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Abstract

This article considers the fusion of target estimates stemming from multiple sensors, where the spatial extent of the targets is

incorporated. The target estimates are represented as ellipses parameterized with center orientation and semi-axis lengths and

width. Here, the fusion faces challenges such as ambiguous parameterization and an unclear meaning of the Euclidean distance

between such estimates. We introduce a novel Bayesian framework for random ellipses based on the concept of a Minimum Mean

Gaussian Wasserstein (MMGW) estimator. The MMGW estimate is optimal with respect to the Gaussian Wasserstein (GW)

distance, which is a suitable distance metric for ellipses. We develop practical algorithms to approximate the MMGW estimate

of the fusion result. The key idea is to approximate the GW distance with a modified version of the Square Root (SR) distance.

By this means, optimal estimation and fusion can be performed based on the square root of the elliptic shape matrices. We

analyze different implementations using, e.g., Monte Carlo methods, and evaluate them in simulated scenarios. An extensive

comparison with state-of-the-art methods highlights the benefits of estimators tailored to the Gaussian Wasserstein distances.
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Fusion of Elliptical Extended Object Estimates
Parameterized with Orientation and Axes Lengths

Kolja Thormann and Marcus Baum

Abstract—This article considers the fusion of target estimates
stemming from multiple sensors, where the spatial extent of
the targets is incorporated. The target estimates are represented
as ellipses parameterized with center orientation and semi-axis
lengths and width. Here, the fusion faces challenges such as
ambiguous parameterization and an unclear meaning of the
Euclidean distance between such estimates. We introduce a novel
Bayesian framework for random ellipses based on the concept
of a Minimum Mean Gaussian Wasserstein (MMGW) estimator.
The MMGW estimate is optimal with respect to the Gaussian
Wasserstein (GW) distance, which is a suitable distance metric
for ellipses. We develop practical algorithms to approximate
the MMGW estimate of the fusion result. The key idea is to
approximate the GW distance with a modified version of the
Square Root (SR) distance. By this means, optimal estimation and
fusion can be performed based on the square root of the elliptic
shape matrices. We analyze different implementations using, e.g.,
Monte Carlo methods, and evaluate them in simulated scenarios.
An extensive comparison with state-of-the-art methods highlights
the benefits of estimators tailored to the Gaussian Wasserstein
distances.

I. INTRODUCTION

In many modern tracking applications the resolution of the
involved sensors is high enough to resolve the spatial extent
of the targets. For this reason, Extended Object Tracking
(EOT) methods that estimate both the shape and kinematic
parameters of a target are becoming increasingly important [1],
[2]. Most EOT methods have been developed for sensors that
resolve a varying number of noisy Cartesian detections from
the target, e.g., based on a spatial distribution model [3]. The
extent can be modeled by basic shapes like rectangles [4],
[5] or ellipses [2], [6]–[9] or more detailed ones, either as a
combination of multiple random matrices [10] or as a Random
Hypersurface Model (RHM). The latter describes star-convex
shapes and was modeled by, e.g., Fourier coefficients [11],
Gaussian processes [12]–[14], or splines [15], [16].

This work focuses on multiple sensors (or sources) that
directly produce width, length, and orientation estimates of
elliptic targets. The objective is to fuse the extended target
estimates in order to gain an improved estimate, i.e., we con-
sider object level fusion. Note that the estimate’s uncertainty,
which is usually provided by the sensor, is essential in this
case [17].

Elliptic shapes are widely-used to approximate the target
extent. An advantage is not only the simple model, but also
the usage in high noise scenarios in which the actual shape is
hard to determine, as can be the case for automotive radar.

Kolja Thormann and Marcus Baum are with the Institute of Com-
puter Science, University of Goettingen, Germany, {kolja.thormann,
marcus.baum}@cs.uni-goettingen.de

Sensor 1

Sensor 2

Fig. 1: Estimates of a vehicle from two sensors 1 and 2 as a
light blue and a purple ellipse. Both estimates posses different
uncertainties in the semi-axes and orientation represented by
the more transparent versions of the estimates.

A typical application scenario is tracking of traffic partic-
ipants, e.g., cars or pedestrians, using multiple sensors, e.g.,
camera and radar, all providing ellipse estimates at each time
step. The estimates have different uncertainties depending on
the sensor’s qualities and position relative to the target (see
Figure 1). Under these conditions, there might be different
uncertainties for the semi-axes or an increased uncertainty
about the target’s orientation due to, e.g., high noise or
maneuvers like driving around a corner. Thus, the challenges
this article aims to tackle lie in the parameterization of the
ellipses and the best way to combine estimates from multiple
sensors to get an improved estimate of the actual target.

A. Contributions
The main contribution of this article is a novel systematic

Bayesian approach to object-level fusion of extended target es-
timates containing width, length, and orientation information.
It includes
• the definition of a suitable probability density function

on the explicit extent parameters of ellipses (consisting
of center, width, length, and orientation),

• the promotion of the Gaussian-Wasserstein (GW) distance
as a risk function on elliptic shapes, defining a Minimum
Mean Gaussian Wasserstein (MMGW) estimator,

• the derivation of an Approximated Minimum Mean Gaus-
sian Wasserstein (AMMGW) estimator and fusion meth-
ods by approximating the GW distance via an extension
of the Square Root (SR) distance [18], the Extended
Square Root (ESR) distance,

• the development of practical implementations of the
AMMGW concept, and
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• a comparison of the AMMGW estimator and state-of-
the-art concepts, demonstrating improved performance in
high noise scenarios, and a discussion of problems and
advantages.

This article is based on our previous conference publica-
tion [19]. We further develop our previous results by intro-
ducing the concept of Random Ellipse Density (RED), high-
lighting the effectiveness of approximating the GW distance
with the ESR distance, introducing an improved fusion method
using a particle filter, and providing a new and much more
elaborate experimental evaluation.

B. Related Work
As elliptic targets are often represented by random ma-

trices [6], [20], fusion methods for this representation can
be found in literature as well. These include a combination
of two random matrix estimates utilizing their respective
Poisson rates [21] and an approach to use the measured point
clouds from different sensors directly, including a method
applying particle filter [22]. The latter draws its particles
from an importance distribution in the space of the explicit
parameters with the orientation, length, and width of the shape
matrix as mean. It then uses the random matrix likelihood to
weight the particles with the point clouds generated by the
sensors. There is an extension of this method for asynchronous
sensors in [23], creating local estimates as particle densities,
approximating them as Gaussian mixtures, and fusing via
geometric mean densities. In both works, the mean of the
particle density is calculated as the weighted average of the
shape matrices.

For rectangles, [24] provide a method which focuses on
associating and fusing rectangular shapes by using the covari-
ances of their corners. An approach to fuse only segments,
represented by points, lines, or L-shapes, is introduced in [25].

For arbitrary shapes there exists a framework by [17] to
combine star-convex forms represented by Gaussian processes,
again using measurements directly. There is also an extension
in [26] which fuses star-convex shapes by determining a new
center and then a new radial function based on the input radial
functions relative to the new center. In [27], estimated Random
Finite Sets (RFS) from multiple sensors are combined using
the Kullback-Leibler Divergence between them.

This work is also inspired by the Minimum Mean Opti-
mal Subpattern Assignment (MMOSPA) estimators [28], [29],
which track multiple targets [30] by minimizing the Optimal
Subpattern Assignment (OSPA) distance [31]. MMOSPA es-
timation [29] (and this work) is also related to the concept of
a Wasserstein Barycenter [32]–[35].

C. Structure
The remainder of the paper is organized as follows. The

problem this paper deals with is described in Section II.
Then, a novel Bayesian estimator is introduced in Section III,
followed by approximations and implementations of fusion
methods based on the newly derived estimator in Section IV.
Next, Section V provides an evaluation of the estimators and
then the results are discussed in Section VI. This article is
concluded in Section VII.

II. PROBLEM FORMULATION

This work considers the fusion of elliptic extended target
estimates stemming from multiple sensors (see Figure 1). The
extent estimates are represented by a center m =

[
m1 m2

]T
,

an orientation α, and semi-axis length l and width w (see also
Figure 2a). This representation explicitly allows for capturing
uncertainties for the different dimensions, providing important
information which can be utilized for the fusion.

Assume there are multiple ellipse estimates with densities
p(xi) and xi =

[
mT

xi
αxi

lxi
wxi

]T
, i ∈ N, the chal-

lenge is to find an appropriate way to combine them and
determine a suitable point estimate.

We assume the densities to be Gaussian distributions with
xi ∼ N (x̂i,Ci) and that the sensors provide us with means
x̂i and covariance matrices Ci. We also consider the sensor
measurements to be independent, ignoring cross-correlations.

III. BAYESIAN ESTIMATION WITH RANDOM ELLIPSES

Consider a prior ellipse estimate x1 with mean x̂1 and
covariance C1 and a measurement of the ellipse x̂2 with sensor
noise C2. The naive approach to combine them would be
a linear fusion according to the Kalman filter. It finds the
Minimum Mean Square Error (MMSE) estimate using the
Euclidean distance as error

ẑ = argmin
z

∫
||z− x1||22 · p(x1|x̂2)dx1 = E[x1|x̂2] . (1)

The fusion is conducted as

p(x1|x̂2) ∼ p(x̂2|x1) · p(x1) , (2)

with prior p(x1) = N (x1; x̂1,C1) and Gaussian likelihood
p(x̂2|x1) = N (x̂2;x1,C2). In the case of equal covariances,
the estimate is gained by averaging the two means

ẑ =
1

2
(x̂1 + x̂2) . (3)

However, as the example in Figure 2 shows, this approach
can produce counter-intuitive results. The two ellipses in
Figures 2a and 2b are the same, just with an orientation
shift of π

2 and the semi-axes switched, resulting in a fusion
in Figure 2c which looks different. The reason is that the
intuitively wrong axes are averaged (l1 with l2 and w1 with
w2 in Figures 2a and 2b).

To solve this issue, we first introduce a new density type
on ellipses in Section III-A and then provide the GW distance
as a risk function for more intuitive results in Section III-B.

A. Random Ellipse Densities

To define a density for ellipses, we need to deal with
the ambiguities and the constraint that semi-axes need to
be positive. For the latter, we create a truncated normal
distribution by setting a lower bound of 0 for l and w,

pt(x) =

{
0 if l < 0 ∨ w < 0,
c · p(x) else,

(4)
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Fig. 2: Ellipses with parameters m1 = [5 5]T, α1 = π
2 ,

l1 = 4, and w1 = 2 in Figure 2a and m2 = [5 5]T, α2 = 0,
l2 = 2, and w2 = 4 in Figure 2b and their RMSE estimate
using Euclidean distance in Figure 2c.

with normalizing constant c. Next, to avoid the issue visualized
in Figure 2, we apply the concept of wrapped distributions.
Defining a representation of x for all equal ellipses

x(k) =
[
mT

x α
(k)
x v(k)(lx, wx) v(k+1)(lx, wx)

]T
, (5)

with

v(k)(l, w) =

{
l if k is even,
w if k is odd,

(6)

α(k) = α+ k · π
2
, (7)

it is apparent that the orientation can be restricted between 0
and π

2 if the semi-axes are switched for each shift. We then
define the wrapped distribution

p̃(x) =

{∑∞
k=−∞ pt(x

(k)) if 0 ≤ αx <
π
2 ,

0 else.
(8)

We call this density a Random Ellipse Density (RED). How-
ever, the Euclidean mean of this multi-modal density has no
meaning and would result in a similar problem as depicted in
Figure 2. Furthermore, there is no unique representation of a
circle as the angle is chosen arbitrarily. From a mathematical
point of view, a circle is a zero-probability event and does
not need special consideration. However, circular point masses
might be of interest, because from a practical point of view,
ellipses which are close to a circle should be seen as close to
each other even if their angular difference is high.

B. MMGW Estimator

To provide a more reasonable mean, we propose to change
the squared Euclidean distance on the explicit parameters in
(1) with a true distance on ellipses.

In [36], potential distance metrics on ellipses are evaluated,
including Intersection-over-Union [4], the GW distance [37],
Kullback-Leibler Divergence, and the Hausdorff distance,
e.g., [38]. They conclude that the GW distance is the most
suitable measure, as it provides a single, intuitive scalar value
and can be solved in closed form. For this reason, we employ
the GW distance in this work, which is defined as

GW (mz,Z,mx1
,X1)

= ||mz −mx1 ||22 +Tr[Z+X1 − 2(Z
1
2X1Z

1
2 )

1
2 ] ,

(9)

with shape matrix

Z = Rαz ·
[
l2z 0
0 w2

z

]
·RT

αz
, (10)

Rα =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, (11)

and X1 analogous. Replacing the Euclidean distance results
in the new mean estimate

ẑ = argmin
z

∫
GW(mz,Z,mx1

,X1) · p̃(x1)dx1 . (12)

This gives us a MMGW estimator. The question is how to
solve the estimator. Even calculating the Wasserstein Barycen-
ter from samples requires iterative optimization [39]. To obtain
a closed-form solution, we utilize the SR distance [18]

SR(Z,X1) = ||Z
1
2 −X

1
2
1 ||2Frobenius , (13)

and extend it by including the center of the ellipse, creating
the ESR distance

ESR(mz,Z,mx1
,X1)

= ||mz −mx1
||22 + SR(Z,X1) . (14)

We then approximate the GW distance via the ESR distance

GW (mz,Z,mx1
,X1)

≈ ||mz −mx1
||22 +Tr[(Z

1
2 −X

1
2
1 )(Z

1
2 −X

1
2
1 )]

= ||mz −mx1
||22 + ||Z

1
2 −X

1
2
1 ||2Frobenius

= ESR(mz,Z,mx1
,X1) , (15)

creating the AMMGW estimator. We justify the approximation
in Appendix A and show that it is exact if the shape matrices
would commute. The advantage of this approximation is that
the AMMGW estimate can be determined via averaging. This
means if we define the transformation

T (x) =
[
mT

x s
(11)
x s

(12)
x s

(22)
x

]T
, (16)

with s(nm) being cells of the symmetric square root matrix

Rαx ·
[
lx 0
0 wx

]
·RT

αx
=

[
s
(11)
x s

(12)
x

s
(21)
x s

(22)
x

]
= X

1
2 , (17)
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we get

ẑ = argmin
z

∫
GW(mz,Z,mx1 ,X1) · p̃(x1)dx1

≈ argmin
z

∫
||T (z)− T (x1)||22 · p̃(x1)dx1

= T−1(E[T (x1)]) , (18)

using the law of the unconscious statistician.

IV. BAYESIAN FUSION WITH RANDOM ELLIPSES

With the result of the previous section, we end up with a
density on ellipses in explicit parameter space and a trans-
formation of the density to calculate the mean with respect
to a distance measure for ellipses. To fuse estimates using
these concepts, we provide an approximation to fuse in explicit
parameter space in Section IV-A, while Section IV-B presents
a method to apply the transformation before the fusion.

A. Explicit Parameter Space

For the fusion in explicit parameter space, each component
of the prior RED needs to be multiplied with each component
of the likelihood RED

p̃(x1|x̂2) ∼ p̃(x̂2|x1) · p̃(x1)

=

∞∑
k=−∞

pt(x̂
(k)
2 |x1) ·

∞∑
j=−∞

pt(x
(j)
1 )

=

∞∑
j=−∞

∞∑
k=−∞

pt(x̂
(k)
2 |x1)pt(x

(j)
1 ) , (19)

with the orientations αx1
and αx̂2

restricted as in (8). The sums
can be simplified using the 2π periodicity of the orientation to
reduce the number of components to the 4 most likely ones.
Thus, we can write (19) as

p̃(x1|x̂2) ≈ c1 ·
3∑
j=0

3∑
k=0

pt(x̂
(k)
2 |x1)pt(x

(j)
1 ) , (20)

with normalizing constant c1. We further approximate the
components as Gaussians, assuming the probability mass of
l and w below 0 to be minor. Thus, we get the prior and
likelihood as Gaussians as described in Section III

pt(x̂
(k)
2 |x1) ≈ p(x̂(k)

2 |x1), pt(x
(j)
1 ) ≈ p(x(j)

1 ) , (21)

with rows and columns for l and w of C(j)
1 and C

(k)
2 switched

accordingly regarding j and k. Thus, we end up with 16
components. We then reduce the prior to one representation,
so j = 0, and after the fusion, we only keep the component
with the highest likelihood, corresponding to a kopt, ending
up with 1 component. Minimizing the negative log-likelihood,
we get

kopt = argmin
k

1

2
· (νT

kS
−1
k νk + log(det(Sk))

+ 5 log(2π)) , (22)

with

input : explicit state mean x̂ and covariance C, measurement mean
x̂i and covariance Ci

output: updated mean x̂+ and covariance C+

ν ← x̂i − x̂
S← C+Ci

dmin ← mvn_pdf(ν, 0, S)
kopt ← 0
for k ∈ {1, 2, 3} do

x̂
(k)
i ← switch_params(x̂i, k)

C
(k)
i ← switch_params(Ci, k)

ν ← x̂
(k)
i − x̂

S← C+C
(k)
i

dcur ← mvn_pdf(ν, 0, S)
if dcur ≤ dmin then

dmin ← dcur
kopt ← k

end
end
x̂+, C+ ←kalman_k(x̂, C, x̂i, Ci, kopt)
return x̂+, C+

Algorithm 1: The MWDP algorithm relies on the following
functions. mvn pdf() is the likelihood for a multivariate
normal distribution, switch params() switches according
to (5) with the last input as k when given state means and
switches covariances accordingly as well, and kalman k()
is the Kalman filter fusion using the measurement switched
according to (5) with the last input as k.

νk = x̂
(k)
2 − x̂1, Sk = C1 +C

(k)
2 , (23)

and k ∈ {0, 1, 2, 3}. We then get the posterior

p̃(x1|x̂2) ≈ c2 · p(x̂
(kopt)
2 |x1)p(x1) , (24)

with normalizing constant c2. As this method essentially uses
the likelihood to find the parameterization which minimizes
the Euclidean distance between prior and measurement, their
dimensions weighted with the covariances, we call it the Min-
imum Weighted Distance Parameterization (MWDP). Pseudo-
code can be found in Algorithm 1.

B. Transformed Space

The RED concept from the previous section provides
a suitable representation of random ellipses, but there are
practical problems. First, in respect to the GW distance, a
circle is a singularity, so for shapes close to a circle, the
orientation should have only minor influence on the distance.
Second, there is the problem of p̃(x) containing an infinite
number of components, with the method in Section IV-A only
approximating the fusion by discarding the unlikely ones. To
deal with this issue, we utilize the transformation’s properties

T (x(0)) = T (x(k)) ∀k ∈ Z , (25)
T (x1) = T (x2) if l1 = w1 = l2 = w2

∧m1 = m2 , (26)
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and transform before the fusion. The transformed density p(y)
with T (x) = y has one component and no ambiguities, thus

ẑ ≈ argmin
z

∫
||T (z)− y1||22 · p(y1|ŷ2)dy1

= T−1(E[y1|ŷ2]) . (27)

This can be justified as follows. Given the definition of p̃(x),
the transformation T (x) is bijective, except for x describing
circles (which is a zero-probability event). Thus, we can write
the transformed density as

p(y) =

∫
δ(y − T (x))p̃(x)dx

= |det(T−1y )|p̃(xy) if s(11)xy
6= s(22)xy

∧ s(12)xy
6= 0 , (28)

with xy = T−1(y) having 0 ≤ αxy <
π
2 and det(T−1y ) as the

determinant of the Jacobian of the transformation’s inverse at
y. Given a prior p̃(x1) and a measurement with likelihood
p̃(x̂2|x1), we get

p(y1|ŷ2) = |det(T−1y1
)|p̃(x1|ŷ2) (29)

= |det(T−1y1
)|p(ŷ2|x1)p̃(x1)

p(ŷ2)
(30)

= |det(T−1y1
)|
|det(T−1ŷ2

)|p̃(x̂2|x1)p̃(x1)

|det(T−1ŷ2
)|p̃(x̂2)

(31)

= |det(T−1y1
)|p̃(x1|x̂2) . (32)

This means that except for the special case of a circle, it is
the same if the transformation is performed before (29) or
after (32) fusion. To fuse in transformed space, we need to
deal with the nonlinear transformation T (·). In the following,
we present two approaches, approximating the density from
sampled particles as a Gaussian in Section IV-B1 and using a
particle filter with a likelihood based on p̃(x) in Section IV-B2.

1) Kalman filter via Gaussian approximation: The goal
of this method is to approximate the transformed density of
estimate i as a Gaussian with mean ŷi and covariance Di. For
each estimate xi, we draw m particles

p
(j)
i ∼ N (x̂i,Ci) j ∈ {1, ...,m} . (33)

We then transform each individual particle and approximate
the transformed particle density as a Gaussian distribution

ŷi ≈
1

m

m∑
j=1

T (p
(j)
i ) , (34)

Di ≈
1

m

m∑
j=1

(T (p
(j)
i )− ŷi)(T (p

(j)
i )− ŷi)

T . (35)

The fusion is then conducted based on the Kalman filter
formulas. This method using Monte Carlo approximation of
the density is called MMGW-MC with pseudo-code provided
in Algorithm 2.

2) Particle filter: Further improvements at the cost of
higher computational power, can be achieved with a particle
filter implementation (without a Gaussian assumption). The
particles are drawn from the prior and then transformed, while
the measurements can remain in the explicit parameter space.
For the likelihood calculation, the particles are transformed

input : Gaussian approximated transformed state mean ŷ and
covariance D, explicit measurement mean x̂i and
covariance Ci, and the number of particles m

output: updated mean ŷ+ and covariance D+

for i ∈ [0,m] do
p.i← mvn(x̂i, Ci)

end
ŷi ←mean(T(p))
Di ←mean(outer(T(p)−ŷi, T(p)−ŷi))
ŷ+, D+ ←kalman(ŷ, D, ŷi, Di)
return ŷ+, D+

Algorithm 2: The MMGW-MC algorithm relies on the
following functions. mvn() provides a sample from a multi-
variate normal distribution, T() describes the transformation
from (16), mean() provides a mean, outer() describes the
outer product, and kalman() is a regular Kalman update.

input : transformed particle density p with weights w and
measurement mean x̂i and covariance Ci

output: updated particle weights w+

for i ∈ [0,p.length()] do
pinv ←T_inv(p.i)
wtmp ← 0
for j ∈ {0, 1, 2, 3} do

p
(j)
inv ← switch_params(pinv , j)
wtmp ← wtmp+ mvn_pdf(p

(j)
inv , x̂i, Ci)

end
w+.i← wtmp

end
normalize(w+)
return w+

Algorithm 3: The MMGW-PF algorithm relies on the
following functions. length() gives the length of an array,
T inv() is the inverse of (16), returning the parameterization
with 0 ≤ α < 0.5π, switch params() switches according
to (5) with the last input as k when given state means
and switches covariances accordingly as well, mvn pdf()
is the likelihood for a multivariate normal distribution, and
normalize() normalizes the input.

back. Due to the aforementioned ambiguity in ellipse param-
eterization, we utilize the wrapped distribution from (8). To
make the calculation feasible, we use the 2π periodicity of
the orientation to reduce the components to the 4 most likely
ones similar to the MWDP, meaning the Gaussian likelihood
is calculated for x̂

(0)
2 and x

(j)
1 with j ∈ {0, 1, 2, 3} and the

sum is used to weight the particle

p̃(x̂2|y1) ≈
3∑
j=0

p(x̂2|x(j)
1 ) , (36)

with T (x
(j)
1 ) = y1 and 0 ≤ α

x
(0)
1

< π
2 . Note that this

definition would still be problematic for circles as this is
the only case in which the restriction of the orientation
would not make T (·) bijective. Furthermore, as the target is
stationary, particle degeneration can pose a problem in high
noise scenarios. To avoid this issue, we dismissed resampling
and increased the number of particles. This method is named
MMGW-PF with pseudo-code provided in Algorithm 3.
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Euclidean ESR GW
Test 1 1.8299 1.8249 1.8237
Test 2 4.9062 3.8092 3.8091

TABLE I: GW error of MMSE estimate using Euclidean
distance and MMGW estimate using ESR and GW distance.
The first test uses low, the second high orientation noise.

V. EXPERIMENTS

To support our findings, we provide experiments for a
comparison of the MMSE estimate using Euclidean distance
and the MMGW estimate as well as its approximation using
ESR distance in Section V-A and an evaluation of the fusion
methods in Section V-B. The source code for the experiments
can be found online1.

A. MMGW estimate

For assessing the quality of the MMGW estimate, we
conducted two experiments. For the first, we took an ellipse
estimate with mean x̂ =

[
0 0 0 8 3

]T
and covariance

C = diag(
[
0.5 0.5 0.01π 0.5 0.1

]
), for the second

one, we modified the orientation noise to 0.5π. In both cases,
we drew 1000 particles to determine the MMGW estimate.
The given mean was obviously the estimate using Euclidean
distance. For the ESR distance, we transformed each particle
using (16) and then calculated their mean. For the GW
distance, we utilized the optimization described by [39] with
initially equal weights and the mean from the ESR distance
as initial guess. We then used the particles to calculate the
estimates’ quality with respect to the GW distance. The results
can be found in Table I.

We find that the ESR and GW optimization do not differ
significantly in error, with the GW estimate being slightly
better. This coincides with the findings from Appendix A. An-
other important aspect is the relation to the Euclidean distance,
which can be observed in Figure 3. For low orientation noise,
the estimates are similar, but for high noise, the GW based
estimators tend to a more circular form, which looks more
intuitive as a high orientation noise means the true ellipse
could be near 90 degree to the Euclidean estimate, making a
circular estimate more reasonable.

B. Shape Fusion

For the evaluation of the fusion algorithms, the methods
described in Section IV are compared with each other and
with the state-of-the-art. This includes the regular fusion with
Euclidean distances. To highlight the difference to this fusion
method outside of the problem of ambiguous parameterization,
the MWDP method (see Section IV-A) is utilized as well. In
addition, as random matrices are a common way to represent
ellipses, we added the method described by [21] for compari-
son, because it takes ellipse estimates and not point clouds as
input (here called RM Mean; we treat each ellipse equally by
setting the Poisson rate of each one to 1). For the MMGW-
MC, we used 1000 particles. As resampling is not used in

1https://github.com/Fusion-Goettingen/
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Fig. 3: MMSE estimate based on Euclidean distance (red) and
ESR distance (green) for low orientation noise in Figure 3a
and high orientation noise in Figure 3b. Sample particles to
highlight the orientation uncertainty are drawn in cyan.
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Fig. 4: Exemplary input with ground truth in gray, sensor 1
in magenta, and sensor 2 in cyan. The ellipses’ respective
orientation is represented by an arrow and the uncertainties
are visualized as pale ellipses. Note how the measurements
possess different uncertainties for the semi-axis.

MMGW-PF, we increased the number of particles to 100000.
Increasing the number of particles for the MMGW-MC did
not provide significant improvements.

The experiments provide the methods with a prior from
which the ground truth is sampled in each run. We simulate
two sensors with different uncertainties in the semi-axis length
and width, e.g., one sensor tracking from the back, the other
from the side. In addition, the second sensor uses a different
orientation for the ellipse to include the problem of ambiguous
parameterization (see Figure 4 for an exemplary input). The
sensors provide ellipse estimates (drawn from the ground truth)
and their covariances. The fusion methods are taking these
estimates alternating between the sensors. We conduct four
experiments, two with an elongated prior and two with a round
prior and in both cases, there is one with low and one with
high orientation noise. For each experiment, we conducted 100
Monte Carlo runs and plotted the convergence of the GW error
over 20 measurements (10 alternating from the sensors).

In summary, the prior always has m =
[
0 0

]T
and α = 0

and for the semi-axes, there are two settings, prior long with
l = 8 and w = 3 and prior round with l = w = 5, both
with covariance C = diag(

[
0.5 0.5 0.5π 0.5 0.5

]
).

The sensor noise has two settings. One is sensor low with
covariance C1 = diag(

[
0.5 0.5 0.01π 0.5 0.1

]
) and

https://github.com/Fusion-Goettingen/
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Prior long Prior round
Sensor low Test 1 Test 3
Sensor high Test 2 Test 4

TABLE II: Experiment settings.

C2 the same. Note that before drawing the estimates of
sensor 2 from the ground truth, the orientation is shifted
by π

2 and l and w are switched to simulate the problems
with ambiguous parameterization, resulting in the noise on
the semi-axes being actually different between the sensors (see
Figure 4). For sensor high the variance of the orientation in
both covariances is set to 0.5π.

The experiments’ settings can be found in Table II and the
results in Figure 5. Note that as the goal is to minimize the GW
distance, the Root Mean Square Error (RMSE) is calculated
with the GW distance as error.

The results of test 1 in Figure 5a show the problems of the
regular fusion with the ambiguous parameterization clearly.
The RM mean converges, but it does not consider the different
uncertainties in the semi-axes, so it is overall worse than the
following approaches. The MWDP, dealing with the ambi-
guity, demonstrates that minimization via Euclidean distance
also provides good results in the case of low orientation noise,
similar to the AMMGW based approaches. This conforms with
the findings of Figure 3a of Section V-A.

The results of test 2 in Figure 5b demonstrate the problems
of the Euclidean distance in high orientation noise scenarios.
The MWDP keeps the shape, but due to the high noise, the
orientation can be quite off, resulting in a high error. The
AMMGW based methods however estimate a circular target
to deal with the low amount of orientation information. Two
other things are of note here. First, as a clarification to avoid
confusion regarding the regular fusion, we highlight that it
produces more round estimates due to the axis switch (see
also Figure 2). As a round target is a good estimate in this
scenario, the result is good by coincidence. Second, it can
be seen in the comparison between the MMGW-MC and the
better MMGW-PF that the Gaussian approximation does not
capture the transformed density precise enough.

For the case of round target priors in test 3, the insufficient
Gaussian approximation can be seen more clearly in the results
in Figure 5c, with the MMGW-MC being worse than the
MWDP. The MMGW-PF, however, demonstrates that by keep-
ing the transformed density intact, the AMMGW estimator
provides the best results in respect to the GW distance. The
results of test 4 in Figure 5d show the same problem of MWDP
and advantage of MMGW-PF as test 2.

Given the RM Mean as the state-of-the-art in ellipse fusion,
we demonstrated that our method offers improvements of up
to 50%, especially with varying noise on the semi-axes.

VI. DISCUSSION

In this section, we provide further insights on different
behavior and properties of the discussed methods, comparing
the MMGW estimation with the minimization of the Euclidean
distance on explicit parameters in Section VI-A and with the
minimization of the Euclidean distance between the shape
matrices in Section VI-B.

A. GW vs Euclidean distance on explicit parameters

In this article, we demonstrated in simulations that in
scenarios with elongated ellipses and high orientation noise,
the MWDP provides worse results with respect to the GW
distance compared to the AMMGW based methods. We further
elaborate this difference by providing the MMSE estimates
using Euclidean and ESR distance in low and high orientation
noise scenarios. In the case of an uncertain orientation, the
methods based on Euclidean distance would keep the semi-
axes and average the orientation. With low information on the
orientation, this can provide poor results, especially with only
few measurements. The ESR based methods systematically
deal with this issue by providing circular shaped estimates.
Depending on the scenario, this may be more desirable. Such
a situation could happen, e.g., if the semi-axis uncertainty was
low (due to long tracking or prior knowledge) and the target
would turn under high measurement noise. As the target’s
dimensions are certain, the uncertainty would be reflected in
the orientation. However, should the angle noise be low and
the estimates have similar orientations, the MWDP provides
good estimates in respect to the GW distance. This brings
us to an important parallel between the MWDP and the
AMMGW based approaches, which occurs when the shape
matrices commute. It can be shown that in these cases, the ESR
distance would boil down to the Euclidean distance between
state vectors containing only center and semi-axis length and
width

ESR(mz,Z,mx1
,X1)

= ||
[
(mz −mx1

)T lz − lx1
wz − wx1

]T ||22
∀αz with (αz mod

π

2
) = (αx1 mod

π

2
) . (37)

Now, if the ellipse orientation has a high certainty, so the cor-
responding value in the covariance tends to 0, MWDP would
choose the kopt for which the orientation difference is 0. In this
case, the overlapping semi-axes would be compared, resulting
in the same fusion estimate as the AMMGW estimator. As the
shape matrices would also commute in this case, the MWDP
and also the AMMGW estimation would provide an exact
estimate with respect to the GW distance as well. This is
further demonstrated by the results of Section V.

B. GW vs Euclidean distance on shape matrix

The particles from an empirical density in ESR space can
simply be averaged to compute the AMMGW estimate. Note
that [22] calculate the weighted sum of their particle density
using the shape matrices, not their square roots, finding the
estimate which minimizes the Euclidean distance between the
matrices instead. However, based on our experience, using
the shape matrices’ square roots provides better results with
respect to the Gaussian Wasserstein distance and the explicit
shape parameters. This can be demonstrated with a simple
example regarding commute matrices. As shown in (37),
averaging the square roots in this special case boils down
to averaging the lengths and widths. However, averaging the
shape matrices would mean averaging the squared lengths
and widths. This provides ellipses which are too large. For
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Fig. 5: Tests comparing different ellipse fusion approaches. Refer to Table II for details on the test setups. In Figure 5a and
Figure 5c, MWDP and MMGW-PF lie over each other.

example, if the length is Gaussian and two estimates, 2 and
10, are drawn, averaging the square root matrices results in a
matrix with length 2+10

2 = 6 and averaging the shape matrices

produces a matrix with length
√

4+100
2 ≈ 7.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel method for the fusion
of ellipses represented by center, orientation, and semi-axis
length and width. The main concepts are the identification
of a density on ellipses, the RED, and the utilization of a
distance measure on ellipse, replacing the Euclidean distance
in a MMSE estimator with the GW distance to create a
MMGW estimator. Approximating the GW distance with the
ESR distance, we derived an AMMGW estimator. In simula-
tions, we demonstrated the robustness of this approximation
and compared our methods to state-of-the-art algorithms. We
highlighted the advantages of our approach, those being the
inclusion of the explicit parameter state’s covariance, the deal-
ing with ambiguous parameterizations of ellipses, and more
intuitive estimates in scenarios with high angular noise. In
summary, the MWDP provides a suitable way of avoiding the
ambiguous parameterization of ellipses, but only in scenarios
with low orientation noise and (nearly) commute matrices is
it a good approximation of the MMGW estimator. Otherwise,
the MMGW-PF would be more appropriate.

For future work, we intend to further improve the MMGW-
PF by finding an appropriate kernel noise to tackle particle
degeneration and increase its efficiency. To also increase
accuracy, we seek to find better ways to preserve the trans-
formed density by means of direct multiplication of particle
densities [40]. Another topic of interest are alternative fusion
methods for the mixture densities in explicit parameter space,
like geometric mean densities [23], and Gaussian mixture
reductions to preserve more information than the MWDP. As
for other shapes, we want to find an appropriate metric for
rectangles and test if the MMGW concept also works for them
as the parameterization is the same as for ellipses. Regarding
more complex contours, like star-convex shapes, we wish to
determine whether we can apply the same principle of finding
an appropriate distance measure here as well.

APPENDIX

A. Comparison of GW and ESR distance

For the comparison, we utilized the experiments from [36]
with the GW and the ESR distances only (see Figure 6). For
the first experiment, the ellipses’ orientations are the same.
With the approximation of the GW distance by the ESR
distance being exact in this case, the two metrics behave
the same (see Figure 6a). For the second experiment, the
second ellipse is tilted slightly. A difference can thus be seen
here, getting larger with the ellipse’s length increasing beyond
the ground truth’s length, but except for that shift, they still
behave the same (see Figure 6b). Finally, for the rotation
experiment, the general behavior is also the same, with the
difference between the metrics being greatest when the angle
offset between the ellipses is π

4 shifted by a multiple of π
2

(see Figure 6c), so when the angle is exactly between two
orientations which would make the estimate and the ground
truth commute.
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