To 
avoid the violations of constraints due to the relaxation, a hot start 
approach of the virtual queues will be illustrated in the Section 
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III-C. 

2) Lyapunov Optimization 
The constraint (19) still hinders the online deployment as it is 

coupled over a long-term time span. Consequently, the Lyapunov 
optimization presented in [17] is leveraged to transfer them to a 
penalty term attached to the objective function at each time slot 
based on the observation of the current states. 

Let collect all the virtual queues defined for 
of node i. Then, we define a Lyapunov function 

 to measure the size of the queues: 
   (20) 

Then, the conditional one-slot Lyapunov drift can be defined as 
follows to measure the expected queue size growth under observa-
tion of current state : 
   (21) 

To satisfy constraints (19), we minimize the Lyapunov drift to 
push the queues toward a less congested sate. Following the mini-
mizing drift-plus-penalty method in [17], we minimize the 
weighted sum of the drift and cost at each time slot to obtain  
as follows: 

   (22) 
where V is a positive coefficient to achieve a tradeoff between the 
stability of queues and original costs.  
Lemma 1: The drift-plus-penalty function is upper bounded at 
each time slot t by: 

 (23) 
where 
   (24a) 

   (24b) 
with  and .  

Proof: See Appendix A. 
Based on Lemma 1, instead of optimizing the drift-plus-penalty 

function, we will minimize its upper bound alternatively. Follow-
ing the theorem on opportunistically minimizing an expectation in 
[17] (c.f. 1.8 in [17]), the policy for the optimization is to observe 
the current state  and then select the minimizer of 

.  
In practice, can be interpreted as an ad-

ditional utility loss function of the aggregated IACs that carries 
more temporal knowledge than (10). Hence, we reformulate the 
utility loss function of each node as: 

   (25) 
Assumption 1: The utility loss function  is -strongly convex 
and - Lipschitz continuous for . 

Hereafter, the long-term optimization problem  comprising 
the time-coupling constraints can be reformulated as a simple re-
al-time problem to be executed at each time slot without reliance 
on high-complex solvers. The new problem  is given by:	
   (26a) 

   (26b) 

   (26c) 

   (26d) 

   (26e) 

   (26f) 
where the update of virtual queues  follows Eq. (18). 
Let and  col-
lect dual variables associated with constraints (26b) and (26c), 
respectively, while  and  be dual variables for constraint 
(26d) and (26e), respectively. Note that all the dual variables are 
non-negative. For notational simplicity, we denote the objective 
function of  by  and the functional con-
straints (26b) -- (26e) by a compact stacked form, with 

being all the decision variables. Due to the strong 
convexity of , the next result follows naturally. 
Lemma 2: The objective function is -strongly convex.  

Further, because  is a set of linear constraints, the Jaco-
bian of  is bounded by a positive constant  over the fea-
sible set of , such that . Notice that  can be 
characterized according the parameter matrices R, X, M, and N. 
Theorem 1: The difference between time-average value of  
denoted as , and the optimizer of , i.e., is bounded, such 
that .  

Proof: See Appendix B. 
Remark 2:	  provides a time decouple reformulation within 

 of the optimal results of original  together with  
tradeoff in the time-coupling constraints. A large V can decrease 
the optimality gap but also bring about constraint’s violation. In 
Section III-C, the upper limit for V that ensures the constraints is 
demonstrated. 

B. Online Distributed Dual Ascent Algorithm 
To design an online distributed solver for , we consider its 

regularized Lagrangian function defined as follows: 

  (27) 

where collects all the dual varia-
bles, and is a regularization term to ensure the concavity 
of the dual function with a predefined parameter . Such reg-
ulation is widely used in OCO, such as [9]--[11]. The bounded gap 
between the saddle point of the regularized Lagrangian function 
and the original one can be found in [19]. 

We next propose a dual ascent algorithm to find the saddle 
point of (27). To that end, consider the following dual problem: 
   (28) 
where is the dual function calculated from: 
  (29) 

Assumption 2:  is strictly feasible for , i.e., it satisfies the 
Slater’s condition. 

The strong duality of  holds based on Assumption 2 [20]. 
Thus, if is the solver to (28), is the 
optimal solution to . 

We continue to investigate how to solve the problem in a dis-
tributed manner based on incentives. Given the optimal dual vari-
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ables, the primal problem is ready to be divided and equivalently 
solved through N subproblems. Particularly, each subproblem 
only requires the local information and a couple of coordination 
signals composed of the dual variables. The local subproblem 
denoted as  for  and :  
   (30a) 

   (30b) 
In ,  and  are the coordination signals with the vector 
forms being  and , respectively. By [11], [15], we design 
the signals as follows: 
   (31a) 

  (31b) 

Note that according to Theorem 2 in [11], the design of the coor-
dination signals ensures an exact distributed reformulation, i.e., the 
optimal solutions of N subproblems coincide with the central-
ized optimization results of .  

In practice, the coordination signal and play roles as the 
monetary incentive for the active and reactive power for , re-
spectively. The incentive signals comprise two components. The 
first term is the price for voltage regulation to ensure an acceptable 
range. The second term is used to induce customers to regulate the 
DERs for a power tracking service.  

We further define  to compactly denote 
Eq.(31a) and Eq.(31b). From the structure of , we have the 
following results.  
Remark 3： is - Lipschitz continuous. 
Assumption 3: The optimal dual variables between two succes-
sive time slots are bounded by a positive constant , such that 

.  
This assumption is standard in the domain of OCO, such as [15]. 

3) Online Algorithm 
According to our setting,  is required to be online imple-

mented. Concurrently, to reduce the fluctuations of incentives, a 
first-order filter is also applied in this algorithm. To recap, the 
proposed LOOD algorithm is illustrated as: 
LOOD Algorithm 
Initialization:  

Customers choose an initial value for virtual queue  
according to the hot start policy range. See (35a) and (35b). 

ADN operator sets initial dual variables ; sets 
and . (See (35c) and Theorem 2). 

for t = 0, 1, 2, …, T 
[P1] ADN operator sends to each customer. 
[P2] Customer receives and solves  locally. 
[P3] ADN operator measures the node voltage and active 

power at the substation, i.e., and , respectively. 
[P4] ADN operator updates dual variables according to 

(32a)--(32d). 
[P5] ADN operator updates  based on (32e)

--(32h). 
end for 
   (32a) 

   (32b) 

   (32c) 

   (32d) 

   (32e) 

   (32f) 

   (32g) 

   (32h) 
In our algorithm, [P1] and [P3] to [P5] are processed by the 

ADN operator based on measurements and the received setpoint 
reference from transmission-level operators. [P2] is solved by 
customers locally depending on the private information and the 
incentives. It is hard to get the optimal incentives in (31) in a time 
varying conditions since the optimal dual variables can be re-
vealed only after various iterations between the ADN operator and 
customers. However, the environments and customers’ responses 
have changed during the multiple rounds’ bargains. Alternatively, 
based on the OCO framework, we update the incentives only re-
lying on current measurements and conditions. Convergence and 
optimality gaps of this online algorithm will be characterized ana-
lytically in Section IV. 

In this algorithm, the actual incentive signal is tuned by a 
first-order filter, as shown in (32g) and (32h). The motivation of 
this filter is to smooth the incentive signal. In practice, fast fluctua-
tions of the monetary incentive are not user-friendly. More im-
portantly, the fluctuations of incentive signals will be reflected in 
the node power and voltage finally. As the violations are essential 
to power systems’ stability, we smoothen the incentive signals to 
reduce the violation of node power and voltage accordingly. We 
also characterize the discrepancy on the solver of the optimization 
problems after filtering the incentive signals.  

Note that we leverage measurements feedback to cope with the 
accurate AC power flow in the update of dual variables with the 
following assumption to bound the discrepancy between the line-
arization power flow model and the actual measurements. 
Assumption 4: There exists a positive constant e such that: 
   (33) 

C. Solving Local Problems 
In the LOOD algorithm, customers need to solve  locally. 

According to the form of , it is a standard quadratic problem 
that can be solved efficiently. Although there may be hundreds or 
thousands of IACs connecting to one node, they operate inde-
pendently. We can get a closed-form solver for each IAC at time 
slot t as follows: 

 (34) 

where  is a time-invariant constant.  
Lemma 3: The relaxation of the original time-coupled constraints 
in (15e) will not bring about violations if the initialization of the 
virtual queue, denoted by  and weight coefficient V are chosen 
from  and  , respectively.  

The boundaries of  and V are given by: 
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 (35a) 

  (35b) 

   (35c) 

where  and  for all . We 
assume  and can be estimated based on the history data.   

The proof of Lemma 3 is that if , a 
solver  that makes sure  will be obtained based 
on (34). Similarly, if , we will have 

. To recap, the generated solver for the IAC will 
cool the room if the indoor temperature is going to exceed the 
upper limit, while stop cooling the room if the indoor temperature 
outrides the lower limit.  
Remark 4: We only need to estimate the upper and lower limits 
of . Thus, the accuracy requirements are relatively low. In prac-
tice, the ADN operator can also confine the incentive in a prede-
fined range beforehand like many current demand response pro-
grams, which better advocate the estimation.  

IV. PERFORMANCE ANALYSIS 
In this section we analytically characterize the performance of 

the LOOD method. We first introduce the following useful lem-
mas. 
Lemma 4: Under Assumption 1, the inverse function of  
denoted by exists and is -Lipschitz continuous.  

Proof: See Appendix C. 
Lemma 5: The dual function, i.e., , has an  -Lipschitz 
continuous gradient, where  , based on Lem-
ma 2 and the bounded Jacobian of . Furthermore, is 

-strongly concave where .  
The proof can be found in Lemma 2 of [15]. 

Theorem 2: (Convergence of dual variables) If the step size in 
LOOD is chosen according to   , the dis-
crepancy between optimal dual variables of  and the dual varia-
bles generated by LOOD are bounded by: 
   (36) 

where  and . 
Proof: See Appendix D. 

Corollary 1: (Convergence of the incentives) To characterize the 
convergence of the incentives, we first collect  the incentives at 
each node by  with a vector form compactly de-
noting the incentives for all the nodes  . Then, the discrep-
ancy between optimal incentives generated by (31) and the 
online created ones  in LOOD is bounded by: 
   (37) 

Proof: See Appendix E. 
Corollary 2: (Convergence of the primal variables) The discrep-
ancy between optimal solvers of  and the solvers generated by 
LOOD are bounded by: 
   (38) 

where  .  
Proof: See Appendix F. 

Theorem 3: (Main results) If LOOD is used to solve the original 
ADN optimization problem , the difference between the 

LOOD-based time-average optimizer, denoted as , and the 
original optimizer  is upper bounded as : 
   (39) 
where . 

Proof: See Appendix G. 

V.  CASE STUDY 

A. Simulation Setup 
Consider a modified version of 33-node test feeder [21]. We run 

our method from 8:00 to 19:00, while it is divided into 660 time 
slots, i.e., . It is assumed that PV systems with a 
500kVA rating inverter are located at node 2, 3, 10, 12, 16, and 18. 
The PV systems with a 750 kVA rating inverter are connected to 
node 5, 6, 7, 8, 9, 20, 24, 26, 29, 30, and 32. The available active 
power generation profiles of these PV are obtained from Pe-
canstreet [22]. We set  and in the utility loss func-
tions for . The inelastic load profile comes from Open Energy 
Information [23]. All the data are pretreated to have a guaranty of 
1 min sampling rate. As for the IACs, we assume that nodes 2, 9, 
10, 12, 14, 15, and 30 are connected by 300 IACs, while nodes 3, 
6, 7, 17, 21, 25, 28, 31 and 32 are installed with 500 IACs. The 
maximal operating power of IAC is selected in the range of [500, 
800]W. The minimal power is set as 10% of the maximal power. 
The equivalent thermal capacity of the environment is selected in 
the range of [2000, 3000] , The equivalent heat rate is se-
lected in a range of [0.05, 0.08] . The ambient temperature 
is simulated by a function [24], given by: 
   (40) 
where  and . The temperature setpoint 
is set as  with a bandwidth  for all the 
IACs. Without loss of generality, we set ,  and 

 for all the IACs. As for our algorithm, we set the step 
size to 0.1. Some predefine parameters are set as ,  

, , and . 

B. Benchmarks 
We use four different strategies to compare with the proposed 

method. Strategy 1 (S1) operates the ADN without any control. 
PV systems maintain the maximal active power output and IACs 
operate based on the gap between the current indoor temperature 
and the temperature setpoint to maintain a comfortable indoor 
temperature, given by: 

   (41) 

where is the droop coefficient and  is the base operating 
power of a given IAC. 

Strategy 2 (S2) operates the ADN based on a modified droop 
control scheme. In S2, PV inverters use a linear Q-V droop control 
scheme to decide their VAR outputs with a slope coefficient kdroop. 
Note that kdroop may significantly impact the voltage regulation 
performance. To strictly testify our proposed method, kdroop is 
manually adjusted to well perform in this case study. When there is 
no tracking requirement at the substation, i.e, , PV invert-
ers keep the maximal power outputs in their feasible regions and 
IACs operate according to (41). In the presence of power tracking 
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requirements, i.e., , the active power at each node con-
nected with PV inverters or IACs is regulated with a predefined 
droop coefficient : 
   (42) 
In practice, a proper  is crucial to the performance of power 
tracking. However, it is rarely practical to get an optimal . Mul-
tiple values of will be deployed in the following case studies for 
a clear comparison. 

Strategy 3 (S3) is based on the greedy optimization, as shown in 
(43). The main discrepancy between S3 and our proposed method 
is that we consider the temperature constraints for IACs in a 
long-term form. However, S3 directly decouples  to T sub-
problems. The greedy algorithm is shortsighted as it optimizes the 
cost at each time slot without considering the future. To compare 
with our proposed method, the greedy optimization model is run 
in an online distributed form.  

   (43) 

Strategy 4 (S4) runs the online distributed optimization without 
considering IACs. Alternatively, IACs operate according their 
own policy, i.e., (41). This benchmark is used to verify the per-
formance of integrating IACs into the ADN coordination. 

C. Results 
First of all, we test the node voltage under the control of S1, S2, 

and the proposed LOOD method. We illustrate the voltage mag-
nitude at node 10, 12, and 15 in Fig. 1. Following S1, voltage 
magnitudes between 10:00 -- 16:00 exceed the upper limit due to 
lacking any control. S2 is effective for maintaining voltage securi-
ty to some extent, but one oscillation of voltage occurs at 12:00. In 
practice, kdroop and  both impact the performance of S2. We set 

 in this test since it performs relatively better than any 
other settings. Too large coefficients could bring about oscillations 
and even overshoots, while too small ones cannot effectively and 
quickly regulate both the voltage and power. To get an optimal 
coefficient usually calls for the global and detailed information of 
these customer-owned devices. In contrast, the proposed LOOD 
method outperforms both S1 and S2 as the voltage magnitudes 
maintain in an acceptable and relatively smooth region. Notably, 
the flat voltage profiles near to the upper limit are obtained before 
the tracking requirements come (before 12:00) since it is econom-
ically efficient. In the presence of tracking requirements (after 
12:00), the curtailment of PV occurs to support the tracking per-
formance. It can be seen that the voltages decrease accordingly.  

 
Fig. 1.   Node voltage magnitude.  

Fig. 2 shows the active power at the substation. To test the 
power tracking ability of these strategies, a setpoint reference from 
12:00 to 19:00 is applied, including a sudden increasing (12:00 -- 
13:00), fast ramping up or down (13:00 -- 18:00) and keeping flat 

output (12:00 -- 13:00, 18:00 -- 19:00). When there is no tracking 
requirement (8:00 -- 12:00), the power using the LOOD method is 
larger than that using the S2. This is because LOOD can consider 
the whole-time span and raise the power in advance to better track 
the sudden change at 12:00. From 12:00 to 19:00, LOOD can 
guarantee an effective power tracking except for a disturbance that 
is caused by the sudden change of available PV outputs. In prac-
tice, it is hard to reveal this disturbance beforehand, and the sud-
den change will not cause a huge impact to the whole system. 
Conversely, the tracking ability of S2 depends on a proper . As 
illustrated in Fig. 2, when , the tracking performs well. 
However, undershoot (  ), oscillation (  ), and 
overshoot (  ) occur if  is not well set. 

 
Fig. 2.  Active power at the substation. 

As for minimizing the utility loss, we compare the performanc-
es of LOOD, S2 and S3, as shown in Fig. 3. Intuitively, S2 brings 
about the largest utility loss. Although the utility loss gets smaller 
when , the undershoot will occur. S3 is a variant of our 
method, thus it also well assures the voltage constraints and power 
tracking requirement. However, the utility loss caused by S3 is 
obviously larger than the time-average utility loss caused by 
LOOD. Actually, although S3 takes into account the flexibility of 
IAC, the greedy optimization is shortsighted and potential to em-
ploy the flexibility of IACs excessively. When the tracking signal 
keeps for a long time, IACs cannot respond to it sustainably. 

 
Fig. 3.   Time-average utility loss. 

S4 is another variant of LOOD, where IACs are not coordinated 
but operate according their own local controllers. As illustrated in 
Fig. 4, LOOD can reduce the curtailment and reactive power ab-
sorbing of PV inverters obviously than S4. In LOOD, numerous 
IACs are well coordinated with PV inverters, while all the regula-
tion relies on PV inverters in S4. If we increase the comfortable 
temperature bandwidth ( ) and IACs can get more flexibility 
accordingly, the performance of LOOD can be enhanced. Note 
that residents cannot accept too large temperature bandwidths, so 
we need to control the tradeoff in the practical deployment. 

 
Fig. 4.  Curtailment and reactive power generation of PV inverters. 

Fig. 5 shows the dynamics of indoor temperature at node 2 (300 
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IACs) and node 32 (500 IACs). Although the temperature con-
straints are relaxed to a time-average form, it can obey the original 
strict temperature constraints as we set the coefficients  and  

 according to the demonstrated ranges, i.e., (35). Intuitively, 
the temperature dynamics match the regulation requirements. For 
instance, IACs will raise the operating power to cool the rooms 
from 12:00~14:00, where the setpoint reference at substation re-
quires the ADN to increase the actual power consumption. 

 
Fig. 5.  Indoor temperature at Node 2 and Node 32. 

Finally, we discuss the power fluctuation at the substation under 
different . We define: 
   (44) 

to quantify the so-termed power fluctuation from time slot  to . 
We divide the day into 7 fragments according to the power track-
ing signals. As shown in Table I,  is obviously smaller 
when  than  because incentive signals are 
smoothed by a filter and the DERs will not respond to the signals 
too drastically. When we increase to 0.2 and 0.4, continues to 
decrease since the enhanced filtering performances. Nevertheless, 
Corollary 2 has illustrated that will bring a fix discrepancy be-
tween actual solvers and optimal solvers. Thus, a relatively small 

can not only help smooth the power at the substation and also 
ensure the economic efficiency of the algorithm. 

TABLE I 
POWER FLUCTUATION ( ) AT SUBSTATION 

 8~12 12~13 13~14 14~15 15~16 16~18 18~19 
  0.073 0.396 0.438 0.285 16.047 0.166 0.072 
 0.069 0.148 0.405 0.245 13.825 0.068 0.036 
 0.063 0.105 0.366 0.227 12.215 0.062 0.035 
 0.058 0.102 0.319 0.113 11.151 0.060 0.019 

VI. CONCLUSION 
This paper proposes an online distributed optimization algo-

rithmic framework for ADNs to track a setpoint reference at the 
substation while concurrently minimizing the utility loss and as-
suring the security of voltages. Unlike most existing optimization 
methods for ADNs, the proposed LOOD algorithm can generate 
the setpoints for PV inverters and IACs immediately only relying 
on current measurements and environment conditions. Notably, 
the time-coupling constraints for IACs are considered and tackled 
in an online optimization framework by the Lyapunov optimiza-
tion technique. Moreover, an incentive scheme is tailored in the 
proposed method to coordinate customer-owned DERs instead of 
dispatching them directly from ADN operators. Our incentive 
generator also considers a first-order filter to alleviate high fluctu-
ations of incentives and corresponding responses. The theoretical 
analysis demonstrates the bounded gap between the optimizer 
from the proposed algorithm and the ideal global optimizer. Nu-
merical results show the tracking ability, voltage control perfor-
mance, and utility loss in our algorithm outperform those in 
benchmarks.  

In this work, the ADNs are assumed to be three-phase balances. 
Thus, future work will extend our algorithm to a three-phase un-
balanced case. Besides, the parameters of IACs model are pre-

sumed to be estimated beforehand and time-invariant in the opera-
tion. An online modeling-embedded optimization framework for 
networked DERs will be further studied. 
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APPENDIX A 
PROOF OF LEMMA 1 

Proof: According to the definition of the virtual queue and 
Lyapunov drift function, we have: 

  (45) 
Then, we define . Thus, 

we can get Lemma 1. 

APPENDIX B 
PROOF OF THEOREM 1 

With Lemma 1 and theorem 4.8 in [17], we derive 
 if all the random variables in  are inde-

pendent identically distributed (i.i.d.). The result is robust to 
non-i.i.d., nonergodic situations as proved in theorem 4.13 in [17]. 

Concurrently, we have   as illustrated in Remark 1. Thus, 

we can obtain . 

APPENDIX C 
PROOF OF LEMMA 4 

First of all, we recall the definition of the utility loss function  
. The gradient function of  is denoted by 

. Then, we denote the inverse function of 
 by .    

Assume  and are defined in the feasible set of the function 
. Let  and , we have 

  and , where is 
the inverse function of  .  Since  is -strongly convex 
(see Assumption 1), we have: 
   (46) 
By substituting  and  into (46), we will get: 

   (47) 

Following  the Cauchy-Schwartz inequality, (47) is transferred to: 
   (48)
Thus,  is - Lipschitz continuous. 

APPENDIX D 
PROOF OF THEOREM 2  

Before proving the (36), we have the following reasoning: 

  (49) 

 
where  is the measurement-enabled gradient 
that is used in LOOD. The equality (a) comes from the dual varia-
bles update policy; (b) is due to the non-expansiveness property of 
the projection operator; (c) considers Assumption 4. For inequality 
(d), We consider the fact that:  

   (50) 

Eq. (50) holds because  is -strongly concave and its gra-
dient function is - Lipschitz continuous (see  Lemma 5). The 
proof of Eq. (50) can be referred to Theorem 2.1.12 in [20]. 

Then, if holds, the last term of (49) must 
be non-positive. So, we can obtain： 

   (51) 

where . It is readily to obtain that: 

   (52) 

Then, we have: 

   (53) 

In (53), the inequality (a) comes from the dual variables update 
policy in LOOD and the triangle inequality; (b) is based on (51)
and Assumption 3; (c) is resulted from using triangle inequality 
repeatedly. According to (53) the first term of the reasoning result, 
denoted by , is transient that will vanish to be 0 when 

due to the fact that (as shown in Theorem 2). 
The second term denoted by  is fixed. 
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APPENDIX E 
PROOF OF COROLLARY 1 

  (54) 

The inequality (a) uses triangle inequality; (b) is according to 
Lipschitz continuity of the function  (see Remark 3) and The-
orem 2; (c) comes from Assumption 3 and Theorem 2. Similar to 
arguments in Theorem 2, the resultant two terms comprise a tran-
sient term that vanishes when . Thus, we obtain the result 
in (37). 

APPENDIX F 
PROOF OF COROLLARY 2 

Proof: 
Before the proof of this corollary, we rewrite the incentive vec-

tor at node i  i.e., as . 

Then, we have:  

 

 (55) 
In (55), the equality (a) is according to the optimal condition of 

the local problem ; (b) comes from triangle inequality and (c) 
considers Lemma 4; (e) uses the results Corollary 1. The resultant 
two terms also comprise a transient term that will vanish when 

.  

APPENDIX G 
PROOF OF THEOREM 3 

Proof: 
First of all, we can characterize the difference between the two 

optimizers generated by LOOD and  at each time slot: 

   (56) 

Thus, 

   (57) 

where the equality (a) is based on the definition of time-average of 
a variable; inequality (b) and (c) come from Eq. (56) and Corollary 
2, respectively. Then, due to  Theorem 1 that , we 
have 

   (58) 
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