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Abstract

Approximate circuit design has gained significance in recent years targeting error tolerant applications. In this paper, we
consider the problem of minimizing the power for a given

accuracy, in a signal processing application with accurate adders replaced by low-power approximate adders. We first demon-

strate that the commonly used assumption that the inputs to the adder are uniformly distributed results in an inaccurate

prediction of error statistics for multi-level circuits. To overcome this problem, we propose the use of parameterized error

models for adders, with input static probabilities as parameters. The static probability computation in our work considers not

just the functionality of the adder but also its position in the circuit, functionality of its parents and the number of approximate

bits in the parent blocks. This parameterized error model can be incorporated in any optimization framework. We demonstrate

up to 6.5 dB improvement in the accuracy of noise power prediction when the proposed model is used to optimize an 8x8 DCT.
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Abstract—Approximate circuit design has gained significance
in recent years targeting error tolerant applications. In this
paper, we consider the problem of minimizing the power for a
given accuracy, in a signal processing application with accurate
adders replaced by low-power approximate adders. We first
demonstrate that the commonly used assumption that the inputs
to the adder are uniformly distributed results in an inaccurate
prediction of error statistics for multi-level circuits. To overcome
this problem, we propose the use of parameterized error models
for adders, with input static probabilities as parameters. The
static probability computation in our work considers not just
the functionality of the adder but also its position in the circuit,
functionality of its parents and the number of approximate bits
in the parent blocks. This parameterized error model can be
incorporated in any optimization framework. We demonstrate up
to 6.5 dB improvement in the accuracy of noise power prediction
when the proposed model is used to optimize an 8× 8 DCT.

Index Terms—Accuracy, approximate adder, error model, low
power, noise power, optimization, static probability.

I. INTRODUCTION

Approximate computing is widely used in signal and im-
age processing applications to obtain improvements in power
and/or speed while maintaining the required accuracy. Adders
are the basic building blocks in these applications and a typical
implementation has a large number of adders. A variety of
approximate adders have been proposed in the literature, with
different levels of trade-offs between accuracy and perfor-
mance. These adders can be classified as low-latency [1] (and
references therein) and low-power approximate adders [2]–[7].
In this paper, our focus is power optimized implementations
of signal processing algorithms using low power approximate
adders (LPAA). This requires an optimization routine to find
the maximum number of approximate bits possible in each
adder for a given accuracy. This in turn requires accurate error
models for the approximate adders.

In the literature, multiple approaches have been proposed to
find optimal approximation levels for adders used in low power
implementations. An approximate Finite Impulse Response
(FIR) filter is designed by fixing the level of approximation of
the adders using Monte-Carlo simulations in [8]. Approximate
mirror adder-5 (AMA-5) [4] modeled assuming uniformly
distributed inputs are used in a 2D Discrete Cosine Transform
(DCT) module constructed using 1D DCT blocks in [9] and

The authors are with the Department of Electrical Engineering, Indian
Institute of Technology Madras, India.
E-mail: ee13d003,vinita,nitin@ee.iitm.ac.in.

the optimization problem is solved using a mixed integer non-
linear problem solver. Cartesian Genetic Programming (CGP)
is used to design various approximate implementations of four
point 1D DCT in [10]. An expression for variance of error of
AMA 1-5 adders [4] and Lower part OR adder (LOA) [5] is
obtained in [11] empirically by regression assuming uniform
inputs, and heuristics are used to solve the approximation-
level optimization problem. In [12], AMA 1-5 adders and
Transmission Gate based Approximate adders TGA I-II [13]
are considered. An expression for mean square error (MSE)
is obtained assuming that the distribution of inputs and error
are uniform. This is then used in a Lagrange multiplier based
optimization approach.

All of the above previous works on optimization use error
metrics based on uniformly distributed inputs. Moreover, the
same error model is used for all adders in the circuit. To verify
the validity of these assumptions, we analytically compute the
noise power (NP1) at the output of an approximate 8 × 8
DCT module [14] and compare it with that obtained using
Monte-Carlo simulations (NPsim) in Table I. For Monte-
Carlo simulations, we considered 105 uniformly distributed
random inputs. The DCT module consists of 288 adders
spread over 6 levels denoted by L1 − L6 in the table. The
accurate adders are replaced with LOAs. The inputs to the
DCT module are assumed to have 15 bits of precision, i.e.
Q1.15 in fixed point format. Analytical and simulated noise
power are computed for various combinations of approximate
bit assignments for adders in different levels as mentioned
in the table. The absolute error in noise power prediction is
given by |e1| = |NPsim − NP1|. From Table I, we see that
the analytical noise power differs from the simulated value by
as much as 11 dB.

While the assumption of uniformly distributed lower order
bits may be justified for the primary inputs, neither the
output nor the error is uniformly distributed at the output
of most LPAAs. A more accurate method of obtaining the
probability mass function (PMF) of error is proposed in
[15]. However, including this method within an optimization
routine would require extensive computations. Moreover, in
most applications, an accurate estimate of the mean error and
MSE is sufficient and we do not need the PMF of the error.

In this paper, we use parameterized error models based on
static probabilities of the inputs to each adder. A uniform
distribution implies a static probability of 0.5, which is what
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TABLE I: Noise power computation (in dB) using analysis and simulation
of an 8× 8 DCT module that uses Lower part OR adders.

NP1 NPsim |e1| No. of approximate bits
-53.45 -51.20 2.25 L1 − L4: 5; L5 − L6: 6
-51.76 -44.67 7.09 L1 − L2: 5; L3 − L6: 6
-51.32 -43.00 8.32 L1 − L2: 5; L3 − L5: 6; L6: 7
-50.55 -41.21 9.34 L1 − L2: 5; L3 − L4: 6; L5 − L6: 7
-47.59 -36.50 11.09 L1: 5; L2 − L3: 6; L4 − L5: 7; L6: 8

is used in most error models. Since the inputs to most of
the adders come from other approximate adders, we derive
the value for the static probability at the output of each
approximate adder. The mean error and MSE contributed by
an adder is computed based on the static probabilities of the
output of its parent blocks. Therefore, in our framework, the
optimizer is not just aware of which approximate adder is used,
but also its parents and the number of approximate bits used
in the parent blocks. This significantly improves the accuracy
prediction, as will be seen in the results.

Each approximate adder requires the static probabilities of
its input bits, which eventually traces back to the primary
inputs. As mentioned, in the literature, the distribution of the
lower order bits is assumed to be uniform. Some justification
for this assumption on primary inputs is included in [7]. In
this paper, we derive an exact condition under which the
lower order bits of a signal is uniformly distributed and
check the validity of the assumption on primary input of an
image processing application, where the intensity distribution
of image pixels is very non-uniform.

To summarize, our main contributions are as follows:
1) We develop an optimization framework using parame-

terized error models for LPAAs to maximize the number
of approximate bits in each adder of a signal processing
application for a given accuracy constraint.

2) We show that the Discrete Fourier Transform (DFT) of
a signal satisfies a certain condition if the distribution
of the lower order bits is uniform.

3) We obtain power-optimized implementations of an FIR
filter and a 2D 8×8 DCT module using the optimization
framework and demonstrate significant improvement in
accuracy prediction due to the use of the parameterized
error models.

We have organized this paper as follows: In Section II,
we present the methodology to derive the parameterized error
model and to assign input probabilities to approximate adders
in a multi-level circuit. In Section II-A, we derive the condi-
tions under which the lower order bits of the primary inputs
will have uniform distribution. The details of the optimizer that
is developed to obtain the optimal number of bits that can be
approximated for a given accuracy constraint are presented in
Section III. The results are shown in Section IV and finally
Section V concludes the paper.

II. PARAMETERIZED ERROR MODELS FOR LOW POWER
APPROXIMATE ADDERS

The general assumption in deriving various error metrics for
approximate adders is that the k LSBs of the N -bit input A are
uniformly distributed, resulting in static probabilities Pai =
0.5 for i = 0, 1, . . . , k − 1. In the literature, the expressions

for mean error and MSE are derived using this. However, the
static probability at the output of approximate adders is not
0.5 (for example, for LOA it is 0.75 and for AMA-1 it is
0.25), which means that the output PMF is not uniform. If
this forms the input to a subsequent adder, the error models
are inaccurate. Instead, we can parameterize the error metrics
in terms of static probabilities and use the right values for each
adder.

Generally an N -bit LPAA is constructed using k approxi-
mate full adders to compute the lower part sum and N − k
accurate full adders to compute the upper part sum. Let
ŝi = f(ai, bi, ĉi−1) and ĉi = g(ai, bi, ĉi−1) be the sum and
output carry of an approximate full adder. Therefore, Pŝi and
Pĉi are functions of Pai , Pbi and Pĉi−1

. To find Pŝi and Pĉi ,
we assume that (a) the inputs are independent of each other and
(b) the probability of getting a carry in each bit is the same,
i.e., Pĉi = Pĉi−1 . The first assumption is an approximation
when the circuit has reconvergent fanouts. However, it is a
reasonable approximation in many cases as correlations are
diluted as the logic depth increases, as argued in [15]. We do
not have a rigorous justification for the second assumption,
but estimates for Pĉi are close to what is obtained using
c−1 = 0 and working out the statistics for each bit location as
in [4]. Also, the error expression for AMA-1 adder obtained
using this assumption is what is used in [12]. Simulations also
indicate that this is a good assumption. With these assumptions
and using the truth table of the approximate full adder, it is
possible to derive expressions for Pŝi and Pĉi .

The error in the output is due to the approximate lower part
sum and the approximate carry to accurate adder. This can be
written as

Es =

k−1∑
i=0

(ai + bi)2
i −

k−1∑
i=0

ŝi2
i − ĉk2

k. (1)

The mean error of the approximate adder is given by

E{Es} =
k−1∑
i=0

(Pai + Pbi)2
i −

k−1∑
i=0

Pŝi2
i − Pĉk2

k. (2)

The MSE can be derived in a similar fashion. The expression
for MSE also involves joint probabilities P (aibi) = PaiPbi
and P (aiaj), i 6= j. In addition to the assumption that the
inputs are independent, we also assume that individual bits of
each input are independent, which is a reasonal approximation
as discussed in [15].

An exception to this method for deriving error models is
ETA-I [6], where the lower part sum is not constructed using
similar approximate full adders. Its error metrics are derived
in our earlier work [16].

In DSP systems, the inputs to the adder are either the
primary inputs or they are output of another approximate adder
or (in our case, accurate) multiplier. We now consider each of
these cases.

A. Static Probabilities: Primary inputs

Typical PMF of any primary input such as an image is
not uniform. As an example, the PMF of Cameraman image
is shown in Fig. 2a. However, we are concerned about the
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PMF of the lower bits of the input signal or image, since
error expression of a LPAA involves the probability of the
lower k bits that are approximated. In all the previous works,
the distribution of lower order bits of all primary inputs are
assumed to be uniform. We now derive conditions for the k
LSBs of an N bit signal to be uniform.

Let FA be the 2N -point DFT of the PMF of N -bit signal
A and FAL

be the 2k-point DFT of the PMF of AL (k LSBs
of A). We have,

FAL
[m] =

2k−1∑
n=0

P (AL = n)e−jmn2π/2
k

(3)

=

2k−1∑
n=0

2N−k−1∑
l=0

P (A = l2k + n)e−jmn2π/2
k

=

2N−k−1∑
l=0

l2k+2k−1∑
n′=l2k

P (A = n′)e−jmn
′2π/2kejml2

k2π/2k

=

2N−1∑
n′=0

P (A = n′)e−jmn
′2π/2k

=FA[m · 2N−k], 0 ≤ m < 2k. (4)

If AL is uniform, P (AL = n) =
1

2k
, 0 ≤ n < 2k. Hence from

(3), if AL is uniform, we have

FAL
[m] =

2k−1∑
n=0

1

2k
e−jmn2π/2

k

=

{
1, if m = 0

0, if 0 < m < 2k.
(5)

Since DFT is unique, the converse is also true. Therefore using
(4), we have the following condition to be satisfied for AL to
be uniformly distributed.

FA[m · 2N−k] =

{
1, if m = 0

0, if 0 < m < 2k.
(6)

In [17], they have similar condition for continuous signals that
are quantized, although the derivation is a little more involved.

To illustrate this condition (6), let us consider the Cam-
eraman image with N = 8. For the image pixel distribution,
FA[m · 2N−k] for different values of k, m varying from 0
to 2k − 1, is plotted in Fig. 1. It is seen that for lower
values of k, the value of the transform is very close to zero
for 0 < m < 2k. As k increases, the value of transform
also increases and for k = 5, the values are high. This is
confirmed from the actual PMF of the lower order bits of
the image shown in Fig. 2. From the figure, it is seen that
distribution can be considered uniform even if half the bits are

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.05

0.1

0.15

m

F
A
[m
·2

N
−
k
]

k = 1 k = 2 k = 3 k = 4 k = 5

Fig. 1: Illustration of condition for k lower-order bits of Cameraman image
to be uniform.

0 50 100 150 200 250

(a) N = 8
0 1

(b) k = 1
0 1 2 3

(c) k = 2

0 2 4 6

(d) k = 3
0 5 10 15

(e) k = 4
0 5 10 15 20 25 30

(f) k = 5

Fig. 2: (a) PMF of Cameraman image; (b)-(f) PMF of the lower k bits of the
image.
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Fig. 3: Adder tree in a circuit with N bits at primary inputs.

approximated. This turns out to be true for all the standard
images we have looked at. Hence, we assume that primary
inputs to the approximate adder are uniformly distributed.

B. Static Probabilities: Adders in the higher levels

If the inputs to the adder are the output of another adder as
in Fig. 3b, the mean and MSE are derived using Pŝi and Pĉk
as discussed previously.

The other possibility is that input is the output of a
multiplier. In this work, we are only optimizing adders and
all multipliers are accurate, with the output truncated to the
standard precision used in the circuit. Also, we only consider
linear systems, so that one of the inputs to the multiplier is
a constant coefficient. In Fig. 3a, consider Adder3 which has
an input from the output of the multiplier. Depending on the
value of the constant coefficient c, the probability of the LSBs
at the output of the multiplier (Pbi ) will vary. Let Pi denote the
probability that the ith bit of the k2 LSBs of the multiplicand
(output of Adder2) is 1. Consider the following cases.

1) When c = 2l and l ≥ 0, the product is the logical left
shift of the multiplicand. So Pbi = 0 for the first l LSBs
and Pbi = Pi−l for the next k2 − l LSBs.

2) When c = −2l and l ≥ 0, Pbi = 0 for the first l LSBs
and Pbi = 1− Pi−l for the next k2 − l LSBs is a good
approximation, accounting for flipping involved in the
two’s complement representation for negative numbers.

3) When c = 2l and l < 0, the product is the right shift of
the multiplicand. So Pbi = Pi+|l| for k2 − l LSBs.

4) When c = −2l and l < 0, Pbi = 1 − Pi+|l| for k2 − l
LSBs.

5) For c chosen uniformly at random, Monte Carlo simu-
lations indicate that the average static probability of the
output bits is 0.5±0.03 for each of the LSBs. Therefore,
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when c is not a power of 2, we assume that Pbi = 0.5
for k2 LSBs.

C. Truncation and Median adder (MA) in higher levels

Both Truncation and MA have their lower part sum bits
fixed to constant all 0’s and 1’s respectively. In these adders,
since the lower part sum is known, the lower part sum of the
adders in higher levels can be fixed more accurately so that
the accuracy of the approximate circuit is improved. In case
of Truncation adder, the approximate sum is obviously zero.
In Fig. 3b with Median adders, Adder1 and Adder2 will have
their lower part sum as 2k1 − 1 and 2k2 − 1, respectively.
For Adder3, instead of setting the lower part sum as 2k3 − 1,
we improve the accuracy of the circuit by setting the sum to
2k3+1 − 1 for the following cases:

1) If k3 ≤ k1, k2, the lower part sum is known exactly and
is equal to 2k3+1 − 2, which is closer to 2k3+1−1 than
2k3−1.

2) If k1 ≥ k3 > k2, the mean of the sum is (3 × 2k3 +
2k2 − 4)/2, which is closer to 2k3+1 − 1 than 2k3 − 1.

Using this setting, we obtain up to 6 dB improvement for the
adder tree in Fig. 3b.

III. OPTIMIZER FOR POWER-ACCURACY TRADE-OFF

The goal of the optimizer is to maximize the number of
approximate bits of the adders in the circuit for a given noise
power constraint at the output. The primary inputs to the
system are normalized to 1.N fixed point numbers with N
fractional bits. For each functional unit in the system, we
use the required number of integer bits while maintaining the
number of fractional bits as N . The output noise power is
computed based on the mean, MSE and the transfer function
from each adder to the output.

In [18], a three-step procedure that uses Minimum Width
algorithm, Mildest Greedy Ascent algorithm and Tabu search
algorithm was used to minimize the word length of each signal
in the circuit for a given accuracy constraint. We have adapted
the procedure to minimize the number of accurate bits in each
adder, for a given accuracy constraint at the output. For this
purpose, several modifications were made in the algorithms
in order to incorporate the parameterized error models of
various approximate adders and simultaneous satisfaction of
constraints at multiple outputs. The main differences when
compared to [18] are as follows:
• In [18], the error introduced at each node due to quantiza-

tion depended only on the number of bits quantized at that
node. In our case, we need to keep track of the number
of approximate bits in each adder, its parent nodes and
their functionality and the type of approximate adder.

• In [18], increasing the word-length of any signal results
in lower quantization noise. However, in the case of
approximate adders, the approximation noise can worsen
even if the number of accurate bits is increased in certain
cases. Although counter-intuitive, this happens as the
mean error shifts significantly for some of the adders.

• In Tabu search algorithm, we target signals with max-
imum number of accurate bits (instead of the most

TABLE II: Error in noise power computation (in dB), when the FIR filter
using ETA-I adders is optimized using Pi = 0.5 in the error model (NP1)

and parameterised error models (NP2).

NPt NP1 NPsim |e1| NP2 NPsim |e2|
-40 -40.36 -33.73 6.63 -40.06 -38.26 1.8
-45 -45.15 -38.68 6.47 -45.22 -43.5 1.72
-50 -50.23 -44.17 6.06 -50.25 -48.9 1.35
-55 -55.12 -49.84 5.28 -55.16 -54.61 0.55
-60 -60.15 -56.54 3.48 -60.16 -61.18 1.02

sensitive signal) for reduction and keep decreasing the
number of accurate bits as long as noise power constraint
is met. We found that this heuristic provides better power-
accuracy trade-off.

IV. EXPERIMENTAL RESULTS

All the approximate circuits are designed using Verilog and
synthesized with relaxed timing constraints using Synopsys
Design Compiler (DC) for 55nm technology to get a gate-
level netlist. The synthesized netlist along with Standard Delay
Format file generated by Synopsys DC is simulated with 105

uniform random inputs for FIR filter and standard images for
DCT computation. A full adder’s input pin capacitance is set
as the output load capacitance. Using the value change dump
(VCD) file generated after simulation, dynamic power is found
using Cadence Genus.

A. Application: FIR filter

First, we consider the direct form I realization of an 18-tap
low pass FIR filter, where the accurate adders are replaced with
approximate adders. Among the LPAAs, AMA-5 [4], LOA [5],
ETA-I [6], Truncation adder and MA [7] have been observed
to be very promising in terms of power savings [19], [20], [4],
[7]. So we use these approximate adders in our experiments.
In our implementation, we have assumed that the input of
the filter has 10 fractional bits and the filter coefficients and
multipliers’ outputs and adders’ outputs have 15 fractional bits
of precision.

For a given noise power at the output (NPt), the results
obtained by the optimizer when we use Pa,i = Pb,i = 0.5
in the error model for all the adders is given by NP1 in
Table II. As mentioned, for ETA-I adder, it is not possible to
get the static probability at the output using the procedure in
section II. However, based on the functionality, it is definitely
greater than 0.5. We assumed a value of 0.75 and use it in the
optimizer for the higher level adders and obtain NP2. Error in
noise power computation is the difference between the actual
simulated value (NPsim) and the predicted one using the error
model in the optimizer (NP1 and NP2). We see that the error
drops drastically from a maximum of 6.63 dB to 1.8 dB when
we use updated values of static probabilities in the error model.

The FIR filter is designed using various approximate adders,
with the help of the optimizer to obtain the number of approx-
imate bits in each adder. The dynamic power consumption
is obtained using the procedure described previously. Fig. 4a
shows the percentage power savings (power savings/power of
accurate circuit) in the FIR filter versus output noise power. It
is seen that the FIR filter implemented using MA and AMA-5
adders give maximum power savings.
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TABLE III: Error in noise power computation (in dB), when the 8× 8 DCT
using LOA is optimized using Pi = 0.5 in the error model (NP1) and

parameterised error models (NP2).

NPt NP1 NPsim |e1| NP2 NPsim |e2|
-40 -40.08 -32.66 7.42 -40.0 -39.1 0.9
-45 -45.01 -37.5 7.51 -45.0 -43.72 1.28
-50 -50.05 -43.77 6.28 -50.0 -48.38 1.62
-55 -55.01 -49.92 5.09 -55.0 -53.25 1.75
-60 -60.01 -54.64 5.37 -60.0 -58.5 1.5
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Fig. 4: (a) Percentage power savings in the FIR filter (b) Band of percentage
power savings vs Noise power at the output of DCT implemented using
various approximate adders.

B. Application: DCT

We consider the implementation of 8 × 8 DCT using the
transform matrix presented in [14], which is a multiplierless
transformation matrix with entries 0, 1 and -1. The circuit con-
sists of a chain of adders along with some two’s complement
blocks. For a given noise power at the output (NPt), the results
obtained by the optimizer when we use Pa,i = Pb,i = 0.5 in
the error model (NP1) and that obtained with updated bit
probabilities (NP2) for LOA adder are shown in Table III.
We see that the error drops drastically when the optimizer
uses proper values of bit probabilities in the error model.

For various input images such as Cameraman, Lena, Fishing
boat and Peppers, 8×8 DCT was performed with approxima-
tion optimized for various noise power values. The percentage
power savings obtained is plotted as a band in Fig. 4. For a
given noise power, DCT implementation using MA gives the
most power savings.

V. CONCLUSION

We have proposed parameterized error models for approxi-
mate adders using input static probabilities as parameters and
incorporated these error models in an optimization framework.
We have shown that the parameterized error models provide
better noise power prediction than the typical error models that
assume uniform input distribution. We obtain power-optimized
implementations of an FIR filter and a 2D 8×8 DCT of JPEG
encoder using various approximate adders. In comparison to
the other low power approximate adders considered in this
work, Median adders are shown to provide better power-
accuracy trade-off in applications.
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