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Conclusive analysis and cause of the flyby anomaly
V. Guruprasad

Inspired Research, New York, USA

Abstract—JPL’s own data correlate to 1% NEAR and Rosetta
trajectory discrepancies to an unexpected doubling of path times
in phase locked tracking. NEAR’s radar residuals illustrate the
doubling to 5σ. Analysis of these and other NASA-tracked flybys
shows that a distance sensitive anomalous signal generally exists.

I. INTRODUCTION

Deep space tracking exploits the carrier Doppler shift and
the round trip times of range codes modulated in the telemetry
signal to continuously track the (radial) velocity and range of
spacecraft. The Doppler has the advantages of insensitivity to
ground clock timing jitter and independence from modulation,
and can be measured to well below 1 mm s−1; the range codes
complement Doppler-integrated range [1, §III].

As used by JPL authors, the term “flyby anomaly” refers to
apparent velocity discrepancies between pre- and post-perigee
telemetry tracks in Earth flybys used for gravitational assist, as
noticed notably in the flybys of Galileo (1990), NEAR (1998)
and Rosetta (2005) [2]. Their interpretation as actual velocity
changes, which could entail changes to the laws of gravitation,
is problematic, however, without independent corroboration to
eliminate a telemetry systematic, given that a similar anomaly
was eventually traced to an overlooked systematic [3]–[5].

Coherent radars of the Space Surveillance Network (SSN)
indeed placed NEAR consistently closer by up to 1 km while
in geostationary range. This exceeds their 5-25 m precisions
[6], [7] by two orders [8]. Radar is susceptible to clock jitter,
like the range codes, but it bypasses the transponder, and thus
is an independent test of the telemetry tracking. This pattern of
radar residuals, extrapolated via a back-of-envelope trajectory
estimate to the post-perigee re-acquisition of signal (AOS) by
Deep Space Network (DSN) station DSS Canberra, explained
80% of the 13.46 mm s−1 anomaly [9]. With more precise
range and range rate from JPL Horizons [10] using the official
trajectory [11], the corresponding error at loss of signal (LOS)
by DSS Goldstone increases the total error to 13.64 mm s−1,
only 1.34% off the anomaly value obtained by JPL.

The pattern revealed by JPL’s original scatter plot in Fig. 1
is an apparent excess travel time ∆t for telemetry signals that
fits one-way light time r/c, as shown by the overlaid plots of
range r (dashed) from the radars and range lags ∆r = −vr/c.
The data fit the lags within respective precisions (dotted lines)
but for Millstone’s initial points at its limit of range. The radars
tracked after LOS [8], so JPL’s trajectory used as reference for
the residuals was extrapolated using the last Doppler at LOS.
The negative residuals thus signify a systematic Doppler offset
proportional to instantaneous range in the telemetry.

Any notion of distance dependence in frequency is of course
deeply disturbing. It questions, for example, the conservation
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Fig. 1: NEAR’s radar residuals and one-way range lags

of photon energies. Inference of the cosmological expansion
from the Hubble shifts also requires its impossibility.

However, the only possible alternative1 explanation for the
range errors in Fig. 1 is actual difference in speed [12] between
telemetry and radar over virtually the same paths, in violation
of relativity. The residuals as such also defy exotic hypotheses
like dark matter [14], [15] and systematics including the solar
wind, spacecraft charging, magnetic moments, tides, etc. [2],
that affect both paths. The only significant physical difference
between the two paths is the onboard transponder.

The velocity anomaly has not reappeared in NASA missions
since Cassini [16], including MESSENGER2, EPOXI [18] and
Juno [19]; this was privately posed [17] as a challenge to [9].
A correlation with newer transponder technology called SDST
was then noticed, in which the loop error is computed digitally
i.e., at intervals of the (second) intermediate frequency (IF)
[20], and could block the anomalous chirp modes proposed in
[9]. The phase comparison was performed at (the second) IF
also on NEAR [21], so the issue is whether the local oscillator
(LO) followed the RF and IF carriers continuously, or in steps.

Cassini had a transponder of the same design as NEAR [22],

1We have two velocities, of light c or of the spacecraft v, for relating the
residuals ∆r to time. Using v leads to ∆t = −∆r/v and to lags in velocity
∆v = −ar/c and Doppler ∆ω = −ωβr/c for Doppler rate β ≈ a/v [9], to
explain the anomaly. The Lorentz correction is about 10−10 in the flybys, so
non-relativistic formulas are adequate. The alternative ∆t = −∆r/c is not
only aether-theoretic [13], but retains the range proportionality that motivated
its proposal [12] in the first place.

2According to Campbell [17], “The group of authors of our 2008 PRL
paper fit an orbit to +/- 4 days of Doppler and had no need to introduce an
energy correction to obtain a satisfactory result.”



but with no gaps in the tracking of its flyby, a velocity jump
could not have stood out. The interleaving of six tracks [16,
Fig. 13a] would have averaged out station-specific shifts like
this range specific Doppler error, and its swings indeed go only
to ±0.15 mm s−1 ≡ ±2 mHz. The average of excess travel
times cannot cancel out, however. Cassini’s periapse advanced
relative to the target set at the last trajectory control manoeuvre
(TCM) by 1 s. A similar 0.34 s advance in Rosetta’s 2005 flyby
fits the JPL Horizons 331.2 ms two-way light time to 2.6%.

The closest approach of OSIRIS-REx was 17, 237 km, and
the closest EPOXI flyby was at 15, 567 km, so their residuals
are not meaningful for comparing. MESSENGER came closer
at 2, 348 km, almost as close as Rosetta in 2005. Its X-band
residuals remain below ±4 mHz ∼ ±0.3 mm s−1, and display
no offset across the gap in tracking at the periapse. Juno came
almost as close as NEAR. Its tracks had multi-path artefacts,
and the residuals remained ±1 mm s−1, but only due to spin
[19], [23]. We thus have a paradox that tracking the RF carrier
continuously in Earth flybys causes large unexpected Doppler
residuals and often also velocity errors, but catching up only at
IF intervals achieves perfect agreement with standard physics!
Current technology is somehow specific to this approximation
and inconsistent with some circumstance in the flybys.

This approximation is revealed by the uplink section of the
New Horizons transponder schematic from [24] in Fig. 2, in
which the digitally controlled oscillator (DCO) of EPOXI and
MESSENGER SDSTs was replaced by direct digital synthesis
(DDS) [25]. As the DDS is corrected by digital samples via
the digital filter F (s) at IF intervals, the DDS, and thus the LO
inputs to the down-conversion mixers are steady over multiples
of RF/IF≈ 2873 RF cycles. The WBIF and demodulated range
outputs are from the product of a changing first stage IF carrier
with a sinusoid for 240/2.5 = 96 cycle intervals. The digital
design requires that the total phase variation over an IF period
be below a cycle. During the SSN tracking, the non-relativistic,
fractional Doppler rate β = a/v was around 10−5 s−1, so the
total Doppler change was 29 mHz over the 2.5 MHz ∼ 0.4 µs
IF period. The SDSTs could not have had “cycle slips”.

The analogue phase locked tracking had more information,
however, in the form of range dependence in the Doppler error.
Current notions against its possibility are why some untenable
hypotheses arose and the SSN residuals, also seen for Galileo
[17], were disregarded as “noise”. This was despite JPL having
standard deviation S = 126.59 m and root mean square error
R = 654.153 m as annotated in Fig. 1, which already qualified
them as 5.1675σ [11]. Ignoring the initial out-of-range points
reduces R slightly. Using its 5 m precision as σ, Millstone’s
points exceed 100σ, and were limited only by range.

The only circumstance in the flybys we can relate to such a
change in transponders is Doppler rates in hyperbolic approach
and retreat, with accelerations below 1 m/s2. We experience
greater accelerations in elevators, for example, but too briefly
for similar observations. The telemetry based tracking is meant
for deep space and not used for satellites.

We find a precedent for range proportional shifts in FMCW
radars, which use a continuous signal with frequency ramped

over time as ω(t) = ω0[1 +γt]. The lag ∆ω = −ω0γr/c over
a round trip of length r is typically determined using an FFT,
as a measure of r. At a steady acceleration a ≡ r̈, the Doppler
rate β = a/v would lead to an exponential ramp ω(t) = ω0e

βt

but this is identical to the first order with γ = β. The received
frequency is exactly what was emitted by the source, however,
so no correction has been needed in trajectory software, called
orbit determination (OD), for this “FMCW shift”.

The Doppler rate lags ∆ω = −ωβr/c in Fig. 1 thus amount
to an unmodelled doubling of the FMCW lag ∆ω. No doubling
occurs, consistent with FMCW, only with the SDSTs, which
ensure a steady LO in down-converting each IF frame. The
anomaly itself or some of its symptoms are seen in all missions
in which the LO phase locked to Doppler, viz Galileo, NEAR,
Rosetta and likely Cassini, as stated. All phase locked Doppler
rate observations thus contradict current notions.

A core principle of radar and communication, that all wave
transport is inherently distance insensitive, is thus contradicted.
The magnitudes of the SSN residuals, their clear linearity, and
the independence of radar from onboard processing refute their
rejection as noise, and their only alternative explanation would
violate constancy of speed of light, at a range populated by
GPS and other satellites. The prevailing ideas of frequencies
varying in time but unchanged by travel, seem to hold only if
the receiver LO does not continuously ramp.

Naı̈vely, one might write ψL = exp(iω0[1+γt][t−r/c]) for
the FMCW echo, to describe location-independent variation of
frequency, but ψL does not even satisfy the wave equation. As
t occurs in more terms within the phase than r, its second order
derivatives ∂2ψL/∂t2 and c2∂2ψL/∂r2 can at all be equal only
at the origin (source). The issue does not arise if ω is constant,
which is true for each of its Fourier components, but a constant
ω cannot denote a changing Doppler. A Doppler rate β means
component frequencies also change as ω(t) = ω0e

βt, yielding
the phase φ(t) =

∫
ω(t) dt = ω0e

βt/β.
We thus get ψE = exp(iω0e

β[t−r/c]/β) including the travel
delay r/c. It is symmetric in t and r, and also satisfies the wave
equation, but has shifts ω0e

−βr/c for displacements r/c. Shifts
also occur in ψL if we changed γt to γ[t− r/c] to satisfy the
wave equation and refer frequencies to source time. But they
seem to add over the “FMCW shifts” only with phase lock.

Another issue is that any uniform shifts ω → ω[1+z] signify
a time dilation via Fourier inversion as

∫
F (ω[1+z])eiωt dt =

(1 + z)−1f(t/[1 + z]), so the older transponders seem to have
received physically different waves altogether!

The next section presents the correlation of NEAR’s velocity
anomaly and post-encounter Doppler oscillations with velocity
lags as inferred above from the SSN radar residuals of Fig. 1.
Section III discusses similar correlations for Galileo 1990 and
Rosetta 2005 flybys, which too exhibited velocity anomalies.
Section IV shows that this pattern is consistent with the known
absence of the velocity anomaly in both of Rosetta’s 2007 and
2009 flybys if we take into account the carrier loop bandwidth,
and treats the perigee shifts in more detail.

These correlations, found even without velocity anomalies,
lead to the conclusion that an “anomalous” signal with distance
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Figure 5  Uplink Card Block Diagram 

which is then forwarded to the CDU for data demodulation 
and command detection.  For the New Horizons mission, 
this subcarrier is binary phase shift key (BPSK) modulated 
with commands at data rates of 2000, 500, 125, and 7.8125 
bps.  The CDU locks to and tracks the 16 KHz subcarrier 
and demodulates the command data, passing data and clock 
over to the CCD.  In the CCD, designated critical relay 
commands are decoded, detected, and immediately sent to 
the power switching system.  The CCD also forwards all 
commands to the C&DH system. 
 
The 2.5 MHz WBIF channel is buffered and routed to the 
Radiometrics Card for further processing.  The 2.5 MHz 
WBIF is also demodulated in the quadrature demodulator 
built into the receiver IC.  The resultant baseband channel 
(or ranging channel) is filtered through several filters 
designed to limit the noise power in this channel as well as 
reduce the level of various demodulation products, while at 
the same time allowing the desired ranging tones to pass 
through with minimal phase and amplitude distortion.  The 
output of this ranging channel is buffered and routed to the 
downlink card for modulation onto the downlink X-band 
carrier.  In addition, the ranging channel has the capability 
to route either the demodulated ranging tones or the 
regenerated pseudonoise (PN) ranging code produced by 
the regenerative ranging subsystem to the downlink card. 
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Carrier acquisition and tracking is provided via a type-II 
phase locked loop and noncoherent AGC system.  Both the 

RF and IF synthesized LOs are tuned through the use of a 
common 30.1 MHz carrier tracking reference clock; this 
clock is generated by mixing the 30 MHz spacecraft 
frequency reference with a 100 KHz DDS.  The DDS phase 
and frequency is dynamically tuned by the DPLL carrier 
tracking system to in-turn tune the RF and IF LOs.  An open 
loop, fixed downconversion mode is required for REX; in 
this mode, the DDS frequency is set at a fixed value that is 
reprogrammable during the mission.  All clocks and 
frequency sources in the digital receiver system are 
referenced to the 30 MHz spacecraft reference oscillator. 
 
Features 

Performance highlights include the following: total 
secondary power consumption of 2.5 W (including the 
integrated on-board command detector unit (CDU) and 
critical command decoder (CCD)), built-in support for 
regenerative ranging and REX, carrier acquisition threshold 
of -157 dBm, high RF carrier acquisition and tracking rate 
capability for near-Earth operations (2800 Hz/s down to -
100 dBm, 1800 Hz/s down to -120 dBm, 650 Hz/s down to 
-130 dBm), ability to digitally tune to any X-band RF 
channel assignment (preprogrammed on Earth for this 
mission) without the need for analog tuning and tailoring, 
use of an even 30.0 MHz ultrastable oscillator (USO) as a 
frequency reference, a noncoherent AGC system, and best 
lock frequency (BLF) telemetry accuracy to 0.5 Hz at X-
band and BLF settability plus stability error < +/- 0.1 ppm 
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Fig. 2: Carrier loop and Hilbert product in the New Horizons transceiver [24]

sensitivity like ψE is always present but observable only with a
similarly varying LO, as ensured by the continuous phase lock
in older transponders. The distance-invariant “normal” signal
of current theory, received under coarser digital tracking at IF,
seems to require ψL inconsistent with the wave equation. How
both these signals might be observable from the same physical
waves is explained in Section V. The validity of ψE as a wave
function is proved in the appendix for completeness.

II. CORRELATION WITH VELOCITY LAGS

Fig. 3 shows the range and range rate given by JPL Horizons
for Goldstone (DSS 25) over a 12 h window around the perigee
in NEAR’s 1998 flyby, and the velocity lag given by the range
rate v and radial acceleration a = dv/dt as ∆v = −ar/c. The
velocity lag should result in the form of the Doppler lag ∆ω
if the latter were the cause of the anomalous velocity gain.

The graph shows that the lag had a maximum of 7 mm s−1,
but was only 2.51 mm s−1 at LOS. The corresponding plots
for Canberra (DSS 34) (Fig. 4) show a close to maximum lag
of 11.10 mm s−1 at AOS. The lags signify that the telemetry
Doppler had a too small a value at LOS and a larger one than
the actual speed at AOS, so the sum of these errors should fit
JPL’s value for the anomalous velocity gain. The estimate of
10.7 in [9] is thus corrected to 11.13+2.51 = 13.64 mm s−1,
1.3% of JPL’s 13.46 mm s−1 [2], for the velocity discrepancy
across the 2 h 39 min gap in tracking at perigee.

The lags must also distort the trajectory. OD only minimizes
mean square error, and cannot detect smooth distortions in the
trajectory because that would require precise knowledge of all
external forces. As a result, velocity mismatches across gaps in

tracking as in Galileo’s and NEAR’s flybys were the only way
to definitively detect such tracking anomalies. Remarkably, the
Doppler residuals do reveal actual distortions, as follows.
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Fig. 3: Analysis for NEAR’s Goldstone track

The range, range rate and velocity lag are shown in Fig. 4
overlaid on the post-perigee Doppler residual oscillation from
Fig. 4 of [8]. The Doppler follows the lag and is a quarter cycle
behind the range rate, so the OD’s notion of the instantaneous
velocity was dragged by the Doppler lag, like a force function
driving damped oscillations in a spring. This phase difference
between the Doppler and range rate had led to a suspicion of
a direction prediction problem in OD [2].

The lag increases with range r as the deceleration a due to
gravity is changing slowly. The steady amplitude seen in the
residuals must then mean a growing oscillation within the JPL
Horizons trajectory, but the range rate oscillations in flybys are
caused by Earth’s rotation [1, §III-B.3], and cannot grow.
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The last pair of peaks in the range rate from JPL Horizons
are 0.2255 and 0.2278 km s−1 above their preceding troughs,
meaning a growth of 2.3 m/s per day. This is a feature present
in JPL’s inferred trajectory that is exposed by our analysis. It
also obviates a closer fit to the velocity anomaly.
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Fig. 4: Correlation with NEAR’s Canberra track

III. RESIDUALS IN OTHER FLYBYS

This close fit to the NEAR velocity anomaly was fortuitous.
The lags were changing slowly at LOS and AOS, hence a few
minutes of error in LOS and AOS times did not matter.

G - Goldstone
C - Canberra
M - Madrid

Close Approach
23-Jan-1998 07:22:55 UTC08-Dec-1990 20:34:34 UTC

12-07/12 12-08/00 12-08/12 12-09/00 12-09/12 12-10/00

Canberra acceleration

Madrid acceleration

Goldstone acceleration

Fig. 5: Galileo 1990 accelerations over Doppler [8, Fig. 3]

In flybys closely tracked near the perigee, the lags would be
changing rapidly at AOS and LOS times, so small uncertainties
in these times should make a close fit to OD-computed velocity
mismatch unlikely. Extreme data points at the start and at the
end could be also discarded in OD as outliers. The computed
anomaly cannot be exceed the sum of the LOS and AOS lags,
however. Also, the Doppler residuals should also follow the
radial acceleration instead of range rate, as in Fig. 4 for NEAR.

Fig. 5 shows the differenced range rates for all three tracking
stations in Galileo’s 1990 flyby, overlaid on Doppler residuals
where the anomaly was removed by estimation (Fig. 3 of [8]).
Goldstone’s post-perigee track had to be discarded [8], so the
Canberra track was alone responsible for the anomaly and does
follow the acceleration around the perigee.

Fig. 6 shows the computed velocity lags were 26 mm s−1 ≈
0.4 Hz at LOS Madrid, and −57 mm s−1 ≈ −0.87 Hz at AOS
Canberra. Both are within the nominal carrier loop bandwidth
of 1 Hz, but far off the 4.3 mm s−1 anomaly value.

In Rosetta’s 2005 flyby, a 1.82 mm s−1 impulse annuls the
3.6 mm s−1 offset of the post-perigee residuals [26]. We need
to use two-way lags and offset for Rosetta as the uplink is not
ramped in ESA missions [27]. The lags for New Norcia, which
tracked closest to perigee, are 10.15 at LOS before perigee and
206.8 mm/s at the following AOS. The latter signifies a shift
of 5.8 Hz, so the anomalous signal would be filtered away.
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Fig. 6: Galileo 1990 velocity lags

Only the unshifted normal signal was thereby available for
lock in the post-perigee New Norcia track. The LOS lag value
would allow residuals up to 10.15−3.6 = 6.55 mm/s but they
only reach 1.8 mm/s, as the spacecraft was not continuously
in view. The residual clusters seen are individually reacquired
two way tracks, unlike the essentially continuous post-perigee
track for NEAR in Fig. 4. The trajectory was computed as a
best fit across all nine days, so no velocity mismatch is seen in
Fig. 5 of [26], revisited below in Figs. 7 and 8. The 3.6 mm/s
offset was revealed separately in their Fig. 6 by zero-weighting
the post-perigee data [26]. We would need the start and end
times for each day’s tracks and compute a corresponding mean
value of the velocity lags to attempt a quantitative fit. We do
have correlation with the acceleration a, however, as revealed
in Fig. 7 by overlaying the range rate and acceleration given
by JPL Horizons for New Norcia on Fig. 5 of [26] at a vertical
scale adjusted to expose the correlation visually.

Range rate v

02/28 03/02 03/04 03/06 03/08 03/10

Acceleration a

Fig. 7: Correlation with Rosetta 2005 New Norcia track

Even the mismatch of a few hours on 03 and 04 March can
be removed by adjusting the vertical scale of the acceleration,
without changing its diurnal phase. The post-perigee swings
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from −0.2 to 1.1 mm/s, and from 1.7 back to 0.5 mm/s, on
05 March again coincide with cusps in the acceleration.

Fig. 8 shows the overlaid range rate and acceleration from
JPL Horizons for Goldstone. The only points out of step with
the radial acceleration are the last track from Goldsone on 07
March, consistent with the New Norcia data being used for the
trajectory. The −0.6 mm/s outlier on 01 March also seems
to no longer require outgassing as explanation.

Range rate v

02/28 03/02 03/04 03/06 03/08 03/10

Acceleration a

Fig. 8: Correlation with Rosetta 2005 Goldstone track

IV. ABSENCES AND PERIGEE SHIFTS

The known absences of the anomaly in other flybys with the
RF phase lock transponders are consistent with the anomalous
signal being blocked by the RF tuning if not the loop filter.
For Rosetta’s 2007 flyby, JPL Horizons data yields the velocity
lag of 514.6 mm/s for Goldstone AOS, which far exceeds the
usual 1 Hz carrier loop bandwidth, so only the normal signal
was admitted and followed. The 41.76 mm/s ≡ 1.18 Hz New
Norcia LOS lag is also large, but the normal signal was likely
already acquired, precluding the anomaly.

16:48

11-13

18:00

11-13

19:12

11-13

20:24

11-13

21:36

11-13

0

50

100

150

R
an

ge
[1
00

0
km

]

range r

−10

−5

0

5

10

R
an

ge
ra
te

[k
m
/s
]

range rate v

−800

−600

−400

−200

0
−41.76 mm/s

L
O
S
N
ew

N
or
ci
a

V
el
oc

it
y
la
g
[m

m
/s
]

∆v = −2ar/c

Fig. 9: Analysis for Rosetta 2007 New Norcia track

In 2009, the initial tracking from Kourou yields velocity lags
of 0.3 and 0.5 Hz at start and end, respectively, but the track
ended long before the perigee. In the post-perigee track from
Maspalomas, the lag was initially −600 mm/s, too large for
acquiring the anomalous signal. As the lock remains till end of
track, the smaller −4.4 mm/s lag at the end is inconsequential.

New Norcia actually tracked through perigee, starting with
a lag of only 0.04 mm/s ≡ 1.11 mHz so a half-cycle of

phase difference would have taken 450 s ≡ 7.5 min. The lag
then increases, and is −530 mm/s at the end of New Norcia
track. As this is a lag, the Doppler changes first in the normal
signal, so the latter controlled the phase error and lock, again
preventing the anomaly.

The lags should have also displaced the perigee, as the Earth
would have moved 10.48 km in its orbit in the one-way light
times of 103.67 ms at LOS and 245.61 ms at AOS in NEAR’s
flyby, for instance. There is a 6.8 km difference between the
altitude of 532 km intended after the last TCM (post-Mathilde
burn) [28] and 538.83 km reported after the flyby [8].

A similar displacement of 1.4 mm/s×167 min ≈ 14.03 km
was reported in Rosetta’s 2005 flyby, with a perigee advance of
0.34 s, which fits the two-way light time to 2.6%, as remarked.

These deviations were accepted as navigational tolerance, in
absence of independent validation of TCMs and the ephemeris
at the last TCM range and precision. The close fit of Rosetta’s
advance, and the drop in perigee shift by a full order to 26 ms
with opposite sign in Juno’s flyby [19], [23], suggests that the
anomaly had been limiting navigational tolerance.
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Fig. 10: Analysis for Rosetta 2009 New Norcia track

V. ROLE OF THE RECEIVER DESIGN

Figs. 11a and 11b illustrate the observed spectra of a signal
with a Doppler rate propagating according to current ideas, and
as revealed by radar residuals in Fig. 1, respectively, between
the source and receiver frequency axes. The wavelengths are
shown for four instants by colours assuming a positive Doppler
rate. Also shown are the basis vectors eµ = eiωµt in the Hilbert
space formalism of the Fourier spectrum, having coefficients
Fµ = e∗µ ·ψE ≡ T−1

∫
T
e−iωµteiω0e

β[t−r/c]/β dt for ψE .
A basis vector eµ ∼ e−iωµt is generated by the IF LO, and

multiplied with the incoming signal ψE at the second stage IF
mixers, as highlighted in the receiver schematic, Fig. 2. As is
well known, the multiplication yields both sum and difference
frequencies, and the IF filters suppress the sums. The IF LO
is negative in the difference terms, so the mixing and filtering
in effect also perform conjugation of eµ to e∗µ.

The digital filter F (s) is what limits the loop bandwidth to
∼ 1 Hz, so its time constant is effectively 1 s, but it updates
the DDS at each IF sample, at 2.5 MHz ∼ 0.4 µs intervals.
This IF interval is also a safe estimate for the integration time
T effectively applied when the IF output is consumed.
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Fig. 11b shows the basis vectors e′µ as in effect implemented
in the older transponders. They are inclined upward to the right
of the receiver frequency axis since their frequencies increase
with t for β′ > 0. As the phase locked IF LO followed the
carrier’s each cycle, it shared the latter’s phase acceleration, so
its instantaneous basis vector is e′µ = exp(iωµe

β′t/β′) where
β′ = β, the fractional Doppler rate ω̇/ω of the IF carrier. The
Hilbert products with the Doppler rate signal, e′∗µ ·ψE , are

F ′µ =
1

T

∫
T

exp(−iωµeβ
′t/β′) exp(iω0e

β[t−r/c]/β) dt

' δ(β′ − β)δ(ωµ − ω0e
−βr/c) for T � 2π/ωµ.

Phase lock means both delta functions are unity, at which the
integrand is unity and the amplitudes F ′µ have offsets ∆ωµ ≈
−ωµβr/c. We thus have |F ′µ| ∼ 1, even in the limit T →∞.

The result reduces to Fourier at β = 0, so F ′µ are the Fourier
coefficients displaced by ∆ωµ if β 6= 0. The chirp spectrum is
the Fourier transform at non-zero Doppler rates. It is indeed
the spectrum received under continuous phase lock [9].
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(a) Propagation in the Fourier basis
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Fig. 11: Waves and their spectra

In contrast, each Fourier coefficient Fµ is contributed by a
limited set of cycles in T across which the basis frequency ωµ
and the signal exp(iωµe

β[t−r/c]/β) differ in phase by less than
a cycle. This can be quantified with the total change parameter
∆ = eβT − 1 ≈ βT ≈ 4 × 10−12 for the SDST of Fig. 2. It
yields ∆ωc ≡ ∆×ωc = 0.029 Hz as the total Doppler change
over T , and T∆ωc ≈ 1.15 × 10−8 cycles for the total phase
difference, so every cycle contributes to Fµ.

It is possible to have ∆ so large that ∆ωc > T−1, in which
case, only a few cycles can contribute, so |Fµ| � |F ′µ|, since
everywhere else in T , the integrand becomes a beat oscillation
with net zero contribution. One way this can happen is if β >
1/ωcT

2 ≈ 870 for the SDST of Fig. 2. This would be a very
large fractional acceleration, and could occur if v were initially
close to zero. The other possibility is T > 1/

√
ωcβ ≈ 3.7 ms,

which could, for instance, affect OFDM. It is safe to conclude

that |Fµ| → 0 as T → ∞, meaning Doppler rate signals are
really not represented by the Fourier transform. A closed form
for this indefinite integral is as yet unavailable.

Although |Fµ| would be slightly smaller than |F ′µ| and differ
a little in phase, their difference is too small to explain the
specificity of the shifts to phase lock. The shifts are due to the
inclination of the components F ′µe

′
µ ∼ F ′µ exp(iωµe

β′t/β′)
alone, as any reference to an earlier time (t− τ) means going
along the inclined dashed lines as F ′µ exp(iωµe

β′[t−τ ]/β′), and
reaching the source at τ = r/c. The coefficients F ′µ conversely
must fit the source when extrapolated this inclined way. This
is precisely what the Hilbert product e′∗µ ·ψE computes.

The propagation of F ′µe
′
µ is thus inclined, as indicated by

the thick dashed line ψc, so the components expand en route.
The Fourier components of Fig. 11a are defined by Fµeµ ∼

F ′µe
iωµt, which extend to past times as Fµeiωµ[t−r/c], along

the horizontal dashed lines in Fig. 11a, without shifts. Their
propagation is indicated by the line ψs, and is non-expanding.

Chirp bases and spectra were hitherto untreated. Exponential
chirp transforms have been used in image processing only to
treat non-invariant inputs [29]. All signal applications of chirp
transforms have likewise concerned Fourier spectra (cf. [30]–
[32]). It seems that translational asymmetry, or shift variance,
made chirp spectra look uninteresting. However, the variance
means sensitivity, which would have immense utility [33]. As
the shifts result due to how the spectral basis is defined, there is
no fundamental dependence on a Doppler rate. We should get
such shifts in general by adding a controlled frequency ramp
of rate β′ to the DDS of Fig. 2, consistent with a ramped rate
in sampling or spectral selection proposed in [33]. Since the
receiver axis is one physical point, all such spectra derive from
the same waves, as views of the same source physics.

In any case, we finally have a full and precise explanation of
the anomaly using no new hypotheses. Our scripts that query
JPL Horizons and plot the graphs are posted at https://github.
com/earthshrink/flyby-analysis for transparency.
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APPENDIX

Lemma 1 revisits the necessary and sufficient conditions for
satisfying d’Alembert’s equation in one dimension. Next, the
validity of the exponential chirps ψE as d’Alembert solutions
is established as Theorem 1. We present a generating theorem
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for expanding wave solutions as the broader result describing
the propagation of chirp spectra as in Fig. 11b. The symbol ω
denotes a constant value.

Lemma 1 (d’Alembert conditions). Existence of second order
partial derivatives in t and r are necessary and sufficient for
any function ψ(t∓ r/c) to satisfy d’Alembert’s equation.

Proof. For such a function ψ(t− r/c), writing τ = (t− r/c),
the first and second order partial derivatives

ψ,t ≡
∂ψ

∂t
≡ dψ

dτ

∂τ

∂t
=
dψ

dτ
, ψ,tt ≡

∂2ψ

∂t2
≡ · · · = d2ψ

dτ2
,

ψ,r ≡
∂ψ

∂r
≡ · · · = −1

c

dψ

dτ
, ψ,rr ≡

∂2ψ

∂r2
≡ · · · = 1

c2
d2ψ

dτ2

follow using the chain rule of differential calculus, and prove
that ψ(τ) satisfies d’Alembert’s equation ψ,tt − c2ψ,rr = 0.

For the complementary function ψ(t+ r/c), the first order
derivative ψ,r is positive, but the second order derivatives are
same. This proves the sufficiency.

The necessity is implicit in the known factorization(
∂2

∂t2
− c2 ∂

2

∂r2

)
ψ =

(
∂

∂t
+ c

∂

∂r

)(
∂

∂t
− c ∂

∂r

)
ψ = 0

that leads to the general solution f(t+ r/c) + g(t− r/c).

Theorem 1 (Chirp solutions). d’Alembert’s equation in one
dimension is satisfied by ψ(r, t) = exp(iωβ−1eβ[t∓r/c]).

Proof. Writing τ = (t∓ r/c), so that ψ = eiωβ
−1 exp(βτ) and

∂τ/∂r = ∓c−1, the partial derivatives of ψ are obtained as

ψ,r ≡
∂eiωβ

−1 exp(βτ)

∂r
= eiωβ

−1 exp(βτ) ∂
{
iωβ−1 exp(βτ)

}
∂r

= ψ.(iωβ−1).(∓/c).β exp(βτ) = ∓ iω
c

exp(βτ)ψ (1)

and likewise,

ψ,t ≡
∂eiωβ

−1 exp(βτ)

∂t
= eiωβ

−1 exp(βτ) ∂
{
iωβ−1 exp(βτ)

}
∂t

= ψ.(iωβ−1).β exp(βτ) = iω exp(βτ)ψ . (2)

The second partial derivatives then follow as

ψ,rr ≡
∂

∂r

[
∓ iω
c

exp(βτ)ψ

]
=
∓iω
c

∂ exp(βτ)

∂r
ψ ∓ iω

c
exp(βτ).ψ,r

=
∓iω
c
.β exp(βτ).

∓1

c
.ψ +

i2ω2

c2
exp(2βτ)ψ

=
iωβ

c2
exp(βτ)ψ − ω2

c2
exp(2βτ)ψ , (3)

and ψ,tt ≡
∂

∂t
[iω exp(βτ)ψ]

= iω.
∂ exp(βτ)

∂t
ψ + iω exp(βτ).ψ,t

= iω.β exp(βτ).ψ + i2ω2 exp(2βτ)ψ

= iωβ exp(βτ)ψ − ω2 exp(2βτ)ψ , (4)

which leads to (∂2/∂r2−c−2∂2/∂t2) ψ = 0, as required.

Theorem 2 (Partially invariant functions). The d’Alembert
equation is not satisfied by ψ(r, t) = exp(iωeβt[t−r/c]) with
frequency varying in time but not over space.

Proof. Its partial derivatives in r would be

ψ,r ≡
∂ψ

∂r
≡ eiωe

βtt∂e−iωe
βtr/c/∂r

= eiωe
βtt.(−iωeβt/c)e−iωe

βtr/c

= − iωe
βt

c
ψ , (5)

and ψ,rr ≡ −
iω

c
eβtψ,r = −ω

2

c2
e2βtψ . (6)

As explained in the Introduction, the partial derivatives with
respect to t have additional (highlighted) terms resulting from
the asymmetry in t and r, as

ψ,t ≡
∂ψ

∂t
≡ ∂eiωe

βt[t−r/c]

∂t

= eiωe
βt[t−r/c].iω.

∂eβt[t− r/c]
∂t

= ψ.iω
[
βeβt(t− r/c) + eβt

]
, (7)

and ψ,tt ≡
∂
(
ψ.iω

[
βeβt(t− r/c) + eβt

])
∂t

= · · · (8)

so ψ,tt cannot equal c2ψ,rr except at t = 0, i.e., at the source.
Notice also that ψ = ψL to first order.

Theorem 3 (Generality of expansion). For each solution f(t−
r/c) of d’Alembert’s equation (∂/∂t2 − c2∂/∂r2)ψ = 0, and
every real valued function g() possessing second order partial
derivatives in t and r, the modified function h(t, r) ≡ f(g(t−
r/c).[t− r/c]) is also a solution.

Proof. The modified function retains the argument form ψ(t−
r/c) and would also have second order derivatives in t and r,
so the result is implied by Lemma 1.

More directly, upon substituting τ = (t−r/c) as before, we
have ∂τ/∂t = 1, ∂τ/∂r = −c−1, ∂f/∂τ ≡ df/dτ = f ′ and
∂2f/∂τ2 ≡ d2f/dτ2 = f ′′. The first order partial derivatives
of the modified function are then

h,t ≡
∂h

∂t
=
df(gτ)

dτ

∂τ

∂t
=
df(gτ)

dτ
=
df(gτ)

d(gτ)

d(gτ)

dτ

= f ′.

(
dg

dτ
τ + g

dτ

dτ

)
≡ f ′.(g′τ + g) (9)

using a dot in order to demarcate the parenthesized expression
as a factor and not the argument of f ′. We similarly get

h,r ≡
∂h

∂r
=
df(gτ)

dτ

∂τ

∂r
≡ −c−1h,t . (10)

The latter proves h,tt − c2h,rr = 0 is satisfied, since

h,rr = −c−1h,t
dτ

∂τ

∂r
=

1

c2
h,tt. (11)
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For completeness, the second order time derivative is

h,tt ≡
d(f ′.(g′τ + g))

dτ

∂τ

∂t

=
df ′

dτ
(g′τ + g) + f ′

d(g′τ + g)

dτ
= f ′′.(g′τ + g) + f ′(g′′τ + g′ + g) . (12)

Corollary 3.1 (Exponential chirps). Exponential chirp wave
functions, hence constant Doppler rate signals, are expanding.

Proof. The chirp waves of Theorem 1 are obtained by setting
f(τ) = eiωτ and g(τ) = eβτ . Both are d’Alembert solutions
by Lemma 1, so the conditions for Theorem 3 are met. Though
g can be quite arbitrary, the receiver integration for F ′µ (page
6) limits observability to a chirp basis, and thus to monotonic
components as shown in Fig. 11b, without loops or oscillations
en route to the source.
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