
P
os
te
d
on

13
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
02
47
76
5.
v
2
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Enabling Smart Buildings by Indoor Visible Light Communications

and Machine Learning

Shuping Dang 1,1, Guoqing Ma 2, Basem Shihada 2, and Mohamed-Slim Alouini 2

1King Abdullah University of Science and Technology (KAUST)
2Affiliation not available

November 8, 2023

1



1

Smart Buildings Enabled by 6G Communications
Shuping Dang, Member, IEEE, Guoqing Ma, Student Member, IEEE, Basem Shihada, Senior Member, IEEE,

Mohamed-Slim Alouini, Fellow, IEEE

Abstract—Smart building (SB), a promising solution to fast-
paced and continuous urbanization around the world, includes
the integration of a wide range of systems and services and
involves the construction of multiple layers. SB is capable of
sensing, acquiring, and processing a very large amount of data
as well as performing appropriate actions and adaptation. Rapid
increases in the number of connected nodes and thereby the data
transmission demand of SB have led to conventional transmis-
sion and processing techniques becoming insufficient to provide
satisfactory services. In order to enhance the intelligence of SBs
and achieve efficient monitoring and control, sixth generation
(6G) communication technologies, particularly indoor visible
light communications (VLC) and machine learning (ML), are
required to be incorporated in SBs. Herein, we envision a novel
SB framework featuring a reliable data transmission network,
powerful data processing, and reasoning abilities, all of which
are enabled by 6G communications. Primary simulation results
support the promising visions of the proposed SB framework.

INTRODUCTION

Urbanization has been sharply accelerated in recent decades,
and the United Nations Population Fund (UNFPA) has fore-
cast that around 60% of the global population will live in
urban areas by 2030 [1]. Feasible solutions to settle such a
large number of people are being sought in order to provide
sustainable and high-quality standards of life and efficient
resource management in urban areas. Among a number of
potential solutions, smart building (SB) has many advantages.
SB is a high-profile concept belonging to the category of smart
cities, and has attracted researchers’ attention with advances in
artificial intelligence (AI) and the Internet of Things (IoT) [2].
It integrates a wide range of systems and services into a unified
platform. SBs are able to perceive the environment, acquire,
and process relevant data, as well as respond to changes of
the environment and/or users’ needs with a high degree of
intelligence and autonomy [3]. The aforementioned abilities
allow SB to provide various intelligent indoor services for
residents (e.g., tracking, navigating, positioning, and down-
loading). Moreover, SB can also monitor and control the global
operating status.

To achieve such complex functionality, the framework of an
SB must be constructed over a multi-layer structure consisting
of the sensing layer, network layer, semantic layer, software
layer, processing layer, reasoning layer, and service layer. Note
that herein we intend not to include an interactive interface
for user interaction in the multi-layer structure, since this is
an independent functional module and can, to some extent, be
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regarded as a part of the external environment. The multi-layer
structure of an SB with an interactive interface is illustrated
in Fig. 1. In order to fully exploit the advantages of the
SB and provide satisfactory services to its residents, reliable
connectivity and efficient information processing infrastructure
for data transmission and distributed processing are indispens-
able. Consequently, high reliability and intelligence are crucial
technical barriers hindering the practical use of SBs [1].

To overcome these barriers, we here propose a novel frame-
work for SBs enabled by sixth generation (6G) communication
technologies, harnessing indoor visible light communications
(VLC) and machine learning (ML) [4]. An indoor VLC
module is implemented for reliable and massive data trans-
mission in order to ensure that the raw data collected by
distributed sensors is received and used effectively throughout
the entire SB framework. As a by-product, indoor VLC can
also satisfy communication demands as a supplementary of
radio frequency communications (RFC) from residents living
in the SB. ML is mainly employed to enhance the intelligence
of the SB and enable real-time smart control. The framework
presented herein is validated by simulation results and found to
be a feasible solution by which the two main barriers currently
handicapping the development of SBs may be overcome.

MOTIVATIONS

In order to provide SBs with high reliability and intelli-
gence, we aimed to equip SBs with two key technologies
in 6G communications: indoor VLC and ML, and propose a
complete framework with details of all key fabrics. As shown
in Fig. 1, the framework of the SB can be split into seven
functional layers and an interactive interface, in which the
sensing and network layers are partially supported by indoor
VLC in combination with other communication approaches
and the semantic, software, processing, and reasoning layers
are strongly associated with ML techniques. The service
layer and interactive interface are also directly affected by
ML techniques, which conduct and display ultimate outcome
outputs using a complex reasoning procedure based on ML
algorithms. Using such a framework, the SB, ML, and indoor
VLC are intricately interconnected and form a dynamic and
holistic system. The benefits and motivations of the proposed
framework are detailed as follows.

Since the most important feature of VLC is the availabil-
ity of large and unregulated bandwidth, indoor VLC is a
promising approach to handle the massive data transmission
relevant to SBs in the 6G era, where there exist a huge number
of sensors for data collection [5]. Because the security of
SBs takes priority over other design metrics, indoor VLC is
able to offer secure and reliable connections against jamming,
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Fig. 1. Multi-layer structure of the smart building with its interactive interface.

TABLE I
COMPARISONS BETWEEN RFC AND VLC. PART OF THE INFORMATION IS

EXTRACTED AND SUMMARIZED FROM [6]

Key Indices RFC VLC

Spectrum < 300 GHz 428 ∼ 750 THz

Regulation Licensed Unlicensed

Energy efficiency Low High

Spatial reuse rate Medium High

Security Medium High

Coverage Large Small

Mobility High Low

Complexity High Low

Implementation Medium Easy

Maintenance Medium Easy

Design flexibility High Low

Signal type Bipolar Unipolar

Multi-path fading Severe Trivial

Shadowing Medium Severe

Noise/Interference Low Severe

EMI level High Trivial

eavesdropping and other cyber attacks via the construction of
a physically isolated network. Aside from reasons of security,
the reduction of energy consumption is also a key metric
for SB, and, since all data transmissions are piggybacked
into illumination, indoor VLC can help reduce the energy
consumption required for data transmission. As a by-product,
indoor VLC can also help to offload the cellular and household
communication demands of residents and improve the quality
of service (QoS) when coexisting with RFC. Table I provides a
comprehensive qualitative comparison between RFC and VLC.

Additionally, in the context of 6G, high intelligence is a key
feature of SBs. It indicates that an adaptive mechanism needs
to be implemented such that SBs can learn from collected
data and improve over time with a high degree of autonomy.
Due to real-time control requirements and the vast volume
of data collected in SBs, traditional processing techniques are
no longer competent, and ML stands out as having uniquely
advantageous capabilities to deal with big data in SBs [7].
ML is also computationally efficient and, thus, suitable for
volatile environments, from which it is able to extract useful
information from massive observed data to make decisions and
improve setting parameters in an iterative manner. Moreover,

Fig. 2. Interdependent relationships among the smart building, indoor visible
light communications, and machine learning in the 6G era.

ML is able to conduct pattern recognition and prediction, as
well as resource allocation by utilizing historical data, which
are necessary for extracting contextual information and provid-
ing proactive actions when considering long-term objectives.
In the semantic layer, ML can interpret users’ demands and
allow demand inputs via voice or other customized interactive
approaches by pattern recognition. ML is expected to be used
throughout the software, processing and reasoning layers as a
kernel from which to construct a complete adaptive mechanism
and thus improve the services provided by SBs according to
established objectives. In the service layer, ML supports a
large number of auxiliary functions (e.g., energy saving, space
planning, resource coordinating, indoor navigating, position-
ing, and smart alerting).

Although indoor VLC and ML enable SBs in the 6G era,
SBs also reciprocally enable the success of indoor VLC and
ML. The physical properties of VLC are suited to indoor
scenarios, and SBs provide such an application scenario.
Furthermore, SBs provide reliable and sufficient transmission
power for VLC. In the case of ML, SBs offer sufficient power
for computing and provide a large volume of storage space and
processors to carry out rapid big data analytics. We depict the
interdependent relation among the SB, indoor VLC, and ML
in Fig. 2.

PROPOSED FRAMEWORK

In this section, we present details of the multi-layer frame-
work for SBs in the context of 6G together with its interactive
interface. The functional layers of the proposed framework in-
tegrate state-of-the-art sensing, communications, networking,
and processing techniques.

Interactive Interface

The interactive interface is designed to enable interactions
between human users and intelligent systems embedded within
SBs. The interactive interface should be designed in a human-
centric manner. Accordingly, two kinds of interactive inter-
faces, the fixed control panel and mobile control terminal, may
be provided in SBs depending on users’ accessibility and usage
habits. The former is installed by upgrading pre-existing smart
electricity meters or centralized temperature controllers. The
latter can be downloaded online as an app to smartphones
and/or tablets. Using the interactive interface, residents can
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monitor the security status of spaces of interest and obtain
resource usage profiles, as well as other basic information.
As a bidirectional system, users can also provide feedback,
submit requests for services, and report issues for attention.
The interactive interface is directly linked to the semantic
layer.

Semantic Layer

In the semantic layer, original user inputs are treated as
raw data and mapped to machine languages. Using ML in the
semantic layer, voice and gesture recognition enable the ex-
traction of contextual information and interpret users’ demands
accurately. The extracted information and interpreted demands
from users are pre-processed and compressed before being
sent to the network layer for transmission. Another important
function of the semantic layer is to label user feedback such
that emergency feedback can be transmitted and processed
with priority over other non-emergency messages.

Sensing Layer

With the exception of a small portion of information sent
from the interactive interfaces by users, most data throughput
originates from the sensing layer. Signals generated in the
sensing layer contain a variety of observable environmental
data, including security, safety, temperature, humidity, space
occupancy, electricity usage, water usage, other optical, and
acoustic information. To collect such a variety of environ-
mental information and ensure an accurate understanding of
the surrounding environment, a large number of sensors are
indispensable. In order to reduce the implementation cost of
the proposed framework, one should try to reuse existing
facilities and instruments and only require the installation of
new sensing modules and devices if necessary.

Network Layer

The network layer supports the transmission and recep-
tion among the functional layers. Additionally, because cloud
technology and other distributed computing architectures are
adopted in the following layers, the network layer requires the
construction of a secure and reliable connection among a large
number of distributed controllers and processors [8]. Mean-
while, the accessibility to the Internet and cellular networks is
a basic demand and should also be supported in the network
layer. Indoor VLC, owing to its advantageous properties,
has been employed as the protagonist in the network layer.
However, to overcome some of the drawbacks of indoor
VLC and optimize the communication service provided, two
further supporting roles are required: RFC and power line
communications (PLC) [6]. RFC can be employed for mobile
data transmission and provides a supplementary transmission
mechanism via mode selection. Meanwhile, due to its low
cost of deployment, PLC relying on the existing power supply
infrastructure in SBs is an attractive approach to connect
light emitting diode (LED) transmitters and is adopted in the
proposed framework as a networking backbone.

Software Layer

The software layer is employed as an interface to re-
ceive raw data from the network layer and provide software
platforms to process and store these data. In particular, the
software layer should support interactions with the external
environment and the service layer by defining I/O interfaces
and activating control programs. In order to achieve these
functions, first, a powerful database must be constructed and
used to store historical data from various sensors and interac-
tive interfaces. Additionally, cloud and distributed computing
should be supported, since the hardware architecture adopted
in the proposed framework is based on distributed controllers
and processors.

Processing Layer

The processing layer is utilized to pre-process large amounts
of raw data, which are presented in different formats and
structures, thereby minimizing data redundancy and restoring
missing data where possible. Dimensionality reduction is
another important function of the processing layer, by which
the system aims to maintain the validity of sensory information
using a minimum number of variables by means of data
redundancy elimination. To achieve this goal, the processing
layer must be able to extract the features of different data and
perform appropriate selection and projection. ML techniques
can also play a role in this functionality. In short, processed
data must be ready in unified and appropriate forms for use
by ML techniques in the reasoning layer.

Reasoning Layer

The reasoning layer is the intelligence kernel in the pro-
posed framework, supporting all intelligent functions and
services in the SB. In this layer, ML is the absolute protagonist
and performs diverse intelligent reasoning based on various
application requests. In essence, ML in the reasoning layer
provides an adaptive mechanism capable of learning from
historical data when the learning objectives are specified by
the users or system designers. All intelligent functions and
services, as well as the status of the entire SB, are controllable
by a set of parameters that can be changed in the reasoning
layer according to input data containing demands and sensory
information from the users. Between the input data and output
parameter set, appropriately designed ML algorithms suitable
for different scenarios can adaptively optimize its parameters
according to output feedback. After having been trained by
several training datasets, the reasoning layer will be capable
of producing optimized output parameters for the service layer.

Service Layer

The service layer consists of actuators controlled by the
output parameters from the reasoning layer and can therefore
change the status of the SB. For a typical SB, these actuators
include, but are not limited to, temperature and humidity
controllers in air-conditioning systems, smart switches of a
variety of electric apparatuses, dimming controllers, smart
stereos, safety alarms, video surveillance cameras, and LED



4

transmitters for VLC. Using this smart framework and the
smart functions supported by ML, all services in SBs are
expected to be continuously improved in the long term by
iterative training using new datasets.

Promising Visions

When indoor VLC and ML are integrated by the pro-
posed framework detailed above, new features emerge. By
harnessing these features, more advanced services can be
provided for users, and the operational efficiency of SBs can
be significantly improved in the 6G era. First, by employing
VLC in combination with other communication approaches
(e.g., RFC and PLC integrating optical sensing), environmental
parameters in SBs can be accurately detected and transmitted
to higher layers. ML supports the rapid processing of such
large amounts of data and enables the display of real-time
monitoring information to users on interactive interfaces. In
this way, an accurate profile of the indoor environment can be
constructed in real time. When providing accurate information
regarding the indoor environment in real time, by-products
include various location-aware services, including localization
and navigation.

Despite excellent observability, the joint application of
indoor VLC and ML in SBs also results in far better con-
trollability, benefiting from the high-rate transmission and
powerful reasoning capability provided by both techniques.
Consequently, the indoor environment in SBs can be adjusted
to be more comfortable for residents in a smart and rapid
manner. A pictorial illustration of the anticipated application
scenarios of SBs coupled by 6G communication techniques is
presented in Fig. 3.

CASE STUDY AND VALIDATION

To ensure rigor, we use a simple indoor localization ex-
ample to evaluate the performance of combined VLC and
ML algorithms. This involved setting a simulation platform
in a cuboid room with width, length, and height of 10
m, 10 m, and 3 m, respectively. To simulate the scenario
incorporating both VLC and ML, we further assumed the
presence of commercial LEDs, which were modeled by point
light sources installed on the ceiling separated from each other
by 1 m. This configuration is similar to that shown in [9], in
which four white spotlight LEDs were installed in a cuboid
room. Consequently, 81 LEDs were installed on the ceiling.
Moreover, four WiFi access points (APs) were assumed to
be installed on the ceiling at a distance of 2.5 m to the
walls and separated by 5 m, which is even more than a usual
configuration in practice. In order to achieve a comprehensive
comparison between the performance of WiFi and VLC, we
further assumed another scenario in which four LEDs were
installed in the same manner as the WiFi APs. We denote the
results for this configuration as VLC-4 and the results when
utilizing 81 LEDs as VLC-81.

We utilized received signal strength (RSS) based algorithms
to predict the locations of receivers. Normally, these algo-
rithms require the pre-installment of receivers to collect RSS
data and build datasets. Thereafter, RSS based algorithms can

manipulate the dataset in order to predict the location of a new
receiver with a new RSS. Without losing generality, the pre-
installed receivers are assumed to be located at a height of 1 m
above the floor, which is typically the height of a phone held
by a human. We set a grid of 99 by 99 receivers in which each
was separated from adjacent receivers by 0.1 m with a received
field of view (ROV) of 0.7854, and the azimuth angle of each
receiver was randomly chosen from -60° to 60°. The RSS
dataset for VLC was generated by CandLES, a communication
and lighting emulation platform [10].

To generate datasets for training purposes, we ran the
simulation for fifty times for both the VLC scenario and WiFi
scenario. Instead of training a single ML model in a two-
dimensional space, we established two ML models to enable
separate localization on the x-axis and y-axis. Accordingly, for
each ML model, we used 50 by 99 instances for training. After
training the models for VLC and WiFi, we applied the same
settings to generate new datasets for testing the trained models.
Specifically, we utilized the accuracy rate corresponding to
different prediction error distances (PEDs) as a measure to
evaluate different localization approaches. The PED is defined
as the Euclidean distance between the predicted location and
the authentic benchmark, and the accuracy rate is consequently
defined as the number of predicted locations whose distances
to the authentic benchmarks are smaller than the PED. A larger
accuracy rate corresponding to a smaller PED thus yields a
more accurate localization system. Since we generated the
training datasets for each receiver with a 0.1 m separation
between adjacent receivers, the precision of the simulated
system was 0.1 m.

The accuracy rates for different PEDs using various local-
ization methods are presented in Fig. 4. To be comprehensive,
we employed three representative ML algorithms: support
vector machine (SVM), neural network (NN), and K-nearest
neighbors (KNN) to assist localization data processing.

As shown in Fig. 4, different ML algorithms result in
different accuracy gains in the localization systems, and the
superiority among different ML algorithms could change in
terms of the required PED and affordable system complexity.
It is also evident that accuracy rates increase with increasing
PED for all adopted ML algorithms, which is consistent with
our expectation. As shown by the results, the performance
of VLC-4 with KNN is better than that of WiFi with KNN.
However, the performance of VLC-4 is worse than that of
WiFi, when applying the SVM and NN algorithms. The reason
is that VLC has a better directionality than WiFi, which
indicates that the received signal at different locations of
VLC has a higher degree of independence. Additionally, VLC-
81 generates the best results when equipped with all three
algorithms, and the results generated by the SVM and KNN
algorithms converge when PED becomes large.

Considering the physical size of a human, 0.3 m is deemed
an applicable value of PED for practical indoor localization
systems. The corresponding accuracy rates produced by VLC
based localization assisted by multiple ML algorithms are
greater than 95%, justifying the feasibility and promising
future directions for such a joint approach in SBs.
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Fig. 3. A pictorial illustration of the anticipated application scenarios of SBs in the 6G era jointly supported by VLC and ML (Illustration created by Ivan
Gromicho. Scientific Illustrator, Research Communication and Publication Services. Office of the Vice President for Research. King Abdullah University of
Science and Technology).

Fig. 4. Accuracy rates for different prediction error distances (PEDs) under
various conditions.

CHALLENGES AND POTENTIAL FUTURE RESEARCH
DIRECTIONS

As a prototype framework, much can still be done to further
promote and improve the framework in practice; this should

form the basis of future work for 6G communications. In this
regard, we articulate several challenges and potential future
research directions.

HetNet and Interference Management

A heterogeneous network (HetNet) architecture should be
adopted in the network layer of the proposed framework,
consisting of VLC, RFC, and PLC, which inherently increases
the efficiency of the entire network layer. However, coordi-
nation among heterogeneous communications is not a trivial
task [11]. Gateway design and compatibility should be given
special attention, and relevant standardization works should
also be considered in order to support the HetNet architecture
of SBs in practice.

From Table I, we know that interference has a more
severe impact on VLC than RFC. Therefore, to ensure the
performance superiority of the indoor VLC in the proposed
framework, interference mitigation technologies must be ap-
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plied to maintain interference levels below a certain threshold.
Since LED transmitters are the main source of interference in
the indoor environment, appropriate VLC network deployment
and LED transmitter placement are crucial for alleviating inter-
ference. Moreover, resource allocation and multiple-input and
multiple-output (MIMO) beamforming could also be promis-
ing approaches for mitigating interference and optimizing the
overall performance [12], [13]. These are still being researched
for SBs.

Architecture of ML Algorithms

One should note that ML is a generic concept represent-
ing a package of different learning techniques, which can
together be classified into major domains, such as supervised
learning, unsupervised learning, semi-supervised learning, and
reinforcement learning according to whether or not the training
datasets are labeled. ML can also be divided according to
training method used, for example, SVM, NN, KNN, decision
tree (DT), and logistic regression (LR). Current consensus
holds that there is no learning technique able to assess all
cases, as all such techniques have different pros, cons, and
applicable scenarios [14]. For example, the KNN algorithm
is a non-parametric ML algorithm, which implies that it does
not require a model training process before making inferences
on new data. However, as the dataset becomes larger over
time, the inference complexity for this type of non-parametric
ML algorithm will increase sharply. On the contrary, for
algorithms such as NN and SVM, a model training process
is required, but their inference complexity maintains fixed.
Therefore, real-time applications can be satisfactorily fulfilled
by the meticulous design of a parametric algorithm. In spite
of the advantageously short computing time, parametric algo-
rithms designed based on historical records might not produce
accurate inference on new instances because user preferences
may vary over time, causing the distribution of collected data
to change over time; this is termed ‘concept drift’.

Finally, the architecture designs of conventional algorithms
and deep learning networks are also of great importance in
terms of the functionality and performance of the proposed
framework, including how many parameters should be trained
and which types of structures should be placed in the train-
ing network. Further research pertaining to the selection of
ML techniques and deep leaning neural network architecture
should be carried out.

SB-Edge-Cloud Computing Architecture

In most cases, data are collected locally and the correspond-
ing ML models for processing these data are also trained lo-
cally. However, as the amount of data available grows rapidly,
local computing power could become insufficient to cope with
the increasing complexity of ML models. For this reason,
SB-Edge-Cloud computing architecture has been proposed as
a potential technique for extracting useful information from
complicated datasets pertaining to the SB. Local processors
in SBs provide limited computing power to deal with the
most sensitive information, such as human-related data. Edge
computing, with more computing resources and less latency,

can help to satisfy computing tasks with high-reliability and
low-latency requirements. Cloud computing equipped with
almost infinite computing resources could eventually be played
as the ‘trump card’ for particularly computation-hungry tasks.
SB-Edge-Cloud computing architecture has much promise
for intelligent applications in SBs; however, scheduling the
offloading of tasks remains a substantial challenge for re-
searchers.

Realistic Factors Affecting the Implementation

The above description of the proposed framework demon-
strates that high-rate data collection, transmission, and pre-
processing/processing over multiple functional layers might
result in significant challenges to reliability, stability, and
security. These challenges become more severe when col-
lected data are subject to pollution, malicious user behavior,
and active network attacks. Consequently, strictly regulated
anomaly detection mechanisms must be involved to ensure
the reliability, stability, and security of the entire data network.
This topic awaits future research.

A large number of sensors constitute the sensing layer.
By implementing such a framework, all residents and their
living conditions are observable and can be ‘seen’ by high-
layer programs and processing procedures. This issue risks
compromising the privacy of residents. To further promote
the proposed framework, further investigation and legislation
should be conducted and developed with the aim of ensuring
a sufficiently secure data protection mechanism.

CONCLUSIONS

To meet the rapid trend of urbanization, SB plays an invalu-
able role. With the aim of equipping SBs with environmental
perception and logic reasoning abilities, we envisioned a novel
SB framework in the context of 6G communications. Two
key technologies of 6G communications, i.e., indoor VLC and
ML, were jointly applied to construct a reliable transmission
infrastructure and perform big data analytics while adapting
the indoor environment of the SB. Within this framework, the
SB is envisioned to provide a variety of advanced services
to residents in a smart and efficient manner. To promote
further research and implement the framework in practice, we
also simulated a simplistic case to verify its feasibility and
considered the challenges facing such SBs and potential future
research directions to mitigate these challenges.
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