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xAbstract—In this paper, the physical layer security of a dualhop

underlay uplink cognitive radio network is investigated over

Nakagami-m fading channels. Specifically, multiple secondary

sources are taking turns in accessing the licensed

spectrum of the primary users and communicating with a multiantenna

secondary base station (D) through the aid of a multiantenna

relay R in the presence of M eavesdroppers

that are also equipped with multiple antennas. Among the

remaining nodes, one jammer is randomly selected to transmit

an artificial noise to disrupt all the eavesdroppers that are

attempting to intercept the communication of the legitimate links

i.e., Si -R and R-D. The received signals at each node are combined

using maximum-ratio combining. Secrecy analysis is provided by

deriving closed-form and asymptotic expressions for the secrecy

outage probability. The impact of several key parameters on the

system’s secrecy e.g., transmit power of the sources, number of

eavesdroppers, maximum tolerated interference power, and the

number of diversity branches is investigated. Importantly, by

considering two scenarios, namely (i) absence and (ii) presence

of a friendly jammer, new insights are obtained for the considered

communication system. Especially, we tend to answer to the

following question: Can better secrecy be achieved without

jamming by considering a single antenna at eavesdroppers

and multiple-ones at the legitimate users (i.e., relay and enduser)

rather than sending permanently an artificial noise and
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considering that both the relay and the destination are equipped

with a single antenna, while multiple antennas are used by the

eavesdroppers? The obtained results are corroborated through

Monte Carlo simulation and show that the system’s security can

be enhanced by adjusting the aforementioned parameters.
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In this paper, the physical layer security of a dual-hop underlay uplink cognitive radio network

is investigated over Nakagami-m fading channels. Specifically, multiple secondary sources (Si)1≤i≤N

are taking turns in accessing the licensed spectrum of the primary users and communicating with a

multi-antenna secondary base station (D) through the aid of a multi-antenna relay R in the presence

of M eavesdroppers (Ek)1≤k≤M that are also equipped with multiple antennas. Among the remaining

nodes, one jammer is randomly selected to transmit an artificial noise to disrupt all the eavesdroppers

that are attempting to intercept the communication of the legitimate links i.e., Si-R and R-D. The

received signals at each node are combined using maximum-ratio combining. Secrecy analysis is

provided by deriving closed-form and asymptotic expressions for the secrecy outage probability. The

impact of several key parameters on the system’s secrecy e.g., transmit power of the sources, number

of eavesdroppers, maximum tolerated interference power, and the number of diversity branches is

investigated. Importantly, by considering two scenarios, namely (i) absence and (ii) presence of a friendly

jammer, new insights are obtained for the considered communication system. Especially, we tend to

answer to the following question: Can better secrecy be achieved without jamming by considering a

single antenna at eavesdroppers and multiple-ones at the legitimate users (i.e., relay and end-user) rather

than sending permanently an artificial noise and considering that both the relay and the destination are

equipped with a single antenna, while multiple antennas are used by the eavesdroppers? The obtained
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results are corroborated through Monte Carlo simulation and show that the system’s security can be

enhanced by adjusting the aforementioned parameters.

Index Terms

Cognitive Radio Networks, Eavesdropping, Jamming signals, Physical Layer Security, Secrecy

outage probability.

I. INTRODUCTION

The increasing number of mobile users led to an unprecedented demand for spectral resources.

In this regard, cognitive radio has emerged as a new paradigm that enhances the spectrum

efficiency by allowing its reuse [1]. In underlay cognitive radio networks (CRNs), the issue

of radio-frequency spectrum scarcity is alleviated by allowing the secondary users (SUs) to

share the spectrum with primary users (PUs) under the condition of not causing any harmful

interference to them. Consequently, the SUs are required to continuously adjust their transmit

powers in order to meet the PUs’ quality of service (QoS). Under such constraints, ensuring the

physical layer security (PLS) of multi-hop CRNs becomes a challenge of utmost importance.

To remedy this problem, several techniques can be used to strengthen the secrecy capacity

at each hop namely increasing the number of diversity branches at the receivers, sending a

jamming signal with the highest power, increasing maximum transmit power at the source and

maximum tolerated interference power as well, reducing the number of hops, employing zero-

forcing precoding techniques, involving energy harvesting (EH) and non-orthogonal multiple

access (NOMA) technique etc.

Recently, the PLS of CRNs has been the focus of many recent research works. For instance,

non-cooperative CRNs were considered in [2]-[5], therein all receivers i.e., both destination and

eavesdropper were assumed to be equipped with multiple antennas and perform the selection

combining (SC) technique. Particularly, in [2], the source is also assumed to be a multi-antennas

node performing transmit antenna selection, while in [3] the secrecy performance is investigated

for both secondary and primary networks. Closed-form and asymptotic expressions for the

secrecy outage probability (SOP) were derived under Rayleigh [3], [4] and Nakagami-m [2], [5]

fading models.

The PLS of multi-relays dual-hop CRNs was explored in [6]-[9]. Specifically, in [6] and

[7], the communication was performed in the presence of only one eavesdropper attempting to
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overhear the communication channel, while multiple eavesdroppers were considered in [8] and

[9]. Furthermore, In [6], optimal and suboptimal relay selection were analyzed while in [7] the

relay that minimizes the signal-to-noise ratio (SNR) of the wiretap link was chosen. Besides,

in [8], the most threatening eavesdropper is selected first according to the maximum SNR of

the wiretap links between the source and the eavesdroppers. Next, the best relay minimizing the

SNR at the selected eavesdropper is then chosen. In [9], the relay that maximizes the achievable

secrecy rate is selected. Under these conditions, closed-form and asymptotic expressions for

the SOP and intercept probability (IP) were derived over either Nakagami-m [6] or Rayleigh

[7]-[9] fading channels. The IP and SOP analysis of cooperative underlay EH-based CRNs have

been investigated in [10] and [10]-[14], respectively. Specifically, the SUs have been assumed to

harvest energy from the PU’s signals in [10]-[12]. In contrast, in [13]-[14] the relay is harvesting

energy from the SU signals instead.

The PLS of NOMA-based CRNs has been investigated in [15]-[16]. In [15], an overlay NOMA

CRN was considered such that the SUs were assumed to be eavesdroppers, while the PLS of

mmWave NOMA CRN was investigated in [16]. Closed-form expressions for the connection

outage probability, SOP and secrecy throughput were derived over Nakagami-m fading channels.

PLS analysis through the aid of a friendly jammer was discussed in [17]-[19]. In [17], the IP

was derived by considering multiple source-destination pairs communicating under eavesdropping

attempts of only one eavesdropper, with the source cooperation aided opportunistic jamming.

In [18], the SOP of dual-hop aided opportunistic jamming CRNs is investigated. In this work,

one relay is selected to forward the information while another one is chosen to disrupt the

eavesdropper by sending an artificial noise. Also, in the two aforementioned works, several

selection policies of the friendly jammer were considered. The impact of the friendly jammer’s

transmit power in the presence of multiple eavesdroppers by considering a direct communication

link between multiple sources and one destination is discussed in [19].

In this work, we investigate the joint impact of the friendly jammer’s transmit power, multiple

SUs with power adaptation constraint, number of eavesdroppers, number of diversity branches,

maximum tolerated interference power at the PU receiver on the PLS of a cooperative underlay

uplink CRNs under Nakagami-m fading model. Without loss of generality, it is worth mentioning

that each user is transmitting its data independently from other users. Consequently, the sources

are assumed to transmit in turns their data while a friendly jammer is randomly selected among

the remaining idle sources to transmit an artificial noise so as to disrupt the eavesdroppers. In
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this scheme, the nodes R, D, Ek perform MRC technique, hence the knowledge of the channel

state information (CSI) at these nodes is necessary. For this reason, we assume that the CSI is

available. Additionally, eavesdroppers are considered are passive.

The main contributions of this paper can be summarized as follows:

• The PLS of an underlay uplink dual-hop CRN operating under Nakagami-m fading environment

is investigated by deriving closed-form and asymptotic expressions for the SOP of the overall

system under two scenarios namely, (i) presence and (ii) absence of a friendly jammer.

• Under the power adaptation constraint of the SUs, the joint impact of the discussed parameters

on the system’s security is investigated.

• We show that the system’s security is enhanced in the presence of an important number

of eavesdroppers by increasing the (i) SUs’ transmit powers (ii) number of legitimate

destination branches (iii) and maximum tolerated interference power.

The rest of this paper is organized as follows. In Section II, the system and channel models

are presented. Closed-form as well as asymptotic expressions for the SOP are derived in Section

III. In Section IV, the numerical and simulation results are provided and discussed for various

key parameters’ values. Finally, this work is concluded in Section V.

II. SYSTEM AND CHANNEL MODELS

The considered two-hops CRN, represented in Fig. 1, consists of multiple sources (Si)i=1,..,N ,

one LR-antennas relay R, multiple LEk-antennas eavesdroppers (Ek)k=1,..,M , one destination D

equipped with LD antennas, one PU transmitter (PTx), and one PU receiver (PRx). For the

sake of simplicity, we assume that the relay receives the transmitted signals from Si on the LR

antennas and uses only one antenna to forward the message to D. Moreover, we consider multi-

user scheduling such that, at any given moment, only one user is transmitting its data. Also, the

source nodes are taking rounds in accessing the spectrum and a friendly jammer SJ is randomly

selected among N − 1 remaining nodes to send an artificial noise. This latter can be canceled

by legitimate nodes, while Ek cannot mitigate it, leading to an increase in the secrecy capacity.

Similarly to [17], we assume that a friendly jammer generates an artificial noise using a pseudo-

random sequence that is known to the legitimate users which allows them to cancel out this

noise, while this sequence remains unknown to the illegitimate ones. To this end, the main aim

of this work is to investigate the impact of a friendly jammer, legitimate, and wiretap channels’

average SNRs, maximum tolerated interference power as well as the spatial diversity at both the
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relay and the end-user on the secrecy performance of the considered communication system. In

this scheme, Nakagami-m fading model is considered for all links. The fading amplitudes of

links Si → R, R → (Dt)1≤t≤LD , Si → Ek, R → Ek, R → PRx, Si → PRx are denoted by

hq where q = {SiR, RDt, SiEk, REk, RP, SiP}. Consequently, the channel gains gq = |hq|2

are Gamma distributed with probability density function (PDF) and cumulative density function

(CDF) are given by

fgq(x) =
λ
mq
q

Γ(mq)
xmq−1e−λqx, (1)

Fgq (x) =
γ (mq, λqx)

Γ (mq)
, (2)

where λq =
mq

Ωq

, mq and Ωq denote the fading severity and the average channel power gain,

respectively, Γ (.) and γ (., .) are the Euler and the lower incomplete Gamma functions [21, Eqs.

(8.310.1), (8.350.1)], respectively. For a natural number mq, the above CDF can be written as

[13, Eq. (8.352.1)]

Fgq (x) = 1− e−λqx
mq−1∑
k=0

λkqx
k

k!
. (3)

The received signals at R, Ek at both hops, and D are given, respectively, by

y
(i)
R =

√
PSi ||hSiR||xSi + wSiRnR, i = 1, .., N, (4)

y
(i)
1Ek

=
√
PSi ||hSiEk ||xSi + ε

√
PSJ ||hSJEk ||xSJ + wSiEknEk , (5)

k = 1, ..,M, i = 1, .., N, J 6= i,

y2Ek =
√
PR||hREk ||xR + wREknEk , k = 1, ..,M, (6)

yD =
√
PR||hRD||xR + wRDnD, (7)

with

ε =

0, Absence of a jammer

1, Presence of a jammer
.

Here, Pn and xn denote the transmit power and signal from the node n, respectively where

n = {Si, R}, wq =
h†q
||hq || , q = {SiR, SiEk, REk, RD}, while hq denotes Ln × 1, channel

vector of the links Si-R, Si-Ek, R-D, † denotes the transpose conjugate, and ||.|| represents the

Frobenius norm. Also, nR, nD, and nEk , denote the Nn×1 additive white Gaussian noise vector
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at R, D, and Ek, respectively. For the sake of simplicity, all noise power vectors’ components

are considered equal N0.

Throughout the transmission process, both Si, and R have to adapt their transmit powers so

as to avoid causing harmful interference to the PUs. Thus, the transmit power of the source

and the relay R taking into consideration the maximum constraint power can be, respectively,

expressed as

PSi = min

(
Pmax
Si

,
PI
gSiP

)
; i = 1, .., N, (8)

and

PR = min

(
Pmax
R ,

PI
gRP

)
, (9)

where Pmax
Si

and Pmax
R denote the maximum transmit power at Si, and R, respectively, while

PI accounts for the maximum tolerated interference power at PRx.

𝑻𝒙
𝑹𝒙

.

.

.

...

Data link
Interference  link

Eavesdropping  link

Jamming link

D..𝑳 𝑫R.
.𝑹

. . . .

ா𝑴ாభ

Fig. 1: System setup.

III. SECRECY OUTAGE PROBABILITY

In this section, we start by defining the secrecy capacities for the two hops’ links. Next, we

present the SOP analysis in terms of both closed-form and asymptotic expressions for various

cases of fading severity parameters, specifically, those of the legitimate and the wiretap links

of the first hop. Also, two scenarios will be considered, namely, the presence and absence of a

friendly jammer.
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A. Secrecy Capacity

The secrecy capacity can be defined as the maximum rate at which the transmitted information

can confidentially reach its intended destination. In our considered system, the secrecy capacities

in the case of presence and absence of a friendly jammer are given, respectively, by

C(i,J)
s = min

k=1,..,M

(
C

(i, k,J)
1S , C

(k)
2S

)
, (10)

C(i)
s = min

k=1,..,M

(
C

(i, k)
1S , C

(k)
2S

)
, (11)

where

• C
(i, k,J)
1S and C(i, k)

1S denote the secrecy capacities at the first hop, i.e., the difference between

the capacity of the main link Si − R and the one of the wiretap channel Si − Ek in the

presence and absence of a friendly jammer, respectively, and can be written as

C
(i,k,J)
1S =


log2

(
1 + γ

(i)
R

1 + γ
(i,k,J)
1E

)
, γ

(i)
R > γ

(i,k,J)
1E

0, elsewhere

, (12)

C
(i,k)
1S =


log2

(
1 + γ

(i)
R

1 + γ
(i,k)
1E

)
, γ

(i)
R > γ

(i,k)
1E

0, elsewhere

, (13)

where γ(i)
R denotes the instantaneous SNR at R, while γ(i,k,J)

1E and γ(i,k)
1E stand for the SNRs

at the eavesdropper Ek in the presence and absence of a friendly jammer, respectively, and

are given by

γ
(i)
R = min

(
γSi ,

γI
gSiP

) LR∑
u=1

gSiRu , (14)

γ
(i,k,J)
1E =

min
(
γSi ,

γI
gSiP

)∑LEk
u=1 gSiE(u)

k

min
(
γSJ ,

γI
gSJP

)∑LEk
u=1 gSJE(u)

k
+ 1

, (15)

γ
(i,k)
1E = min

(
γSi ,

γI
gSiP

) LEk∑
u=1

g
SiE

(u)
k
, (16)

and γSi = Pmax
Si

/N0, γI = PI/N0, and γSJ = Pmax
SJ

/N0.
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• C
(k)
2S is the secrecy capacity of the second hop, representing the difference between the

capacity of the link R−D and the one of the wiretap channel R− Ek

C
(k)
2S =


log2

(
1 + γD

1 + γ
(k)
2E

)
, γD > γ

(k)
2E

0, elsewhere

, (17)

where γD, and γ(k)
2E denote the instantaneous SNR of the main link R−D and the channel

R− Ek, respectively and are given as

γD = min

(
γR,

γI
gRP

) LD∑
t=1

gRDt , (18)

γ
(k)
2E = min

(
γR,

γI
gRP

) LEk∑
u=1

g
RE

(u)
k
, (19)

with γR = Pmax
R /N0.

Remark 1. • One can see from (14) and (15), that the PHY layer security at the first hop

in the presence of a friendly jammer can be enhanced by increasing separately γI , γSi ,

or γSJ . Indeed, the increasing scale of the SNR at the relay exceeds the one of the kth

eavesdropper as a jamming signal is added to the one received by Ek. However, in the

absence of a friendly jammer, one can see from (14) and (16) that only the impact of

legitimate and wiretap channels’ parameters can make the distinction between the two

associated SNRs. Consequently, the smaller λSiR, the greater the secrecy capacity and then

the security gets improved.

• From (18) and (19), it can be noticed that increasing either γR or γI enhances more the

capacity of the legitimate link as D performs the MRC technique. Additionally, increasing

the number of antennas at the receiver increases the SNR at D. Consequently, the system’s

security gets enhanced as well.

B. Exact Secrecy Outage Probability

In this paper, the SOP is chosen as a performance metric and it accounts for the probability

that the secrecy capacity is less than a predefined secrecy rate Rs. For the considered system, the

N sources are taking rounds in accessing the spectrum then one jammer is randomly selected

among the N − 1 remaining sources. The SOP if there were no jamming, can be expressed as

SOP =
1

N

N∑
i=1

SOP (i), (20)
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while in the presence of a jammer, it becomes [17]

SOP =
1

N(N − 1)

N∑
i=1

N∑
J=1
J 6=i

SOP (i,J), (21)

where SOP (i) and SOP (i,J) account for SOP of the system linking Si with D in the presence

of eavesdroppers, and in the absence and presence of the J th friendly jammer, respectively. The

SOP of the considered system stands for the probability that at least one of the secrecy capacities

falls below a predefined secrecy rate Rs, namely

SOP (i,J) = 1−
M∏
k=1

Pr
(

min(C
(i, k,J)
1S , C

(k)
2S ) ≥ Rs

)
(22)

= 1−
M∏
k=1

[
1− SOP (i,k,J)

1

] [
1− SOP (k)

2

]
,

and

SOP (i) = 1−
M∏
k=1

[
1− SOP (i,k)

1

] [
1− SOP (k)

2

]
, (23)

where SOP (i,k,J)
1 and SOP

(i,k)
1 stand for the secrecy capacities at the first hop in the presence

and absence of a friendly jammer, respectively, and SOP (k)
2 represents the secrecy capacity at the

second hop. One can see from (22) and (23) that the computation of SOP requires the knowledge

of SOP (i,k,J)
1 , SOP

(i,k)
1 , and SOP (k)

2 as well.

Remark 2. As SOP (i,k,J)
1 , SOP

(i)
1 , and SOP (k)

2 are between 0 and 1, it is worth mentioning that

the greater is M , the greater is SOP (approaches 1), and then the system becomes vulnerable

to eavesdropping attack.

Theorem 1. The closed-form expressions of SOP (i,k,J)
1 , SOP

(i,k)
1 , and SOP (k)

2 under Nakagami-

m fading model are given by (24), (25), and (26), respectively, as shown at the top of the

next page, where $
(k)
i = γλSiR + λSiEk , σi = γI/γSi , δ = γI/γR, γ = 2RS , θ

(k,J)
i =

λSJEk/
(
γSJλSiEk

)
, ϕJ = λSJPγI/γSJ , ς

(k,J)
i = λSJEk/ (λSJPλSiEk) , ϕR = λRPγI/γR, ϕSi =

λSiPγP/γSi ,

M(h,l)
1 (z) = G2,2

2,3

z
∣∣∣∣∣∣ −h, 1;−

µ
(h,l)
i,k , LEkmSJEk ; 0

 , (27)
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SOP
(i,k,J)
1 = 1−

γ (mSiP , ϕSi) Γ
(
LRmSiR,

σiξSiR
γI

)
+M3

(
ξSiR
λSiP γI

)
Γ(LRmSiR)Γ (mSiP )

+
γα

(k,J)
i

Γ (mSiP )

LEkmSiEk−1∑
h=0

Ω
(i,k)
h

LRmSiR−1∑
l=0

Υ
(i)
l (γI)

−LRmSiR+l+1(
$

(k)
i

)LEkmSiEk+l−h

×

γ (mSiP , ϕSi) e
−
σiξSiR

γI

σ
−LRmSiR+l+1

i

+
λ
mSiP
SiP

Γ
(
mSiP + LRmSiR − l − 1, ϕSi +

σiξSiR
γI

)
(
λSiP +

ξSiR
γI

)mSiP+LRmSiR−l−1


×

[
γ (mSJP , ϕJ)M(h,l)

1

(
$

(k)
i θ

(k,J)
i

)
+M(h,l)

2

(
ς

(k,J)
i $

(k)
i

γI

)]
. (24)

SOP
(i,k)
1 = 1−

λ
LRmSiR
SiR

γ

Γ (LEkmSiEk) Γ(LRmSiR)Γ (mSiP )

LRmSiR−1∑
l=0

Υ
(i)
l γ
−LRmSiR+l+1

I

(γλSiR)l+1
G1,2

2,2

 λSiEk
λSiRγ

∣∣∣∣∣∣ −l, 1;−

LEkmSiEk ; 0

(25)

×

γ (mSiP , ϕSi) e
−
σiξSiR

γI

σ
−LRmSiR+l+1

i

+
λ
mSiP
SiP

Γ
(
mSiP + LRmSiR − l − 1, ϕSi +

σiξSiR
γI

)
(
λSiP +

ξSiR
γI

)mSiP+LRmSiR−l−1

 .

M(h,l)
2 (z) = G2,3

3,3

z
∣∣∣∣∣∣ (1−mSJP , ϕJ) , (1, 0), (−h, 0);−

(LEkmSJEk , 0),
(
µ

(h,l)
i,k , 0

)
; (0, 0)

 , (28)

µ
(h,l)
i,k = LEkmSiEk − h+ l, (29)

ξv = λv (γ − 1) ; v = {SiR,RD}, (30)

M3 (z) = G2,1
2,2

z
∣∣∣∣∣∣ (1−mSiP , ϕSi) ; (1, 0)

(0, 0) , (LRmSiR, 0);−

 , (31)

Ω
(i,k)
h =

(
LEkmSiEk−1

h

)
λ
LEkmSiEk−h−1

SiEk
, (32)

α
(k,J)
i =

β
(J)
k λ

LRmSiR
SiR

Γ (LEkmSiEk) Γ(LRmSiR)
, (33)

β
(J)
k =

1

Γ (LEkmSJEk) Γ(mSJP )
, (34)

Υ
(i)
l =

(
LRmSiR − 1

l

)
γl (γ − 1)LRmSiR−1−l , (35)
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SOP
(k)
2 = 1− λLDmRDRD

Γ (LEkmREk) Γ(LDmRD)Γ(mRP )

LDmRD−1∑
j=0

Bjγ−LDmRD+j+1
I

λj+1
RD

G1,2
2,2

 λ
REk

λRDγ

∣∣∣∣∣∣ −j, 1;−

LEkmREk ; 0

(26)

×

e− δξRDγI γ (mRP , ϕR)

δ−LDmRD+j+1
+
λmRPRP Γ

(
LDmRD +mRP − j − 1, ϕR + δξRD

γI

)
(
ξRD
γI

+ λRP

)LDmRD+mRP−j−1

 .

Bj =

(
LDmRD − 1

j

)
(γ − 1)LDmRD−1−j , (36)

where Gm,n
p,q

z
∣∣∣∣∣∣ (al)l≤p

(bu)u≤q

 denotes the Meijer’s G-function [21, Eq. (9.301)], Gm,n
p,q

z
∣∣∣∣∣∣ (al, bl)l≤p

(cu, du)u≤q


accounts for the upper incomplete Meijer’s G-function [22, Eq. (1.1.1)], and Γ (., .) denotes the

upper incomplete Gamma function [21, Eq. (8.350.2)].

Proof: The proof is provided in Appendix A.

C. Asymptotic Secrecy Outage Probability

In this subsection, we provide an asymptotic analysis of the derived closed-form expressions

of the SOP. The expressions given in (24), (25), and (26) can be approximated for SNR regime

by considering γP →∞.

Theorem 2. The Asymptotic expression of the SOP in the absence of a jammer is given by (50)

as shown in the next page, while it is expressed in the presence of a jamming signal depending

on various cases as follows

• LRmSiR < LEkmSJEk

SOP (i,k,J) ∼ 1−
M∏
k=1

AREk,RD,D (1) (37)

−

∑M
k=1

∏M
j=1
j 6=k

AREj ,RD,D (1)

γI

×AREk,RD,R,D
(

1− P (SiR) C(i,k,J)
1

)
,
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SOP (i) ∼ 1−
M∏
k=1

AREk,RD,D (1)ASiEk,SiR,R (1)− 1

γI

M∑
k=1

M∏
j=1
j 6=k

AREj ,RD,D (1)ASiEj ,SiR,R (1)(50)

×
(
AREk,RD,D (1)ASiEk,SiR,Si,R +ASiEk,SiR,R (1)AREk,RD,R,D

)
,

• LRmSiR > LEkmSJEk

SOP (i,k,J) ∼ 1−
M∏
k=1

AREk,RD,D (1) (38)

−

∑M
k=1

∏M
j=1
j 6=k

AREj ,RD,D (1)

γI

×AREk,RD,R,D
(

1− P (SJEk) C(i,k,J)
2

)
,

• LRmSiR = LEkmSJEk = 1

SOP (i,J) ∼ 1−
M∏
k=1

AREk,RD,D (1) +
log (γI)

γI
(39)

×
M∑
k=1

M∏
j=1
j 6=k

AREj ,RD,D (1)AREk,RD,D (1) C(i,k,J)
3 .

• LRmSiR = LEkmSJEk and LEkmSJEk > 1

SOP (i,J) ∼ 1−
M∏
k=1

AREk,RD,D (1)− 1

γI

M∑
k=1

M∏
j=1
j 6=k

×AREj ,RD,D (1)AREk,RD,R,D, (40)

where P (q) = 1 − sgn (Lvmq − 1) , q = {SiR, SJEk}, sgn stands for sign function

A•,•,• (•), A•,•,•,•, and
(
C(i,k,J)
l

)
l={1,2,3}

are defined in (51), (52), and (53)-(55), respectively.

Proof: The proof is provided in Appendix B.

IV. RESULTS AND DISCUSSION

In this section, we validate the derived analytical results through Monte Carlo simulation by

generating 106 Gamma-distributed random variables. The setting parameters of the simulation
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Ae,c,v (y) =
1

Γ (Lvme) Γ(mc)
G1,2

2,2

 λe
λcγ

∣∣∣∣∣∣ −Lvmc + y, 1;−

Lvme; 0

 , e = {SiEk, REk}, c = {SiR,RD}, y = {1, 2}, v = {R,D}

(51)

Ae,c,u,v =


λc(Lvmc−1)Ae,c,v(2)

Γ(muP )

[
δγ (muP , ϕu) + Γ(muP+1,ϕu)

λuP

]
− ξcAe,c,v(1)

Γ(muP )

[
δ
(
γ (muP , ϕu) + ϕmuP−1

R e−ϕu
)

+ muP
λuP

Γ (muP , ϕu)
]
 , u = {Si, R}, v = {R,D}

(52)

are summarized in Table 1. Indeed, the values of fading severity parameter m• have been chosen

such that the wiretap channel is better than the legitimate one. Moreover, their values are taken

integer in the range 2..5 similarly to [6] and [20]. On the other hand, the average SNR, which

is inversely proportional to λ•, the legitimate link is considered better than the one of the

wiretap channel. It is worthwhile that these parameters are associated with all figures except

those indicating other values. As one can see in Figs. 2-5, all closed-form and simulation curves

are perfectly matched for considered parameters’ values.

Fig. 2 and Fig. 3 depict closed-form and asymptotic expressions for the SOP versus γI for

various values of antennas’ numbers in both the presence and absence of a friendly jammer

cases, respectively. As stated in remark 1, It can be noticed that the greater γI , the smaller the

SOP. Interestingly, above a certain threshold of γI the SOP becomes steady this can be obviously

justified from (8) and (9) that above that threshold, both sources and relay will always transmit

with their maximum powers. Consequently, the legitimate and wiretap capacities of each hop

TABLE I: Simulation parameters.

Parameter M N λSiR λSiP λSiEk

value 3 4 0.1 0.3 0.6

Parameter λREk λRP λRD mSiR mSiP

value 0.6 0.2 0.1 2 3

Parameter mSiEk mRD mREk mRP

value 5 2 4 3
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C(i,k,J)
1 =

1

Γ (mSiP )



[
γ (mSiP , ϕSi)σ

LRmSiR
i +

Γ(mSiP+LRmSiR,ϕSi)

λ
LRmSiR
SiP

]
ξ
LRmSiR
SiR

LRmSiRΓ(LRmSiR)
+ γα

(k,J)
i

∑LRmSiR−1

l=0 Υl

×

[
γ(mSiP ,ϕSi)

σ
−LRmSiR+l+1

i

+
Γ(mSiP+LRmSiR−l−1,ϕSi)

λ
LRmSiR

−l−1

SiP

]
Γ(LEkmSJEk−l−1)Γ(LEkmSiEk+l+1)

l+1

×
[
γ (mSJP , ϕJ)

(
δλSJEk
λSiEk

)l+1

+ Γ (mSJP + l + 1, ϕJ)
(
ς

(k,J)
i

)l+1
]


,

(53)

C(i,k,J)
2 ∼ γLRmSiRα

(k,J)
i

LEkmSJEk

[
γ (mSJP , ϕJ)

(
δλSJEk
λSiEk

)LEkmSJEk
+ Γ (mSJP + LEkmSJEk , ϕJ)

(
ς

(k,J)
i

)LEkmSJEk](54)

×
LEkmSiEk−1∑

h=0

Ω
(i,k)
h Γ (LEkmSiEk + LRmSiR − LEkmSJEk − h− 1) Γ (LEkmSJEk + h+ 1)(

$
(k)
i

)LEkmSiEk+LRmSiR−LEkmSJEk−h−1
,

remain constant, leading to a constant value of SOP. Interestingly, by comparing the SOP values

in the two aforementioned figures, one can ascertain that better secrecy is achieved by using

a friendly jammer. In addition, the asymptotic curves are plotted under the considered fading

severity values (i.e., mSiR = 2, mSJEk = 5) from Eqs. (37), (51)-(53). Clearly, the asymptotic

curves match with the closed-form ones in high SNR regime.

Fig. 4 illustrates the SOP versus γSJ for numerous values of branches’ number LD at the

receiver D. Again, as indicated in remark 1, one can realize that the higher γSJ and LD, the

smaller the SOP and therefore the system’s security gets improved.

Fig. 5 and Fig. 6 show the SOP as a function of the number of eavesdroppers M for different

values of γSJ and by considering both cases i.e., presence and absence of jammer. One can

observe that the smaller γSJ or the greater M the worst is the system’s secrecy as highlighted in

remark 1 and 2, respectively. In addition, introducing a jamming signal improves significantly the

secrecy performance for high values of γSJ or in the presence of small numbers of eavesdroppers.

Fig. 7 depicts the SOP as a function of the number of eavesdroppers by considering the presence

and absence of a friendly jammer. It is worth mentioning that better security is obviously achieved

for the case of presence of jammer and multi-antenna nodes, while the scenario of the absence of

jammer and legitimate nodes equipped with a single antenna is the worst case. For this reason, our
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C(i,k,J)
3 =

γLRmSiRα
(k,J)
i

$LRmSiR−LEkmSJEk

[
γ (mSJP , ϕJ)

(
δλSJEk
λSiEk

)LEkmSJEk
+
(
ς

(k,J)
i

)LEkmSJEk
Γ (mSJP + LEkmSJEk , ϕJ)

]
(55)

(−1)LEkmSJEk−LRmSiR Γ (LEkmSiEk + LEkmSJEk)

LEkmSJEk

.
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Asymptotic

L=2

L=3

L=4

Fig. 2: SOP vs γI for different values of antennas at the destination in the presence of a friendly

jammer for η = σi = δ = 0.1 and LR = LEk = LD = L.

aim here is to investigate if the security gets enhanced when having artificial noise and legitimate

nodes with a single antenna or the scenario of the absence of jammer and all legitimate nodes

are equipped with multiple antennas. One can obviously notice that the system’s security is

improved when diversity is used at the legitimate nodes. Additionally, in the presence of an

important number of eavesdroppers, the friendly jammer does not contribute to the enhancement

of the system’s security.

V. CONCLUSIONS

In this paper, the physical layer security of a dual-hop underlay uplink CRN operating under

Nakagami-m fading channels was investigated. We considered multiple sources communicating,

in turn, with the base station through a relay in the presence of several eavesdroppers attempting

to overhear the communication channels. All receivers, i.e., legitimates and wiretappers, were

assumed to be equipped with multiple antennas and perform the MRC technique. Closed-form

and asymptotic expressions for the SOP under various cases of fading parameters’ values were
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Fig. 3: SOP vs γI in the absence of a friendly jammer for σi = δ = 0.1 and LR = LEk = LD = L.
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Fig. 4: SOP vs γSJ for different values of antennas at the destination for γI = γSi = γR = 20

dB and LR = LEk = LD = L.

derived by considering two scenarios namely, (i) presence and (ii) absence of a friendly jammer.

The obtained results showed that the best secrecy is achieved in the presence of a small number

of eavesdroppers when increasing the transmit power of the SUs’, the number of antennas

at the legitimate receiver and the maximum tolerated interference power at the PU as well.

Interestingly, we showed that equipping the legitimate nodes by multiple antennas leads to a

noticeable enhancement of the system’s security rather than sending an artificial noise. As future

work, we intend to investigate the impact of NOMA jointly with the key parameters considered

in this work on the system’s secrecy. We also intend to consider the case of amplify-and-forward
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relaying protocol and investigate the impact of numerous jammer selection policies on the overall

system’s security.

APPENDIX A: PROOF OF THEOREM 1

A. Expression of SOP at the First Hop

The SOP at the first hop in the absence and presence of a friendly jammer is given, respectively,

by

SOP
(i,k)
1 = 1− γ

∫ ∞
x=0

fgSiP (x)Ξ
(i,k)
2 (x) dx, (56)
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Fig. 7: SOP vs the number of eavesdroppers in the presence and absence of friendly jammer

and different numbers of antennas for γSJ = 20 dB.

SOP
(i,k,J)
1 = 1− γ

∫ ∞
x=0

fgSiP (x)Ξ
(i,k,J)
1 (x) dx, (57)

where (57) and (56) hold by using integration by parts on [23, Eq. (33)] , with

Ξ
(i,k,J)
1 (x) =

∫ ∞
0

f
γ

(i)
R |gSiP=x

(γy + γ − 1)F
γ

(i,k,J)
1E |gSiP=x

(y)dy, (58)

and

Ξ
(i,k)
2 (x) =

∫ ∞
0

f
γ

(i)
R |gSiP=x

(γy + γ − 1)F
γ

(i,k)
1E |gSiP=x

(y)dy, (59)

and γ is being defined in Theorem 1.

• Conditional CDF of γ(i)
R

The CDF of γ(i)
R for a given gSiP can be expressed as

F
γ

(i)
R |gSiP=x

(z) = Pr

(
min

(
γSi ,

γI
x

)
ESiR ≤ z

)
(60)

= FESiR

(
z

Φ (x)

)
,

where ESiR =
∑LR

u=1 gSiRu , Φ (x) = γSi for x ≤ γI/γSi and Φ (x) = γI/x for x > γI/γSi .

1) SOP at the First Hop with the Absence of a Jamming Signal: The conditional CDF of

γ
(i,k)
1E can be expressed as

F
γ

(i,k)
1E |gSiP=x

(y) = Pr

(
min

(
γSi ,

γI
x

)
ESiEk ≤ y

)
= FESiEk

(
y

Φ (x)

)
. (61)
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where ESiEk =
∑LR

u=1 gSiE(u)
k
.

It is worth mentioning that for i.i.d Nakagami-m channels, ESiR and ESiEk are Gamma

distributed with shape and scale parameters LRmSiR and λSiR, LEkmSiEk and λSiEk , respectively.

Substituting (60) and (61) into (59), and using [24, Eqs. (06.06.26.0004.01), (07.34.21.0088.01]

yields

Ξ
(i,k)
2 (x) =

λ
LRmSiR
SiR

e−
ξSiR

Φ(x)

ΦLRmSiR (x) Γ (LEkmSiEk) Γ(LRmSiR)

LRmSiR−1∑
l=0

Υ
(i)
l (62)

×
(
λSiRγ

Φ (x)

)−l−1

G1,2
2,2

 λSiEk
λSiRγ

∣∣∣∣∣∣ −l, 1;−

LEkmSiEk ; 0

 ,

where Υ
(i)
l is defined in (35).

Now, replacing (62) into (56), one can obtain

SOP
(i,k)
1 = 1−

λ
LRmSiR
SiR

γ

Γ (LEkmSiEk) Γ(LRmSiR)

LRmSiR−1∑
l=0

Υ
(i)
l

(γλSiR)l+1

×H1G
1,2
2,2

 λSiEk
λSiRγ

∣∣∣∣∣∣ −l, 1;−

LEkmSiEk ; 0

 , (63)

where

H1 =

∫ ∞
0

fgSiP (x)e−
ξSiR

Φ(x)

ΦLRmSiR−l−1 (x)
dx (64)

(a)
=
γ
−LRmSiR+l+1

I

Γ (mSiP )


e
−
σiξSiR
γI

σ
−LRmSiR+l+1

i

γ (mSiP , ϕSi)

+
λ
mSiP
SiP

Γ

(
LRmSiR+mSiP−l−1,ϕSi+

ξSiR

γSi

)
(
λSiP+

ξSiR

γI

)LRmSiR+mSiP
−l−1

 ,
where step (a) is obtained by replacing Φ (x) by its values, and performing some algebraic

manipulations.

Now, incorporating (64) into (63), (25) is attained.
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2) SOP at the First Hop in the Presence of a Jamming Signal: In the presence of a friendly

jammer, the CDF of γ(i,k,J)
1E for a given gSiP is given by

F
γ

(i,k,J)
1E |gSiP=x

(y)
(a)
=

∫ ∞
0

FESiEk

(
y (t+ 1)

Φ (x)

)
(65a)

× f
W

(J)
k

(t) dt

(b)
= 1−Ψ

(k)
i (y) (65b)

×
LEkmSiEk−1∑

h=0

(
LEkmSiEk − 1

h

)
V(h)(y),

where W (J)
k = min

(
γSJ ,

γP
gSJP

)
ESJEk , ESJEk =

∑LEk
u=1 gSJE(u)

k
, V(h)(y) =

∫∞
0
the−

yλSiEk
Φ(x)

tF
W

(J)
k

(t) dt,

Ψ
(k)
i (y) =

yfSiEk(
y

Φ(x))
Φ(x)

. Here step (65a) holds using the definition (15), while step (65b) is

obtained by using integration by parts alongside the Binomial formula for a positive integer

LEkmSiEk . Importantly, the derivation of the CDF of γ(i,k,J)
1E requires the one of W (J)

k , given as

F
W

(J)
k

(t) = Pr

(
ESJEk ≤

t

γSJ
,
γI
gSJP

≥ γSJ

)
(66)

+ Pr

(
ESJEk
gSJP

≤ t

γI
,
γI
gSJP

≤ γSJ

)
= FESJEk

(
t

γSJ

)
FgSJP

(
γI
γSJ

)
+ I(k,J)

1 .

where

I(k,J)
1 =

∫ ∞
γI
γSJ

fgSJP (ν)FESJEk

(
t

γI
ν

)
dν (67)

(a)
=

∫
L1

Γ (mSJP − s, ϕJ) Γ (LEkmSJEk + s) Γ (−s)

2πjΓ (1− s) (κt)s
(
β

(J)
k

)−1 ds

= β
(J)
k ∆

(J)
k (t) ,

where j =
√
−1, L1 is a vertical line of integration chosen such as to separate the left poles of the

above integrand function from the right ones, ∆
(J)
k (t) = G1,2

2,2

κt
∣∣∣∣∣∣ (1−mSJP , ϕJ) , (1, 0);−

(LEkmSJEk , 0); (0, 0)

,

κ = λSJEk/λSJPγI , ϕJ , and β
(J)
k are defined in Theorem 1 and (34), respectively. Step (a)

holds using [24, Eq. (06.06.26.0004.01)] alongside with (1) and (2). As mentioned above, ESJEk
is also Gamma distributed with parameters LEkmSJEk and λSJEk .
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Substituting (67) into (66), we get

F
W

(J)
k

(t) = β
(J)
k

 γ
(
LEkmSJEk ,

λSJEk
γSJ

t
)

×γ (mSJP , ϕJ) + ∆
(J)
k (t)

 . (68)

Now, it remains to compute V(h)(y) so as to evaluate (65b). Using (68), yields

V(h)(y) = β
(J)
k

(
γ (mSJP , ϕJ) T (h)

1 + T (h)
2

)
, (69)

where

T (h)
1 =

∫ ∞
0

the−
yλSiEk

Φ(x)
tγ

(
LEkmSJEk ,

λSJEk
γSJ

t

)
dt

(a)
=

∫ ∞
0

the−
yλSiEk

Φ(x)
t

×G1,1
1,2

λSJEk
γSJ

t

∣∣∣∣∣∣ 1;−

LEkmSJEk ; 0

 dt

(b)
=

(
Φ (x)

λSiEky

)h+1

Θ
(h)
1 (y) , (70)

with Θ
(h)
1 (y) = G1,2

2,2

 θ
(k,J)
i Φ(x)

y

∣∣∣∣∣∣ −h, 1;−

LEkmSJEk ; 0

 and θ(k,J)
i is being defined in Theorem 1. The

equalities (a) and (b) follow by using Eqs. (06.06.26.0004.01) and (07.34.21.0088.01) of [24],

respectively.

On the other hand, the term T (h)
2 can be expressed as

T (h)
2 =

∫ ∞
0

the−
yλSiEk

Φ(x)
t∆

(J)
k (t) dt

=
1

2πj

(
Φ (x)

λSiEky

)h+1 ∫
L2

Γ (1 + h− s) Γ (−s)
Γ (1− s)

× Γ (mSJP − s, ϕJ) Γ (LEkmSJEk + s)

(
η

y

)−s
ds

=

(
Φ (x)

λSiEky

)h+1

Θ
(h)
2 (y) , (71)

where Θ
(h)
2 (y) = G1,3

3,2

η
y

∣∣∣∣∣∣ (ζJ , ϕJ) , (1, 0), (−h, 0);−

(LEkmSJEk , 0); (0, 0)

 , η =
ς
(k,J)
i Φ(x)

γI
, ζJ = 1 −mSJP , and

ς
(k,J)
i is being defined in Theorem 1.
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Finally, the conditional CDF of γ(i,k,J)
1E can be expressed by substituting (70) and (71) into

(69) and then replacing it into (65b), yields

F
γ

(i,k,J)
1E |gSiP=x

(y) = 1−Ψ
(k)
i (y) β

(J)
k

×
LEkmSiEk−1∑

h=0

(LEkmSiEk−1

h

)
Φh+1 (x)

(λSiEky)h+1

×

 γ (mSJP , ϕJ) Θ
(h)
1 (y)

+Θ
(h)
2 (y)

 . (72)

Now, the remaining last previous step in this proof consists of computing Ξ
(i,k,J)
1 (x) . Indeed,

by differentiating (60) and using (1) alongside with (72), (58) can be rewritten for a positive

integer LRmSiR as

Ξ
(i,k,J)
1 (x) =

Γ
(
LRmSiR,

ξSiR
Φ(x)

)
γΓ(LRmSiR)

− α(k,J)
i

LEkmSiEk−1∑
h=0

Ω
(i,k)
h e−

ξSiR

Φ(x)

(Φ (x))LEkmSiEk+LRmSiR−h−2

×
LRmSiR−1∑

l=0

Υ
(i)
l

[
γ (mSJP , ϕJ)U (h,l)

1 + U (h,l)
2

]
, (73)

where ξSiR, Ω
(i,k)
h , α

(k,J)
i , and Υ

(i)
l are defined in (30), (32), (33), (35), respectively, and

U (h,l)
a =

∫ ∞
0

yLEkmSiEk+l−h−1e−
$

(k)
i

Φ(x)
yΘ(h)

a (y) dy, a = {1, 2}, (74)

with $(k)
i is being defined in Theorem 1.

The two above terms can be expressed as

U (h,l)
1 =

(
Φ (x)

$
(k)
i

)l+LEkmSiEk−h

M(h,l)
1

(
$

(k)
i θ

(k,J)
i

)
, (75)

U (h,l)
2 =

1

2πj

∫
L3

Γ (LEkmSiEk + l − h+ s) Γ (mSJP − s, ϕJ)(
Φ(x)

$
(k)
i

)−LEkmSiEk−l+h
Γ (1− s)

× Γ (LEkmSJEk + s) Γ (−s) Γ (1 + h− s)(
ς
(k,J)
i $

(k)
i

γI

)s ds,

=

(
Φ (x)

$
(k)
i

)LEkmSiEk+l−h

M(h,l)
2

(
ς

(k,J)
i $

(k)
i

γI

)
, (76)
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whereM(h,l)
1 (•) andM(h,l)

2 (•) are defined in (27) and (28), respectively. Note that (75) follows

relying on [24, Eq. (07.34.21.0088.01)].

Henceforth, substituting (75) and (76) into (73), yields

Ξ
(i,k,J)
1 (x) =

Γ
(
LRmSiR,

ξSiR
Φ(x)

)
γΓ(LRmSiR)

− α(k,J)
i

LEkmSiEk−1∑
h=0

Ω
(i,k)
h e−

ξSiR

Φ(x)

(Φ (x))LEkmSiEk+LRmSiR−h−2

×
LRmSiR−1∑

l=0

Υ
(i)
l

(
Φ (x)

$
(k)
i

)LEkmSiEk+l−h

×

 γ (mSJP , ϕJ)M(h,l)
1

(
$

(k)
i θ

(k,J)
i

)
+M(h,l)

2

(
ς
(k,J)
i $

(k)
i

γP

)  . (77)

Now, replacing (77) into (57), we obtain

SOP
(i,k,J)
1 = 1− Λ1

Γ(LRmSiR)
+ γα

(k,J)
i

×
LEkmSiEk−1∑

h=0

Ω
(i,k)
h

LRmSiR−1∑
l=0

Υ
(i)
l Λ2(

$
(k)
i

)l+LEkmSiEk−h
×

 γ (mSJP , ϕJ)M(h,l)
1

(
$

(k)
i θ

(k,J)
i

)
+M(h,l)

2

(
ς
(k,J)
i $

(k)
i

γI

)  , (78)

where

Λ1 =

∫ ∞
0

fgSiP (x)Γ

(
LRmSiR,

ξSiR
Φ (x)

)
dx

(a)
=

1

Γ (mSiP )

 γ (mSiP , ϕSi) Γ
(
LRmSiR,

ξSiR
γSi

)
+M3

(
ξSiR

λSiP γP

)
 , (79)



24

Λ2 =

∫ ∞
0

fgSiP (x)e−
ξSiR

Φ(x)

(Φ (x))LRmSiR−l−1
dx

=
γ (mSiP , ϕSi) e

−
ξSiR

γSi

Γ (mSiP ) γ
LRmSiR−l−1

Si

+
λ
mSiP
SiP

Γ (mSiP ) γ
LRmSiR−l−1

I

×
Γ
(
mSiP + LRmSiR − l − 1, ϕSi +

ξSiR
γSi

)
(
λSiP +

ξSiR
γP

)mSiP+LRmSiR−l−1
, (80)

with M3 (•) is defined in (31). Equality (a) holds by replacing Φ (x) by their values and along

using [24, Eqs. (06.06.26.0005.01), (07.34.21.0088.01)].

By substituting (79) and (80) into (78), (24) is attained.

B. Expression of SOP at the Second Hop

In like manner to SOP (i,k)
1 , SOP

(k)
2 can be expressed as

SOP
(k)
2 = 1− γ

∫ ∞
0

fgRP (x)Ξ
(k)
3 (x) dx, (81)

with

Ξ
(k)
3 (x) =

∫ ∞
0

fγD|gRP=x (γ + γy − 1)F
γ

(k)
2E |gRP=x

(y) dy. (82)

One can notice from (82) that in order to calculate SOP
(k)
2 , it is necessary to find first the

conditional CDFs of γD and γ(k)
2E for a given gRP .

• Conditional CDFs of γD and γ(k)
2E

Let’s define YRD =
∑L

t=1 gRDt . In a similar manner to (60), the conditional CDFs of γD and

γ
(k)
2E are given, respectively, by

FγD|gRP=x(z) = FYRD

(
z

D (x)

)
, (83)

F
γ

(k)
2E |gRP=x

(y) = FEREk

(
y

D(x)

)
, (84)

where EREk =
∑LEk

u=1 gRE(u)
k
, D (x) = γR for x ≤ γI/γR and D (x) = γI/x for x > γI/γR.

It follows, in a similar manner to ESiR, that EREk is also Gamma distributed with parameters

LEkmREk and λREk .

• Expression of Ξ
(k)
3 (x)
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It is worthwhile that YRD is Gamma distributed for i.i.d Nakagami-m random variables with

shape and scale parameters LDmRD and λRD, respectively. That is

Ξ
(k)
3 (x)

(a)
=

λLDmRDRD e−
ξRD
D(x)

Γ(LDmRD)Γ (LEkmREk) (D (x))LDmRD−1

×
LDmRD−1∑

j=0

Bjγj
∫ ∞

0

yje−
λRDγ

D(x)
yγ

(
LEkmREk ,

λ
REk

D(x)
y

)
(b)
=

λLDmRDRD e−
ξRD
D(x)

γΓ(LDmRD)Γ (LEkmREk)DLDmRD−1 (x)

×
LDmRD−1∑

j=0

Bj
(
D (x)

λRD

)j+1

G1,2
2,2

 λ
REk

λRDγ

∣∣∣∣∣∣ −j, 1;−

LEkmREk ; 0

 , (85)

where Bj is defined in (36). Note that step (a) holds by substituting (83) and (84) into (82),

while equality (b) follows by using [24, Eqs. (06.06.26.0004.01), (07.34.21.0088.01)].

Substituting (85) into (81), yields

SOP
(k)
2 = 1− λLDmRDRD

Γ (LEkmREk) Γ(LDmRD)

LDmRD−1∑
j=0

Bj
λj+1
RD

× JjG1,2
2,2

 λREk
λRDγ

∣∣∣∣∣∣ −j, 1;−

LEkmREk ; 0

 , (86)

where

Jj=
∫ ∞

0

fgRP (x) (D (x))−LDmRD+j+1 e−
ξRD
D(x)dx

(a)
=

1

Γ(mRP )


e
− ξRDγR γ(mRP ,ϕR)

γ
LDmRD−j−1

R

+
λ
mRP
RP Γ

(
υj ,ϕR+

ξRD
γR

)
γ
LDmRD−j−1

I

(
ξRD
γI

+λRP

)υj

 , (87)

where υj = LDmRD +mRP − j − 1, ϕR is defined in Theorem 1. Here step (a) is obtained by

replacing D (x) by its values and using (1) alongside with Eqs. (3.381.1) and (3.381.3) of [21].

By considering γI
γR

= δ and substituting (87) into (86), one can obtain (26) which concludes

the proof.

APPENDIX B: PROOF OF THEOREM 2

In this section, we make use of the residues theorem in order to find the approximate

expressions of Meijer-G’s function given in (24).
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A. Asymptotic Expression of SOP (i,k,J)
1

1) Case 1: Presence of Jammer: The Meijer-G’s functionsM(h,l)
1 (z) andM(h,l)

2 (z) given in

(24) can be expressed in terms of complex integral as

M(h,l)
1 (z) =

1

2πj

∫
L3

Γ (LEkmSJEk + s) Γ (1 + h− s)
Γ (1− s)

× Γ (LEkmSiEk + l − h+ s) Γ (−s) z−sds, (88)

and

M(h,l)
2 (z) =

1

2πj

∫
L3

Γ (LEkmSJEk + s) Γ (1 + h− s)
Γ (1− s)

× Γ (LEkmSiEk + l − h+ s) Γ (−s)

× Γ (mSJP − s, ϕJ) z−sds. (89)

It is noteworthy that the conditions of [22, Theorem 1.5] are satisfied. That is, the two above

functions can be written as an infinite sum of the poles belonging to the left half plan of L3.

Furthermore, as the upper incomplete gamma function in (89) is always finite for ϕJ 6= 0, it

follows that the integrand functions of the two above equations have the same poles. Additionally,

it is clearly seen that the order of the left poles depends on the values of LEkmSJEk , LEkmSiEk ,

h, and l. Owing to this fact, three cases can be distinguished:

• −LEkmSJEk < −LEkmSiEk − l+ h: In this case, the two integrand functions given in (88)

and (89) admit −χh,l,r with χh,l,r = LEkmSiEk + l − h + r and 0 ≤ r ≤ LEkmSJEk −

LEkmSiEk − l + h − 1 as simple poles and −%r with %r = LEkmSJEk + r and r natural

number as poles of second-order.

• −LEkmSJEk > −LEkmSiEk − l + h : Under this condition, the aforementioned integrands

have −%r with 0 ≤ r ≤ LEkmSiEk − LEkmSJEk + l − h − 1 as simple poles and −χh,l,r
where r ∈ N as poles of second-order.

• −LEkmSJEk = −LEkmSiEk − l+ h : Under this assumption, the two integrands admit only

poles of second-order at −%r, r ∈ N.

a. −LEkmSJEk< −LEkmSiEk−l + h

Relied on [22, Theorem 1.5],M(h,l)
1 (z) can be rewritten as series of residues at the aforementioned

poles
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M(h,l)
1 (z) =

%r−χh,l,r−1∑
r=0

lim
s→−χh,l,r

Q1 (s, z)

+
∞∑
r=0

lim
s→−%r

∂Q2 (s, z)

∂s
, (90)

where

Q1 (s, z) = (χh,l,r + s) Γ (χh,l,r − r + s)

× Γ (LEkmSJEk + s) Γ (−s) Γ (1 + h− s)
Γ (1− s)

z−s, (91)

and

Q2 (s, z) = (%r + s)2Γ (LEkmSiEk + l − h+ s)

× Γ (LEkmSJEk + s) Γ (−s) Γ (1 + h− s)
Γ (1− s)

z−s.

(92)

Obviously, the limit of Q1 (s, z) can be expressed as

lim
s→−χh,l,r

Q1 (s, z) =
(−1)r Γ (LEkmSiEk + l + r + 1)

r!χh,l,r

× Γ (LEkmSJEk − χh,l,r) zχh,l,r . (93)

On the other hand, using [24, Eqs. (06.14.06.0026.01) and (06.14.16.0003.01)] the partial derivative

of Q2 (s, z) is given by
∂Q2 (s, z)

∂s
=

(s+ %r)
2Γ (χh,l,r − r + s) Γ (−s)

Γ (1− s) zs

× Γ (LEkmSJEk + s) Γ (1 + h− s)G(h,l,r) (z, s) , (94)

where G(h,l,r) (z, s) = − log z + ψ(r + 1) + ψ(%r − χh,l,r + r + 1)− 1
s
− ψ(1 + h− s).

Replacing (94) and (93) into (90), yields

M(h,l)
1 (z) =

%r−χh,l,r−1∑
r=0

(−1)r Γ (LEkmSJEk − χh,l,r)
r!χh,l,r

× Γ (LEkmSiEk + l + r + 1) zχh,l,r

+
∞∑
r=0

(−1)%r−χh,l,r Γ (h+ %r + 1)

(−LEkmSiEk + %r − l + h)!k!%r

× z%rG(h,l,r) (z,−%r) . (95)
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In similar manner,M(h,l)
2 (z) can be expressed as

M(h,l)
2 (z) =

%r−χh,l,r−1∑
k=0

(−1)r Γ (LEkmSiEk + l + r + 1)

r!χh,l,rz−χh,l,r

× Γ (mSJP + χh,l,r, ϕJ) Γ (LEkmSJEk − χh,l,r)

+
∞∑
r=0

(−1)%r−χh,l,r Γ (1 + h+ %r)

(−LEkmSiEk + %r − l + h)!r!%r
z%r

×


[
G(h,l,r) (z,−%r)− log (ϕJ)

]
×Γ (mSJP + %r, ϕJ)− V(r) (%r)

 ,

(96)

where V(r) (%r) =G3,0
2,3

ϕJ
∣∣∣∣∣∣ −; 1, 1

0, 0,mSJP + %r;−

 .

Interestingly, one can notice that %r > χh,l,r for LEkmSJEk > LEkmSiEk + l−h. Consequently,

the second summation in the two above expressions can be ignored as z approaches 0, i.e.,

M(h,l)
1 (z) ∼ Γ (LEk(mSJEk −mSiEk)− l + h)

(LEkmSiEk + l − h)
,

× Γ (LEkmSiEk + l + 1) zLEkmSiEk+l−h (97)

and

M(h,l)
2 (z) ∼ Γ (LEkmSiEk + l + 1) zLEkmSiEk+l−h

(LEkmSiEk + l − h)

× Γ (LEk(mSJEk −mSiEk)− l + h)

× Γ (mSJP + LEkmSiEk + l − h, ϕJ) . (98)

b. −LEkmSJEk> −LEkmSiEk−l + h

Analogously to the previous case, the integrals (88) and (89) can be computed relied on [22,
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Theorem 1.5] and [24, Eq. (06.14.16.0003.01)], respectively, as

M(h,l)
1 (z) =

χh,l,r−%r−1∑
r=0

Γ (LEkmSiEk + l − h− %r) Γ (1 + h+ %r)

r!%r (−1)−r z−%r

+
∞∑
r=0

(−1)χh,l,r−%r Γ (1 + h+ χh,l,r)

(χh,l,r − LEkmSJEk)!r!χh,l,rz
−χh,l,r

×

 ψ(r + 1) + ψ(−LEkmSJEk + χh,l,r + 1)

−ψ(1 + LEkmSiEk + l + r) + 1
χh,l,r

− log z

 ,

(99)

and

M(h,l)
2 (z) =

χh,l,r−%r−1∑
r=0

(−1)r Γ (LEkmSiEk + l − h− %r)
r!%r

× Γ (1 + h+ %r) z
%rΓ (mSJP + %r, ϕJ)

+
∞∑
r=0

(−1)χh,l,r−%r Γ (1 + h+ χh,l,r)

(χh,l,r − %r)!r!χh,l,rz−χh,l,r

×
[
Z − V(r) (χh,l,r)

]
(100)

where

Z =Γ (mSJP + χh,l,r, ϕJ)



− log z + ψ(r + 1)

+ψ(−LEkmSJEk + χh,l,r + 1)

−ψ(LEkmSiEk + l − h+ r)

−ψ(LEkmSiEk + l + r + 1)

+ψ(1 + χh,l,r)− log (ϕJ)


. (101)

One can notice that as %r < χh,l,r, M(h,l)
1 (z) and M(h,l)

2 (z) can be approximated when z

tends to 0

M(h,l)
1 (z) ∼ Γ (LEkmSiEk − LEkmSJEk + l − h)

LEkmSJEk

× Γ (LEkmSJEk + h+ 1) zLEkmSJEk (102)

and

M(h,l)
2 (z) ∼ Γ (LEkmSJEk + h+ 1) Γ (mSJP + LEkmSJEk , ϕJ)

LEkmSJEk

× Γ (LEkmSiEk − LEkmSJEk + l − h) zLEkmSJEk . (103)
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c. −LEkmSJEk= −LEkmSiEk − l + h

For this case, the two complex integrals given in (88) and (89) can be expressed by performing

some algebraic operations as

M(h,l)
1 (z) =

∞∑
r=0

(−1)%r−χh,l,r Γ (1 + h+ %r)

(−LEkmSiEk + %r − l + h)!k!%r

× z%rG(h,l,r) (z,−%r) . (104)

and

M(h,l)
2 (z) =

∞∑
r=0

(−1)%r−χh,l,r Γ (1 + h+ %r)

(%r − LEkmSiEk − l + h)!r!%r
z%r

×


[
G(h,l,r) (z)− log (ϕJ)

]
×Γ (mSJP + %r, ϕJ)− V(r) (%r)

 .

(105)

Again, M(h,l)
1 (z) and M(h,l)

2 (z) can be approximated as z approaches 0 by

M(h,l)
1 (z) ∼ (−1)LEkmSJEk−LRmSiR+1 zLEkmSJEk log z,

LEkmSJEk

× Γ (LEkmSiEk + LEkmSJEk) (106)

and

M(h,l)
2 (z) ∼ (−1)LEkmSJEk−LRmSiR+1 Γ (LEk (mSiEk +mSJEk))

LEkmSJEk

× Γ (mSJP + LEkmSJEk , ϕJ) zLEkmSJEk log (z) . (107)

Finally, the Meijer’s G-function M3 (z) defined in (31) can be written in terms of complex

integral as

M3 (z) =
1

2πj

∫
L4

Γ (LRmSiR + s) Γ (mSiP − s, ϕSi)
s

z−sds. (108)

It is worth mentioning that the conditions of [22] are applied also here. Thus, the above integrand

function can be written as an infinite sum of the left poles in L4. Besides, that integrand admits

only poles of the first order at 0 and −LRmSiR − r, r ∈ N. That is

M3 (z) = Γ (LRmSiR) Γ (mSiP , ϕSi) (109)

+
∞∑
r=0

(−1)r+1 Γ (mSiP + LRmSiR + r, ϕSi)

r! (LRmSiR + r) z−LRmSiR−r

(a)∼ Γ (LRmSiR) Γ (mSiP , ϕSi)−
Γ (mSiP + LRmSiR, ϕSi)

LRmSiRz
−LRmSiR

,
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with step (a) follows by considering only the first term of the infinite summation when z tends

to 0.

Finally, armed by [21, Eq. (8.354.2)] the upper incomplete Gamma given in (24) can be

approximated for small values of z as

Γ

(
LRmSiR,

σiξSiR
γI

)
∼ Γ (LRmSiR)− 1

LRmSiR

(
σiξSiR
γI

)LRmSiR
. (110)

Interestingly, the SOP
(i,k,J)
1 can finally be approximated in high SNR regime (i.e., γI →

∞) by considering three cases, namely LRmSiR < LEkmSJEk , LRmSiR > LEkmSJEk , and

LRmSiR = LEkmSJEk .

• LRmSiR < LEkmSJEk

Substituting (97), (98), (109), and (110) into (24), and by considering h = LEkmSiEk−1,

SOP
(i,k,J)
1 can be approximated as

SOP
(i,k,J)
1 ∼ C(i,k,J)

1

γ
LRmSiR
I

, (111)

where C(i,k,J)
1 is given in (53).

• LRmSiR > LEkmSJEk

Incorporating (102), (103), (109), and (110) into (24), and by considering l = LRmSiR−1,

SOP
(i,k,J)
1 can be approximated as

SOP
(i,k,J)
1 ∼ C(i,k,J)

2

γ
LEkmSJEk
I

, (112)

where C(i,k,J)
2 is given in (54).

• LRmSiR = LEkmSJEk

Replacing (102), (103), (106), (107), (109), and (110) into (24), and by considering l =

LRmSiR−1, SOP
(i,k,J)
1 can be approximated as

SOP
(i,k,J)
1 ∼ C(i,k,J)

3

log (γI)

γ
LEkmSJEk
I

, (113)

where C(i,k,J)
3 is given in (55).
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2) Case 2: Absence of a Friendly Jammer: In order to derive the asymptotic expression of

SOP
(i,k)
1 given in (25), we need to approximate the upper incomplete Gamma function. One

can ascertain by applying the Maclaurin series that

Γ (a, b+ cz) ∼ Γ (a, b)− czba−1e−b, (114)

as z tends to 0. By considering only the two cases i.e., l = LRmSiR − 1 and l = LRmSiR − 2

and performing some algebraic manipulations, one can obtain

SOP
(i,k)
1 ∼ 1−ASiEk,SiR,R −

ASiEk,SiR,Si,R
γI

, (115)

where A•,•,• and A•,•,•,• are defined in (51) and (52), respectively.

B. Asymptotic Expression of SOP (k)
2

As SOP (i,k)
1 and SOP

(k)
2 given in (25) and (26), respectively have the same shape, one can

see that

SOP
(k)
2 ∼ 1−AREk,RD −

AREk,RD,R
γI

, (116)

Finally, replacing (111), (112), (113), and (116) into (22), one can get the expressions (37)-

(40), respectively. Furthermore, substituting (115) and (116) into (23), (50) is attained which

concludes the proof of Theorem 2.
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