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Downlink Secrecy Rate of One-Bit Massive MIMO
System with Active Eavesdropping

M. A. Teeti

Abstract—In this study, we consider the physical-layer security
in the downlink of a Massive MIMO system employing one-
bit quantization at the base station. We assume an active
eavesdropper that attempts to spoiling the channel estimation
acquisition at the BS for a legitimate user, whereas overhearing
on downlink transmission. We consider the two most widespread
methods for degrading the eavesdropper’s channel, the nullspace
artificial noise (NS-AN) and random artificial noise (R-AN).
Then, we present a lowerbound on the secrecy rate and asymp-
totic performance, considering zero-forcing beamforming (ZF-
BF) and maximum-ratio transmission beamforming (MRT-BF).
Our results reveal that even when the eavesdropper is close
enough to the intercepted user, a positive secrecy rate is possible–
which increases as the number of BS antennas N is increased
until it saturates–as long as the transmit power of eavesdropper is
less than that of the legitimate user during channel training. We
show that ZF-BF with NS-AN provides the best performance.
Interestingly, it is shown that when the BS’s power is fixed,
MRT-BF and ZF-BF are asymptotically equivalent and hence
the artificial noise technique is the performance indicator. In
contrast, in an energy-efficient Massive MIMO system with
the total BS’s power is reduced proportional to 1/N , the
performance is independent of artificial noise asymptotically and
hence the beamforming technique is the performance indicator.
In addition, when BS’s power is reduced proportional to 1/

√
N ,

all combinations of beamforming and artificial noise schemes are
equally likely asymptotically, independent of quantization noise.
We present various numerical results to corroborate our analysis.

Index Terms—Massive MIMO, physical layer security, active
eavesdropping, ergodic information leakage, one-bit quantization

I. INTRODUCTION

Iinformation secrecy in Massive multiple-input multiple-
output (MIMO) system—as a key technology for fifth-
generation networks—has been a critical issue that spurred
widespread interest [1], [2], [3], [4], [5], [6]. One challenge
in Massive MIMO lies in the increase in hardware complexity
and energy consumption [7] due to the large number of an-
tennas at the base station (BS). In recent years, there has been
a growing interest in replacing the high-resolution analog-
to-digital converters (ADCs) and digital-to-analog converters
(DACs) with low-resolution ADCs and DACs. The extreme
case of 1-bit ADC/DAC has been gaining much attention [8],
[9], [10], [11] because of the considerable design simplicity of-
fered to the physical layer and negligible energy consumption.
With this in mind, it is of interest to understand the secrecy
capability of Massive MIMO employing one-bit quantization,
which is the aim of this work.

M. Teeti is with School of Information Engineering, East China University
of Technology, Nanchang, 330013, China (e-mail: teeti.moh@gmail.com)

In a major advance in 1949, Claude Shannon [12] estab-
lished the information-theoretic basis of communication se-
crecy of cryptographic systems. In classical security, the trans-
mitter often shields the private message by a means of shared-
key cryptographic techniques carried out at the logical layers
of the network. Typically, the encryption key is very long and
computationally demanding. In addition, it is susceptible to
interception by powerful adversaries, especially in a wireless
environment. Consequently, key sharing becomes infeasible in
dynamic wireless networks with nodes of limited resources.
To tackle this problem, physical-layer security provides an
alternative or a complement to classical cryptography, which
exploits the statistical differences between the channel of the
legitimate receiver and that of the eavesdropper to guarantee
secrecy.

The first information-theoretic approach to physical-layer
security dates back to Wyner’s work [13] on the degraded
Gaussian wiretap channel. Later, Csiszar and Korner [14] gen-
eralized Wyner’s work to the non-degraded wiretap channel.
In the preceding works of Wyner, Csiszar, and Korner, it
was shown that when the channel of the legitimate receiver
is more capable (less noisy) than that of the eavesdropper,
secure communication is possible with no need for classical
cryptography. The maximal rate at which the transmitter and
legitimate receiver can communicate securely is limited by
the secrecy capacity, defined as the maximal of the difference
between the channel mutual information of the legitimate
receiver and that of the eavesdropper.

In the literature, passive attack refers to the situation where
an eavesdropper is concealing himself and thus only eaves-
dropping on the confidential transmission. On the other hand,
active attack refers to the situation where an eavesdropper
is not only eavesdropping on the confidential transmission but
also jamming the transmission. In the literature, many attempts
have been made [1], [15], [16], [6], [17] to study the impact
of passive attack in Massive MIMO systems under different
scenarios. One common thing among most of the above works
and others in the literature is the use of artificial noise to
degrade the eavesdropper channel [5] and hence improve
security. Most of the above works focus on a careful design
of data beamforming (or precoding) and artificial noise. In the
literature, two artificial noise techniques are widely used, the
nullspace artificial noise (NS-AN) and random artificial noise
(R-AN) [5]. With NS-AN, the artificial noise is made aligned
with the nullspace of the channel of the intended user while
with the R-AN, the artificial noise is generated randomly.

Stemming from the fact that meeting physical-layer security
in the information-theoretic sense gives rise to a significant
loss in data rate, Bin Chen et al., [3] consider a cryptographic-
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like scheme to achieve security in Massive MIMO system in
the presence of a powerful eavesdropper. In [3], the message
symbols are randomly phase rotated while this phase rotation
is only available at the legitimate receiver through downlink
training with a small amount of overhead. There, it is shown
that when the BS is equipped with a sufficiently large number
of antennas; we guarantee secure communication with high
probability.

It is well-known that the promising gains of Massive MIMO
systems [18], [19], [20] are affected by pilot contamination
[21], whether resulting from pilot reuse [21] in multi-cellular
networks or pilot attack [22], [23], [4] created intentionally
by an active eavesdropper. In fact, the pilot attack can cause
serious degradation of the secrecy rate since the beam-formed
signal in the downlink will be partly aligned with the direction
of eavesdropper’s channel, thus increasing the information
leakage. This situation becomes more pronounced when the
pilot attack is severe, under which no positive secrecy rate is
possible. Many attempts [24], [25], [26], [27], [28] with the
purpose of detecting and combating pilot attack in Massive
MIMO have been done. Yuksel et al., [24] showed that pilot
attack can be eliminated asymptotically as the size of the pilot
set (which is assumed known to everyone) is increased as long
as users select their pilots randomly. Q. Xiong et al., [25]
propose an efficient energy-based detector to identify a pilot
attack without the knowledge of the channel state information
(CSI). T. T. Do et al., [26] consider a single-user uplink
Massive MIMO and study two anti-jamming strategies based
on pilot re-transmission and pilot adaptation technique. R. F.
Schaefer et al., [28] consider a single-cell Massive MIMO
with a single-antenna eavesdropper and use artificial noise
technique. Hence, the achievable secrecy rate is investigated
and power-ratio based pilot attack detection is suggested.
There, it is shown that secrecy rate can drop to zero as the
power of eavesdropper is increased. Tan et al., [27] consider
pilot jamming in the uplink and propose jamming-resistant
approach using unused pilot and pilot hopping to estimate
the jamming channel. With zero-forcing type receiver, it is
shown in [27] that we can greatly enhance the robustness of
the massive MIMO uplink against jamming attacks.

In multicell multiuser Massive MIMO systems, Wu et al.,
[23] consider an active eavesdropper armed with multiple
antennas, and present signal design using beamforming based
on maximum-ratio transmission and NS-AN technique under
correlated channel. They show that the NS-AN can enjoy the
highly correlated channels, enabling secure communication;
however, this is not the case when the channel is weakly
correlated or independent and identically distributed (i.i.d.). To
overcome the limitation in [23], the authors in [29] consider
pilot-data exploitation for CSI acquisition. They show that
decreasing the legitimate user’s power render its received
signal lie in a different eigenspace as that of the eavesdropper
in the asymptotic limit of data length, thus mitigating the effect
of a strong pilot attack. We refer the interested readers to
[30] and relevant references thereof for a recent review of the
literature on physical layer security in 5G networks.

Using low-resolution ADCs/DACs at the BS in Massive
MIMO can substantially simplify the physical layer and reduce

energy consumption, particularly when the one-bit quantiza-
tion is considered. A related challenge is the design of the
channel estimator and the precoder [31], [32] which turns
to be not trivial as the quantization can break the structure
of the beamforming matrix. This challenge can exacerbate
when a pilot attack is present in the system. In [33] the
design of artificial noise is investigated in a simple scenario
of a multiple-antenna system under the constraint of a few
RF chains at the BS, considering a passive eavesdropper and
perfect CSI at the BS. The impact of hardware impairment
(such as phase noise and amplified receiver noise) on secrecy
in massive MIMO is studied in [34] and hence both the uplink
training and the design of artificial noise are optimized to
enhance secrecy under a passive eavesdropper. More recently,
a low-resolution Massive MIMO system with multiple-antenna
passive eavesdropper is studied in [35]. With perfect CSI
assumed available at the BS, it is shown that quantization noise
gives rise to the increase in secrecy rate.

The main limitation of the previous studies on the secrecy of
Massive MIMO system with quantization or limited RF chains
at the BS is the focus on passive attack scenarios with the
assumption of perfect CSI at the BS. As far as quantization is
concerned, the assumption of perfect CSI becomes inaccurate
even in the absence of pilot contamination. Particularly, the
perfect CSI is unjustified when the extreme 1-bit quantization
case is considered. Even greater importance is the impact of
active eavesdropping on secrecy in quantized Massive MIMO
systems, which is not well understood in the literature. In this
work, we will particularly study the one-bit quantized Massive
MIMO system with an active eavesdropper, and investigate its
secrecy performance under various beamforming and artificial
noise techniques.

A. Contributions

We summarize the main contributions of this work as
follows:
1) We derive a lower bound on secrecy rate under various
beamforming and artificial noise scheme, and asymptotic per-
formance analysis (when the number of BS antennas N →∞)
is given.
2) We show analytically (as N →∞) a threshold on the trans-
mit power ratio between the eavesdropper and intercepted user
below which a positive secrecy rate is possible. As a result,
when the eavesdropper is near enough to the intercepted user,
secure communication turns to be difficult (if not impossible)
when the transmit ratio is close to 1. This result is confirmed
by simulation of a practical scenario.
3) We show that when the power at the BS is fixed, the
NS-AN technique outperforms R-AN technique, regardless of
beamforming technique as N →∞.
4) We show that in an energy-efficient Massive MIMO system
with power reduced proportional to 1/N , the zero-forcing
beamforming (ZF-BF) outperforms maximum-ratio transmis-
sion beamforming (MRT-BF), regardless of artificial noise.
Further, when the power is reduced proportional to 1/

√
N all

schemes are asymptotically equivalent and quantization noise
is irrelevant.
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B. Paper outline

We organize the rest of the paper as follows. Section II
introduces signal models in uplink and downlink and we
discuss channel estimation. Section III presents the design
of downlink beamforming and artificial noise. Also, we show
the analysis of information rates and main results. In Section
IV we present the asymptotic performance comparison and
the condition under which secure communication is possible
is given. In Section V we present some numerical examples
to verify our analytical results and Section VI concludes this
work.

II. SIGNAL MODEL AND CHANNEL ESTIMATION

We consider the downlink of a single-cell Massive MIMO
system with 1-bit ADCs/DACs employed at the BS. The BS
is assumed equipped with N antennas which serves K � N
single-antenna users in the same time-frequency resource
block. We assume the communication system operates in the
time-division duplex (TDD). A single-antenna active eaves-
dropper is assumed that attacks only one legitimate user by
contaminating its CSI acquisition at the BS during channel
training and overhearing on the downlink transmission.

We consider Rayleigh block-fading for both BS-users and
BS-eavesdropper channels with coherence time Tc. Within
each block the channel remains constant over Tc symbol inter-
vals and changes independently from one block to another. The
composite BS-users’ small-scale fading channel is denoted by
H = [h1,h2, · · · ,hK ] ∈ CN×K and g ∈ CN×1 denotes the
BS-eavesdropper’s small-scale fading channel. Both H and
g comprise i.i.d. complex Gaussian random variables, each
with zero-mean and unit variance. The (n, j)-th element of
H , denoted hnj , represents the channel between the n-th BS
antenna and user j, whereas gn denotes the n-th component
of g. Further, we denote by βj & βe the large-scale fading
coefficients associated with legitimate user j and eavesdropper,
respectively. We assume all large-scale fading coefficients
changes slowly in order of several Tc intervals and hence
assumed available to everyone. Since we are interested in
downlink rate, we divide the coherence time into two parts for
training (over τ symbol intervals) and downlink transmission
(over Tc − τ symbol intervals).

A. Uplink signal model

At the start of communication, all legitimate users in the sys-
tem send mutually orthogonal pilot sequences, each of length
τ , in the uplink for channel estimation at the BS, whereas the
eavesdropper concurrently transmits the same pilot sequence
of user k (intercepted user) to impair its channel acquisition
at the BS. We denote by Ψ = [ψ1,ψ2, · · · ,ψK ]T ∈ CNK×τ

the pilot matrix satisfying ΨΨH = τIK , where ψj =
[ψj(1), ψj(2), · · · , ψj(τ)]T is the pilot sequence of user j.

Thus, the discrete-time received signal at the BS during τ
symbol intervals can be written as

Y =

K∑
j=1

√
p′jhjψ

T
j +

√
p′egψ

T
k + Z (1)

where p′j and p′e are the average received power at the BS
from user j and eavesdropper, respectively, i.e.,

p′j = βjpj (2a)

p′e = βepe (2b)

where pj and pe are the average transmit powers of user j and
eavesdropper, respectively. The matrix Z ∈ CNN×τ denotes
a complex additive white Gaussian noise (AWGN) with i.i.d.
CN (0, 1) components. Since the rows of Y (corresponding to
BS antenna n) are i.i.d., hence we focus on an arbitrary row
n. Hence, the (n, t)-th entry of Y is

yn(t) =

K∑
j=1

√
p′jhnjψj(t) +

√
p′egnψk(t) + zn(t). (3)

Then, the signal after the one-bit quantizer (1-bit ADC)
attached to the n-th BS antenna is expressed as

vn(t) = sign(yn(t)) (4)

where sign(·) is the sign function which yields the sign of the
real and imaginary parts of yn(t) independently. Here we as-
sume a zero-threshold quantizer. Accordingly, the constellation
of the quantized signal corresponds to the quadrature phase-
shift keying constellation, i.e., A = 1√

2
{1 + j, 1 − j,−1 +

j,−1− j}.
Since yn(t) is complex Gaussian random variable, it holds

from the Bussgang theorem [36] that we can express vn(t) as
a sum of a scaled version of yn(t) and an uncorrelated term
(quantization noise), i.e.,

vn(t) = γyn(t) + qn(t)

=

K∑
j=1

√
γ2p′jhnjψj(t) +

√
γ2p′egnψk(t)

+ γzn(t) + qn(t) (5)

where γ is a scaling factor and qn(t) is the quantization
noise. From (5), γ is obtained by the linear minimum mean
squared error (LMMSE) solution, i.e., γ = E[u∗n(t)vn(t)]/σ2

u.
From [36], E[u∗n(t)vn(t)] =

√
2σ2

y/π, where σ2
u is the

variance of yn(t). Hence,

γ :=

√
2/π

σ2
y

=

√
2/π∑K

j=1 p
′
j + p′e + 1

(6)

and the variance of quantization noise is thus given by

σ2
q = E[|vn(t)|2]− γ2E[|yn(t)|]

= 1− 2/π ≈ 0.3634. (7)

At two different times instants t and t′, the covariance
between yn(t) and yn(t′) can be expressed as

C(t, t′) =

K∑
j=1

p′jψ
∗
j (t)ψj(t

′) + p′eψ
∗
k(t)ψk(t′) + 1. (8)

When τ = K, we have C(t, t′) = 0 so signals received at
different times are uncorrelated and hence the quantization
noise at different times is uncorrelated. This doesn’t hold when
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τ > K. However, we can check from (8) that C(t, t′) �
C(t, t) as K is sufficiently large, which is the case in Massive
MIMO systems. Without loss of generality, in this work we
assume τ = K, therefore, the quantization noise turns to be
uncorrelated with zero-mean and variance σ2

q .

B. Channel estimation

The BS correlates (5) with the pilot symbols of user l to
estimate hnl. Hence,

ṽl :=
1√
τ

τ∑
t=1

ψ∗k(t)vn(t)

=
√
γ2τp′lhnl +

√
γ2τp′egnδ(l − k) + γz̃l + q̃l (9)

where z̃l and q̃l are zero-mean scalar random variables with
variances 1 and σ2

q , respectively.
Using (9) the LMMSE estimate of hnl reads

ĥnl =
γ
√
p′lτ

γ2p′lτ + γ2p′eτδ(l − k) + γ2 + σ2
q

ṽl := λlṽl (10)

and therefore the variance of ĥl is

σ2
ĥl

=
γ2p′lτ

γ2p′lτ + γ2p′eτδ(l − k) + γ2 + σ2
q

. (11)

Stacking all channel estimates in a matrix form, the com-
posite channel estimate, denoted Ĥ , can be written as

Ĥ = VΨHΛ/
√
τ (12)

where Λ = diag(λ1, λ2, · · · , λK) ∈ RK×K is a diagonal
matrix and V ∈ CNN×τ is the quantized signal corresponding
to Y , where the (n, t)-th entry of V is defined in (4). Finally,
we remark that the channel estimates ĥnl are treated as i.i.d.
CN (0, σ2

ĥl
), thanks to the law of large numbers. This follows

from the fact that ṽl is typically comprised of a sum of a large
number of random variables.

C. Downlink signal model

Over one symbol interval, the BS synthesizes the following
signal vector (precoded signal):

x̃ =

√
θ

η
Ws+

√
θ̄

ζ
r. (13)

After the one-bit quantizers (1-bit DACs) at the BS, the
discrete-time transmitted signal is

x =

√
pd
N

sign(x̃) (14)

where s = [s1, s2, · · · , sK ]T comprises K indepen-
dent complex Gaussian symbols (normalized), W =
[w1,w2, · · · ,wK ] ∈ CN×K is the precoding (or beam-
forming) matrix with wi being the i-th column of W , and
r = [r1, r2, · · · , rN ]T ∈ CN is a zero-mean artificial noise
vector generated deliberately to weaken the eavesdropper’s
channel. We assume ηE[tr(WWH)] = ζE[‖r‖2] = 1 where
η, ζ are long-term normalization constants. Further, θ ∈ (0, 1)

and θ̄ = 1 − θ are power fractions allocated to the beam-
formed signal and artificial noise, respectively. Consequently,
we have E[‖x̃‖2] = 1. From (13), the scaling factor

√
pd/N

is introduced to restrict the average power at the BS to pd.
Since x̃ is a unit norm vector and we consider the channel

matrix H drawn from random Gaussian matrix ensembles, the
variance of each component of x̃, (13) turns to be σ2

x̃ = 1/N .
From [36], we can express (14) as

x =

√
pd
N

(γ̄x̃+ q̄) =

√
θγ̄2pd
Nη

Ws+

√
θ̄γ̄2pd
Nζ

r +

√
pd
N
q̄

=

√
2θpd
πη

Ws+

√
2θ̄pd
πζ

r +

√
pd
N
q̄ (15)

where γ̄ is a scaling factor follows from the Bussgang theorem
as discussed previously, which is given by

γ̄ :=
√

2/π/σ2
x̃ =

√
2N/π. (16)

For simplicity of notation, we express (15) as

x = c1Ws+ c2r + c3q̄ (17)

where c1, c2 and c3 are, respectively defined by

c1 =
√

2θpd/πη (18a)

c2 =
√

2θ̄pd/πζ (18b)

c3 =
√
pd/N. (18c)

III. SECRECY CAPACITY ANALYSIS

In this section, we establish the achievable rate Rk of the
intercepted user k, and an upper-bound on the eavesdropper’s
rate Re. We use the underline and overline notation to dis-
tinguish between a lowerbound and upperbound, respectively.
Then the secrecy rate Rs is given by [14]

Rs =
[
Rk −Re

]+
(19)

where [A]+ = A when A > 0 and [A]+ = 0 when A < 0.

A. Data beamforming and artificial noise

In this work, we intend no effort to optimize the structure of
the beamforming matrix, thus we will consider two classical
beamforming techniques; the maximum ratio transmission
beamforming (MRT-BF) and zero-forcing beamforming (ZF-
BF). Using the channel estimate at the BS, W is thus given
by

W :=

{
Ĥ∗ if MRT-BF,
Ĥ∗(ĤT Ĥ∗)−1 if ZF-BF.

(20)

The normalization constant η can be evaluated as follows. Let
Ĥ = H̃Σ1/2 where H̃ is a random Gaussian matrix with
i.i.d. CN (0, 1) components, and Σ is a diagonal matrix whose
diagonal elements comprise the vector [σ2

ĥ1
, σ2
ĥ2
, · · · , σ2

ĥK
].

Thus, when MRT-BF is used we have that

ηmrt = E[tr(WmrtW
H
mrt)] = E[tr(Σ1/2H̃T H̃∗Σ1/2)]

= tr(Σ1/2E[H̃T H̃∗]Σ1/2) = N tr(Σ) (21)
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and when ZF is used, we can write

ηzf = E[tr(WH
zf Wzf)] = E[tr(Σ−1/2(H̃T H̃∗)−1Σ−1/2)]

= tr(Σ−1/2E[(H̃T H̃∗)−1]Σ−1/2) =
tr(Σ−1)

N −K
(22)

where in (22) we have used E[(H̃T H̃∗)−1] = (N −K)−1IK ,
which follows from the property of the inverse of central
Wishart matrix H̃T H̃∗ [37].

The artificial noise vector r in (13) is defined by

n = Sñ (23)

where S is a shaping matrix and ñ is an N × 1 Gaussian
vector with i.i.d. CN (0, 1) components. We study R-AN and
NS-AN in which n ∈ nullspace(ĤT ). In the R-AN approach,
we let S = IN , thus n = ñ. When NS-AN is used, we
let S be the orthogonal complement matrix of ĤT , given by
S = IN − Ĥ∗(ĤT Ĥ∗)−1ĤT . Thus we can summarize:

S :=

{
IN if R-AN,
IN − Ĥ∗(ĤT Ĥ∗)−1ĤT if NS-AN.

(24)

From (23) and (24), it follows easily that the respective
normalization constants corresponding to R-AN and NS-AN
are given by

ζr-an = N (25)

ζns-an = N −K. (26)

B. Data rates analysis

The received signal at the intercepted user k is

rk =
√
βkc21h

T
kwksk +

K∑
j=1,j 6=k

√
βkc21h

T
kwjsj

+
√
βkc22h

T
k Sñ+

√
βkc23h

T
k q̄ + νk (27)

and the eavesdropper receives

re =
√
βec21g

Twksk +

K∑
j=1,j 6=k

√
βec21g

Twjsj

+
√
βec22g

TSñ+
√
βec23g

T q̄ + νe (28)

where both νk, νe ∼ CN (0, 1), denoting the Gaussian noises
at the intercepted user and eavesdropper, respectively.

To obtain a lower bound on secrecy rate, we shall make
two main assumptions that have been considered in the lit-
erature, serving as a worst-case scenario. First, to obtain a
lowerbound on rate achievable by the legitimate use we assume
the legitimate user has no access to its channel realization
and its beamforming vector, and thus the user utilizes only
its knowledge of the long-term statistics of the channel for
decoding. Second, to obtain an upperbound on information
leakage we assume the eavesdropper has access to its channel
realizations and the beamforming vector of intercepted user.
Further, we assume that the eavesdropper can cancel out
all inter-user interference, which is conceivable through a
collusion of other users with the eavesdropper.

Therefore, after ignoring the second term in (28), we
rewrite (28) as

re =
√
βec21g

Twksk +
√
βec22g

TSñ+
√
βec23g

T q̄ + νe
(29)

and hence the information rate leaked to the eavesdropper is
given by1

Re = E
[
log
(
1 + c21βew

H
k g
∗C−1

e gTwk

)]
(30)

where Ce is the covariance matrix of the effective noise seen
by the eavesdropper, given by

Ce = c22βeg
TSg∗ + c23βeσ

2
qg

Tg∗ + 1. (31)

Since (30) is hard to compute, we resort to a simple upper
bound, which proves to be a very good approximation as
shown by numerical results in Sec. V.

Next, we express (27) as

rk = ask + neff (32)

where a is a constant which depends on the statistics of the
channel and neff is an effective noise which is uncorrelated
with sk. It follows easily that a is given by

a := E[s∗krk] = c1
√
βkE[hTkwk] (33)

where we have used the fact that all four terms in (27) are
mutually uncorrelated. The variance of neff is thus

σ2
neff

= E[|rk|2]− |a|2

= c21βk Var(hTkwk) +

K∑
j=1,j 6=k

c21βkE[|hTkwj |2]

+ c22βkE[hTk Sh
∗
k] + βkσ

2
qpd + 1. (34)

where Var(·) is the variance operator. In (34) we have used
the fact that SSH = S for both R-AN and NS-AN schemes.

By treating the non-Gaussian noise neff as Gaussian noise
with the same variance (i.e., information-theoretic worst case),
therefore the achievable rate of the intercepted user k is

Rk = log
(
1 + |a|2/σ2

neff

)
. (35)

C. Mutual information between intercepted user’s channel
and eavesdropper’s channel

Because of pilot attack, the estimated channel of legitimate
user k will contain information about the channel of eaves-
dropper. Here, we characterize this information which turns
to be useful in our analysis of the main results.

Lemma 1. The eavesdropper’s channel vector can be ex-
pressed as

g =
√
κRĥk + ε (36)

where κR is the received power ratio between the eavesdrop-
per and intercepted user k, i.e.,

κR =
p′e
p′k

=
βepe
βkpk

:=
βe
βk
κT (37)

1In (30) we have treated the quantization noise as Gaussian, which is a
technical assumption. From the law of large numbers, the components of
gT q̄ (third term in (29)) can be very well approximated by Gaussian random
variables for a sufficiently large N .
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and ε is uncorrelated Gaussian (approximately) error vector
with covariance matrix given by

Cε = (1− κRσ2
ĥk

)IN (38)

Proof. The proof is straightforward which follows from the
classical work on MMSE solution. Appendix A presents the
details.

Although Lemma 1 is a straightforward result, however, it
is noteworthy. It can tell us how much information about the
eavesdropper’s channel g is contained in the channel estimate
ĥk. From (38), one can show that the mutual information
I(g; ĥk) = h(g)− h(g|ĥk) is given by

I(g; ĥk) = N log

(
1

1− κRσ2
ĥk

)
≥ 0. (39)

Equation (39) indicates that I(g; ĥk) can grow large and
will be limited only by AWGN and quantization noise when
κR � 1. Note that κRσ2

ĥk
< 1. Since in particular the NS-

AN are a function of ĥk, the received signal nullspace noise
by the eavesdropper is not independent of its channel. Thus
part of this noise will be annihilated at the eavesdropper and
we observe an increase in his information rate, leading to a
significant reduction of the secrecy rate.

D. Main results

Here, we give a lowerboud on the achievable secrecy rate
under different beamforming and artifical noise techniques. In
the following, all derived information rates are given in their
normalized form2.

We state our findings in the following two theorems.

Theorem 1. Consider a one-bit quantized Massive MIMO
system with N antennas at the BS and K single-antenna users
in the presence of a single-antenna active eavesdropper. If the
BS uses MRT-BF, then the achievable downlink rate Rk of the
intercepted user k, is given by

RMRT
k ≥ log

(
1 +

2θπ−1 tr−1(Σ)βkσ
4
ĥk
pdN

2θβkpd/π + P AN
k + βkσ2

qpd + 1

)
. (40)

Further, if the BS uses ZF-BF, then Rk is given by

RZF
k ≥ log

(
1 +

2θπ−1 tr−1(Σ−1)βkpd(N −K)

2θβkpd(1− σ2
ĥk

)/π + P AN
k + βkσ2

qpd + 1

)
(41)

where PAN is the effective artificial noise power given by

PAN
k =

{
2θ̄βkpd/π if R-AN
2θ̄βkpd(1− σ2

ĥk
)/π if NS-AN.

(42)

Proof. See Appendix B.

Theorem 2. Consider the system model in Theorem 1. When
N is sufficiently large, the average information leaked to the
eavesdropper is upper-bounded (equal or approximate) by

2The normalization factor is (1 − τ/Tc), i.e., the fraction of time over
which downlink transmission is considered in this work.

R
MRT
e . log

1 +
2θβepdσ

2
ĥk

(
κRσ

2
ĥk
N + 1

)
π tr(Σ)(PAN

e + βepdσ2
q + 1)

 (43)

when the BS uses MRT-BF, and when the BS uses ZF-BF,

R
ZF
e . log

1 +
2θβepd

(
κR(N −K − 1) + σ−2

ĥk

)
π tr(Σ−1)(PAN

e + βepdσ2
q + 1)

 (44)

where κR is defined in (37) and P AN
e is the power of artificial

noise seen at the eavesdropper defined by

PAN
e =

{
2θ̄βepd/π if R-AN
2θ̄βepd(1− κRσ2

ĥk
)/π if NS-AN.

(45)

Proof. See Appendix C

It is clear from Theorem 1 and Theorem 2 that the rate
of intercepted user and information rate of eavesdropper are
always greater when the BS uses the NS-AN than R-AN,
which is clear from (42) and (45), respectively.

From the preceding results, the achievable secrecy rate is

RMRT
s =

[
RMRT
k −RMRT

e

]+
(46)

RZF
s =

[
RZF
k −R

ZF
e

]+
(47)

The expressions in (46) and (47) can be further maximized
with respect to the power fraction θ by setting the first deriva-
tive of the rate difference to zero and solving the resulting
equation for θ ∈ (0, 1). Due to the long expressions of θ in
terms of all other system parameters, we omit them and hence
computed numerically instead. We leave it to the reader to
verify that when all parameters are fixed, the optimal policy is
to allocate almost all power to artificial noise in the asymptotic
limit of N .

We remark that the results in Theorems 1 & 2 can be
specialized for the no-quantization case (infinite-resolution
ADCs/DACs) by replacing pd with pdπ/2 and setting σ2

q = 0
in (40)- (45), setting γ = 1, σ2

q = 0 in (11) and redefining Σ
accordingly.

IV. ASYMPTOTIC PERFORMANCE COMPARISON

Inspecting Theorems 1 & 2 provides no clear clue of how
the performance of MRT-BF and ZF-BF can be compared.
Therefore, a better understanding of the performance gap
can be gained through asymptotic performance. Our focus
here will be on the asymptotic behavior of the beamform-
ing/artificial noise schemes as the number of BS antennas
increases with no limit. As shown next, the asymptotic perfor-
mance renders it easy to capture the important parameters for
a specific scheme to guarantee a positive secrecy rate, which
turns to be even very useful for the non-asymptotic case.

In the following, we assume N →∞. Since energy-efficient
(EE) Massive MIMO system is of great importance, hence we
study the asymptotic behavior of the secrecy rate under such
a system.
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A. Non-energy-efficient Massive MIMO system

Here, we assume that the total power at the BS is fixed,
irrelevant to the number of BS antennas. In the following, we
state our results in the following corollary to Theorems 1 &2.

Corollary 1. Assume the BS uses MRT-BF or ZF-BF. Then
when R-AN is used, the maximum secrecy rate converges to

Rno-EE
s,R-AN → log

[(
βk
(
pdβe

(
πσ2

q + 2
)

+ π
)

κRβe(pdβk
(
πσ2

q + 2
)

+ π)

)]+

(48)

and when NS-AN is used, the maximum secrecy rate converges
to

Rno-EE
s,NS-AN →

log

βk
(
pdβe

(
πσ2

q + 2− 2κRσ
2
ĥk

)
+ π

)
κRβe

(
pdβk

(
πσ2

q + 2− 2σ2
ĥk

)
+ π

)
+

(49)
asymptotically as N →∞.

The expressions (48) and (49) unfold by maximizing the
asymptotic limit of RMRT

k −RMRT
e regarding θ as N →∞. It

turns out that the optimal θ converges to 0 asymptotically, i.e.,
almost all power is allocated to artificial noise asymptotically.
From 48 and 49, a positive secrecy rate is possible if the
transmit power ratio (during channel training) between the
eavesdropper and intercepted user satisfies

κT =
pe
pk

< 1 +
πβk (βk − βe)(

pdβk
(
πσ2

q + 2
)

+ π
)
β2
e︸ ︷︷ ︸

∆β

. (50)

Further, since (48) and (49) are positive under the same
condition (50), we have that

∆no-EE = Rno-EE
s,NS-AN −Rno-EE

s,R-AN > 0 (51)

We summarize our conclusions from Corollary 1 as follows:
1) The NS-AN outperforms R-AN asymptotically, indepen-

dent of the beamforming technique.
2) Using R-AN entails more BS antennas to achieve the

same performance of NS-AN.
3) Both NS-AN and R-AN are useless when (50) is violated.

B. Energy-efficient Massive MIMO system

Here, we assume an energy-efficient (EE) massive MIMO
system, where the total power at the BS can be reduced
proportional to 1/

√
N or 1/N . In the sequel, we use EE1

and EE2 for a Massive MIMO system with power reduced
proportional to 1/

√
N or 1/N , respectively. Hence,

pd =

{
ρ/
√
N if EE1,

ρ/N if EE2
(52)

where ρ is a fixed value (predetermined at the BS).
We state our results in the following two corollaries.

Corollary 2. Consider an energy-efficient one-bit Massive
MIMO with active eavesdropper with power at the BS is

proportional to 1/
√
N . If the BS uses MRT-BF or ZF-BF, then

the maximum secrecy rate converges to

REE1
s →

[
log

(
βk
κRβe

)]+

. (53)

irrespective of the artificial noise scheme.

Corollary 3. Consider an energy-efficient one-bit Massive
MIMO with active eavesdropper with power at the BS is
proportional to 1/N . If the BS uses MRT-BF with R-AN or
NS-AN, then the maximum secrecy rate converges to

REE2, MRT
s →

[
log

(
π tr(Σ) + 2βkσ

4
ĥk
ρ

π tr(Σ) + 2βeσ4
ĥk
κRρ

)]+

(54)

and when ZF-BF with R-AN or NS-AN is used, then the
maximum secrecy rate converges to

REE2, ZF
s →

[
log

(
π tr(Σ−1) + 2βkρ

π tr(Σ−1) + 2βeκRρ

)]+

(55)

By inspection of Corollaries 2 & 3 we can observe that a
positive secrecy rate is possible if the transmit power ratio
satisfies

κT <

(
βk
βe

)2

. (56)

This means that the transmit power ratio during the pilot
attack plays a central role in impacting the secrecy rate.
Since (54) and (55) are both positive under the same con-
dition (56), thus it is easy to show that

∆EE2 = REE2, ZF
s −REE2, MRT

s > 0 (57)

asymptotically.
We summarize our conclusions from Corollaries 2 & 3 as

follows:
1) When EE regime is considered, the performance is inde-

pendent of artificial noise, contrary to no-EE regime.
2) Under EE1, MRT-BF and ZF-BF are equivalent while

under EE2 regime, ZF-BF outperforms MRT-BF, asymp-
totically.

3) With EE regime, the asymptotic secrecy rate drops to zero
when (56) is violated.

Finally, we remark again that the results in Corollaries 1–
3 can be specialized for the no-quantization case (infinite-
resolution ADCs/DACs) by replacing pd with pdπ/2 and
setting σ2

q = 0 in (40)- (45), setting γ = 1, σ2
q = 0 in (11)

and redefining Σ accordingly.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present some numerical results to verify
the analytical results in this work. We consider a single-cell
Massive MIMO system with K single-antenna users and an
active eavesdropper. Without loss of generality, we assume
β1 = · · ·βK = βe = 1 and all legitimate users transmit at the
same power, i.e., p1 = p2 = · · · = pk = pu. Unless otherwise
stated, analytical results refer to the achievable secrecy rate
using Theorems 1 & 2 and Corollaries 1-3 whereas simulation
results refer to simulated achievable secrecy rate evaluated
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Fig. 1: Achievable secrecy rate under MRT-BF with (a) R-
AN and (b) NS-AN, K = 10, τ = K, pu = pd = 10dB and
pe = 5dB.

by Monte Carlo simulation with quantization-noise correlation
and exact ergodic information rate leakage (30) are accounted.

Fig. 1 shows the performance of MRT-BF for different
number of BS antennas. The eavesdropper’s power is set to
pe = pu/2 = 5dB. We can observe that the analytical results
serve as a good lowerbound on secrecy rate compared with
the simulated lowerbound. We can observe that the NS-AN
(Fig. 1(b)) always outperforms R-AN (Fig. 1(a)). For example,
when N = 256, the performance gap between NS-AN and R-
AN is about 0.1 bits/s/Hz.

The performance of ZF-BF is shown in Fig. 2. As seen, a
relatively smaller gap (compared with MRT-BF) between the
simulated and analytical results. This is partly because the user
rate improves under ZF-BF and hence this improvement will
render the gap, resulting from our approximation error and
the use of Jensen’s inequality, smaller, i.e., see Appendix C.
Similar to the case of MRT-BF, the NS-AN provides higher
rates compared wit R-AN. Further, it is clear that ZF-BF with
NS-AN achieves the highest secrecy while MRT-BF with R-
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(a) ZF-BF with R-AN
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Analytical

(b) ZF-BF with NS-AN

Fig. 2: Achievable secrecy rate under ZF-BF with (a) R-AN
and (b) NS-AN, K = 10, τ = K, pu = pd = 10dB and
pe = 5dB.

AN provides the lowest secrecy rate, where the gap between
them is about 0.3 bits/s/Hz when N = 256.

Also, we observe that in all simulated cases in Figs 1
& 2, the secrecy rate increases as the number of BS antennas
N increases, while the power fraction allocated to signal is
monotonically decreasing. As N increases, both the inter-
cepted user’s rate and information leakage increase, thus in
order to maintain a positive secrecy rate, more power should
be allocated to artificial noise to degrade the eavesdropper
channel.

Fig. 3 depicts the impact of increasing the number of users
on the secrecy rate. As seen, the secrecy rate decreases steadily
as the number of users increases. This, in particular, follows
from the increases of inter-user interference (in case of MRT-
BF) and the reduction in the array gain (in case of ZF-BF),
thus reducing the rate of the intercepted user. As observed
previously, ZF-BF with NS-AN provides a higher secrecy
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Fig. 3: The impact of number of users on secrecy rate under
ZF-BF and MRT-BF, N = 128, τ = K, pu = pd = 10dB and
pe = 5dB.

rate, albeit at the price of high computational burden when
compared with MRT-BF combined with R-AN.
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Fig. 4: The impact of transmit power ratio κT = pe/pu, during
pilot attack, on secrecy rate, N = 64, K = 10, τ = K, and
pu = pd = 10dB.

The effect of transmit power ratio κT = pe/pu during pilot
attack is illustrated in Fig. 4. In all beamforming and artificial
noise schemes we observe that the secrecy rate is steadily
reduced as κT increases. In general, ZF-BF with NS-AN
outperforms other schemes as observed previously. However,
secrecy rate drops to zero for all schemes when κT approaches
1 (0dB). This is in line with the asymptotic condition derived
in (50). From (50), κT < 1 due to βk = βe = 1 in
our simulation. Thus without an advanced communication
secrecy protocol, active eavesdropping can be deleterious to
the secrecy rate.

Fig. 5 illustrates the asymptotic behavior of the secrecy rate
as N →∞. As seen, when the power at the BS is kept fixed
regardless of the number of BS antennas ( Fig. 5(top), no-EE),
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Fig. 5: Asymptotic secrecy rate under no-EE (top figure), EE1
(middle figure) and EE2 (bottom figure). The number of user is
K = 10, τ = K, and pu = 10dB, ρ = 10 dB and κT = −2dB.
(pd = ρ/

√
N ). Markers, solid lines and dotted lines represent

simulated, analytical and asymptotic results, respectively.

both MRT-BF and ZF-BF are asymptotically equivalent. As N
gets larger and larger, almost all power is allocated to artifi-
cial noise asymptotically, thus the artificial noise dominates
(determines) the performance asymptotically. We can observe
that under no-EE case, NS-AN outperforms R-AN. When the
BS’s power is scaled down by N (Fig. 5(bottom), EE2), almost
all power should be allocated to data to maintain a positive
secrecy rate as N → ∞, rendering both R-AN and NS-AN
equivalent asymptotically, and hence the beamforming scheme
determines the performance. When the power scales down with√
N (Fig. 5(middle), EE1), any combinations of beamforming

and artificial noise schemes are asymptotically equivalent. The
reader will observe the very large number of BS antennas for
the no-EE and EE1 cases to converges to the corresponding
asymptotic values, compared with EE2 case which converges
at much faster pace.

Fig. 6 shows the performance gap between the quan-
tized system and its unquantized (i.e., infinite-resolution
ADCs/DACs) version under no-EE and EE1 regimes. The
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Fig. 6: Secrecy gap between quantized and unquantized sys-
tems under no-EE (pd = ρ) and EE1 (pd = ρ/

√
N ) regimes,

K = 10 users, τ = K, and pu = ρ = 10dB, and κT = −2dB.

analytical results for the no-quantization case are obtained
from our analysis as a special case as discussed previously.
For the no-EE case, we observe a comparably larger gap
when NS-AN is used whereas it is smaller when R-AN is
used, especially under MRT-BF. Thus when the combination
of MRT-BF and R-AN is considered, there is not much loss
in secrecy rate because of quantization noise. We also observe
that both quantized and unquantized systems are asymptot-
ically equivalent under R-AN. This implies that the R-AN
dominates the quantization noise, whereas the quantization
noise dominates the NS-AN in the asymptotic limit. For EE1
regime, the gap diminishes asymptotically under all schemes
and hence quantization noise is irrelevant. For the case of EE2
which is not shown here, one can verify that the secrecy rate
for the unquantized case converges to different asymptotic
limits for ZF-BF and MRT-BF where the artificial noise
scheme is asymptotically irrelevant.

Fig. 7 depicts the cumulative distribution function (CDF)
of the secrecy rate when the BS employs ZF-BF and NS-
AN, where this scheme is chosen due to its high performance
as we have shown before. We assume the BS is positioned
in the center of a circle of radius 1km while the active
eavesdropper in a circle of radius 100m around the intercepted
user, i.e., this captures the situation when the eavesdropper is
very close to the intercepted user. The positions of users are
assumed random and uniformly distributed inside the circular
cell. As seen in Fig. 7 the average secrecy rate decreases with
increasing the power of eavesdropper. When the eavesdropper
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Fig. 7: CDF of secrecy rate for (ZF-BF, NS-AN)-scheme. The
BS is assumed in a center of a circle of radius 1km and the
eavesdropper in a circle of radius 100m around the intercepted
user and all users’ positions are uniformly distributed. The
number of BS antennas N = 128, K = 10 users, τ = K and
pd = pu = 10dB .

transmits at the same power level of the legitimate user the
average secrecy drops to zero. This again confirms our analysis
and the transmit power-ratio threshold given in (50) even in
this non asymptotic case.

VI. CONCLUSION

This paper has investigated the secrecy in the downlink of
a Massive MIMO system under the presence of an active
eavesdropper and when the signal at the BS undergoes 1-
bit quantization. We investigated the efficacy of two artificial
noise techniques; NS-AN and R-AN. Thus, we have derived
the achievable secrecy rate when the BS uses MRT-BF and
ZF-BF. Although the very coarse quantization and pilot attack,
secure communication is possible, where the best performance
is achieved when ZF-BF is combined with NS-AN. In fact, we
showed analytically that when the eavesdropper is sufficiently
close to the intercepted user, the average secrecy rate drops to
zero as the transmit power ratio between the eavesdropper and
intercepted user approaches 1. The practical scenario examined
in the paper has further corroborated our analysis.

It was shown that when the number of BS antennas N grows
large, the performance is independent of the beamforming
technique and hence the NS-AN should be exploited to maxi-
mize the performance. This observation has an implication for
research into other possible schemes of artificial noise to de-
grade the channel of eavesdropper. Further, it was shown that
the total power at the BS can be reduced proportional to 1/N
or 1/

√
N while a positive secrecy rate is maintained, given

the ratio between the eavesdropper’s power and intercepted
use’s power is less than (βk/βe)

2. This observation suggests
considering other approaches other than artificial noise to
enhance secrecy.
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Due to the scope limitation of this work, a number of
potential issues needs to be considered in the future, such as
power control and optimal design of beamforming. We believe
our findings add to the understanding of the impact of active
eavesdropping in quantized Massive MIMO systems.

APPENDIX A
PROOF OF LEMMA 1

From (12), we can write

ĥk = λk

(√
γ2p′kτhk +

√
γ2p′eτg + γz̃ + q̃

)
. (58)

where z̃ and q̃ are the AWGN and quantization noise vector.
Thus, given ĥk, the LMMSE solution for g is

ĝ = E
[
gĥ

H

k

] (
E[ĥkĥ

H

k ]
)−1

ĥk (59)

From (58) we have

E[gĥ
H

k ] =
√
λ2
kγ

2p′eτIN (60a)

E[ĥkĥ
H

k ] = λ2
k(γ2p′kτ + γ2p′eτ + γ2 + σ2

q )IN (60b)

Substituting (60a), (60b) with the definition of λk (10) in (59)
we get the first term of (36). Define ε := g − ĝ as the
estimation error vector. From (59) and the i.i.d. assumption
on channels and quantization noise, it follows easily that
Cε = E[εεH ] is give by (38). This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

From (35), to calculate the achievable rate of the intercepted
use, we need to calculate a and σ2

neff
. Throughout the proof

steps we will make use of hk = ĥk + ek where ek is the
estimation error vector with covariance matrix given by (1−
σ2
ĥk

)IN .

A. MRT-BF

For MRT-BF, we have wk = ĥ
∗
k. Substituting this in (33)

yields

aMRT = c1
√
βk E[hTk ĥ

∗
k]︸ ︷︷ ︸

I0

= c1
√
βkNσ

2
ĥk

(61)

and hence

|aMRT|2 =
2θβkpd
π tr(Σ)

σ4
ĥk
N (62)

Using (34) we rewrite

σ2
neff,MRT = c21βk Var(hTk ĥ

∗
k)︸ ︷︷ ︸

I1

+

K∑
j=1,j 6=k

c21βk E[|hTk ĥ
∗
j |2]︸ ︷︷ ︸

I2

+ c22βk E[hTk Sh
∗
k]︸ ︷︷ ︸

I3

+βkσ
2
qpd + 1. (63)

We can obtain the terms denoted by I1, I2 as follows:

I1 = E[|hTk ĥ
∗
k|2]− |I0|2

= E[‖ĥk‖4 + E[|eTk ĥ
∗
k|2]]−N2σ4

ĥj
= Nσ2

ĥk
(64)

I2 = E[hTk ĥ
∗
j ĥ

T

j h
∗
k] = E[|ĥ

T

k ĥ
∗
j |2] + E[|eTk ĥ

∗
k|2]

= Nσ2
ĥj
. (65)

Regarding I3, we have S = IN when R-AN scheme is used,
and S = IN − Pproj when NS-AN scheme is used, where
Pproj = Ĥ∗(ĤT Ĥ∗)−1ĤT is the projection matrix. Hence,

I3 =

{
N if R-AN
(N −K)(1− σ2

ĥk
) if NS-AN.

(66)

Substituting (64)- (66) with definitions of c1 and c2 in (63)
yields

σ2
neff,MRT =

2θβkpd
π tr(Σ)

σ2
ĥk︸ ︷︷ ︸

beamforing uncertainity

+
2θβkpd
π tr(Σ)

K∑
j=1,j 6=k

σ2
ĥj︸ ︷︷ ︸

inter-user interference

+ PAN︸︷︷︸
artificial noise

+ βkσ
2
qpd + 1︸ ︷︷ ︸

quantization noise plus AWGN

=
2θβkpd
π

+ PAN + βkσ
2
qpd + 1. (67)

where

PAN =

{
2θ̄βkpd/π if R-AN
2θ̄βkpd(1− σ2

ĥk
)/π if NS-AN.

(68)

Substituting (62), (67) with (68) in (35), the first part of
Theorem 1 follows.

B. ZF-BF

For ZF-BF, we have

aZF = c1
√
βk E[hTkwk]︸ ︷︷ ︸

I0

(69)

σ2
neff,ZF = c21βk Var(hTkw

∗
k)︸ ︷︷ ︸

I1

+

K∑
j=1,j 6=k

c21βk E[|hTkw∗j |2]︸ ︷︷ ︸
I2

+ c22βk E[hTk Sh
∗
k]︸ ︷︷ ︸

I3

+βkσ
2
qpd + 1. (70)

where wk denotes the k-th column of W = Ĥ∗(ĤT Ĥ∗)−1.
Note that we need to evaluate I0, I1 and I2, while I3 is given
in (66). It is easy to show that I0 = 1

and hence

|aZF|2 =
2θβkpd
π tr(Σ−1)

(N −K) (71)

For I1 and I2, we proceed as follows.

I1 = E[|hTkwk|2]− |E[hTkwk]|2 = E[|hTkwk|2]− 1

= E[|eTkwk|2] = (1− σ2
ĥk

)E[‖wk‖2]

=
(1− σ2

ĥk
)σ−2

ĥk

N −K
(72)
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I2 = E[|hTkwj |2] = E[|eTkwk|2] = (1− σ2
ĥk

)E[‖wj‖2]

=
(1− σ2

ĥk
)σ−2

ĥj

N −K
(73)

Substituting (72), (73) (66) with the definitions of c1 and
c2 in (70), the effective noise can be expressed by

σ2
neff,ZF =

2θβkpd(1− σ2
ĥk

)

πσ2
ĥk

tr(Σ−1)︸ ︷︷ ︸
beamforing uncertainity

+
2θβkpd
π tr(Σ−1)

K∑
j=1,j 6=k

1− σ2
ĥk

σ2
ĥj︸ ︷︷ ︸

inter-user interference

+ PAN︸︷︷︸
artificial noise

+ βkσ
2
qpd + 1︸ ︷︷ ︸

quantization noise plus AWGN

=
2θβkpd
π

(1− σ2
ĥk

) + PAN + βkσ
2
qpd + 1. (74)

Finally, substituting (71), (74) combined with (68) in (35),
the second part of Theorem 1 follows. This completes the
proof.

APPENDIX C
PROOF OF THEOREM 2

Here we derive a simple upper-bound on Re (30). By the
concavity of log(·) , applying Jensen’s inequality to (30) yields

Re ≤ log
(
1 + c21βeE

[
wH
k g
∗C−1

e gTwk

])
. (75)

where Ce is the covariance matrix of effective noise given
by (31), which is rewritten again here:

Ce = c22βeg
TSg∗ + c23βeσ

2
qg

Tg∗ + 1. (76)

.
When R-AN approach is used, S = IN . Hence,

CR-AN
e = (c22βe + c23βeσ

2
q )‖g‖2 + 1

a.s.−−→ (c22βe + c23βeσ
2
q )N + 1

= 2θ̄βepd/π + βepdσ
2
q + 1 (77)

as N grows large which follows from the strong law of large
numbers.

When NS-AN approach is used, we have S = IN − Pproj.
Using Lemma 1, we can write

gTSg∗ = (
√
κRĥk + ε)TS(

√
κRĥk + ε)∗

= εTSε∗ = εT Ũ ŨHε∗ (78)

where Ũ ∈ CN×(N−K) comprise (N −K) eigenvectors (each
has norm 1) corresponding to the N − K repeated unity
eigenvalues of S. Since N � K (i.e., Massive MIMO setting),
Ũ ŨH can be very well approximated by a scaled identity
matrix, where the off-diagonal entries of Ũ ŨH are, in fact,
are much smaller than the diagonal entries. Thus,

Ũ ŨH ≈ tr(Ũ ŨH)

N
= (1−K/N)IN (79)

Substituting (79) in (78) yields

gTSg∗ ≈ (1−K/N)‖ε‖2 a.s.−−→ (N −K)(1− κRσ2
ĥk

) (80)

Therefore,

CNS-AN
e ≈ 2θ̄βepd(1− κRσ2

ĥk
)/π + βepdσ

2
q + 1. (81)

We summarize,

Ce ≈ (PAN
e + βepdσ

2
q + 1)IM (82)

where

PAN
e =

{
2θ̄βepd/π if R-AN
2θ̄βepd(1− κRσ2

ĥk
)/π if NS-AN.

(83)

Substituting (82) in (75) yields

Re . log

(
1 +

c21βeE[wH
k g
∗gTw]

PAN
e + βepdσ2

q + 1

)
. (84)

The expectation µ := E[wH
k g
∗gTw] for both the MRT-BF

and ZF-BF cases is evaluated as follows. For MRT-BF, setting
wk = ĥ

∗
k and using Lemma 1, we write

µMRT := E
[
ĥ
T

k g
∗gT ĥ

∗
k

]
= κRE[‖ĥk‖4] + 2

√
κR<(E[ĥ

T

k ĥ
∗
kε
T ĥ
∗
k]) + E[ĥ

T

k ε
∗εT ĥ

∗
k]

= κRσ
4
ĥk
N(N + 1) + (1− κRσ2

ĥk
)σ2
ĥk
N

= σ2
ĥk

(κRσ
2
ĥk
N + 1)N. (85)

where we make use of the fact that ε is independent of ĥ.
For ZF-BF, Lemma 1 allows us to write

µZF := E
[
wH
k g
∗gTwk

]
= E

[
wH
k (
√
κRĥ

∗
k + ε∗)(

√
κRĥ

T

k + εT )wk

]
=
(
κR + E[wH

k ε
∗εTwk]

)
= κR +

σ−2

ĥk
(1− κRσ2

ĥk
)

N −K
(86)

where we make use of the fact that ε is independent of
wk. Substituting (85) and (86) combined with (83) and the
definition of c1, in (84), (43) and (44) follow, respectively.
This completes the proof.
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