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Abstract

This article considers the fusion of target estimates stemming from multiple sensors, where the spatial extent of the targets is

incorporated. The target estimates are represented as ellipses parameterized with center orientation and semi-axis lengths and

width. Here, the fusion faces challenges such as ambiguous parameterization and an unclear meaning of the Euclidean distance

between such estimates. We introduce a novel Bayesian framework for random ellipses based on the concept of a Minimum Mean

Gaussian Wasserstein (MMGW) estimator. The MMGW estimate is optimal with respect to the Gaussian Wasserstein (GW)

distance, which is a suitable distance metric for ellipses. We develop practical algorithms to approximate the MMGW estimate

of the fusion result. The key idea is to approximate the GW distance with a modified version of the Square Root (SR) distance.

By this means, optimal estimation and fusion can be performed based on the square root of the elliptic shape matrices. We

analyze different implementations using, e.g., Monte Carlo methods, and evaluate them in simulated scenarios. An extensive

comparison with state-of-the-art methods highlights the benefits of estimators tailored to the Gaussian Wasserstein distances.
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Fusion of Elliptical Extended Object Estimates
Parameterized with Orientation and Axes Lengths

Kolja Thormann and Marcus Baum

Abstract—This article considers the tracking of elliptical ex-
tended targets parameterized with center, orientation, and semi-
axes. The focus of this article is the fusion of extended target
estimates, e.g., from multiple sensors, by handling the challenges
introduced due to ambiguities in this parameterization and the
unclear meaning of the Mean Square Error (MSE). For this
purpose, we introduce a novel Bayesian framework for elliptic
extent estimation and fusion based on two new concepts: (1) a
probability density function for ellipses called Random Ellipse
Density (RED) that incorporates the ambiguities that come
with the ellipse parameterization, and (2) the Minimum Mean
Gaussian Wasserstein (MMGW) estimate which is optimal with
respect to the Gaussian Wasserstein (GW) distance – a suitable
distance metric on ellipses. We develop practical algorithms for
ellipse fusion and approximating the MMGW estimate. Different
implementations, e.g., based on Monte Carlo simulation, are in-
troduced and compared to state-of-the-art methods, highlighting
the benefits of estimators tailored to the Gaussian Wasserstein
distance.

I. INTRODUCTION

In many modern tracking applications the resolution of the
involved sensors is high enough to resolve the spatial extent
of the targets. For this reason, Extended Object Tracking
(EOT) methods that estimate both the shape and kinematic
parameters of a target are becoming increasingly important [1],
[2]. Most EOT methods have been developed for sensors that
resolve a varying number of noisy Cartesian detections from
the target, e.g., based on a spatial distribution model [3]. The
extent can be modeled by basic shapes like rectangles [4],
[5] or ellipses [2], [6]–[9] or more detailed ones, either as a
combination of multiple random matrices [10] or as a Random
Hypersurface Model (RHM). The latter describes star-convex
shapes and was modeled by, e.g., Fourier coefficients [11],
Gaussian processes [12]–[14], or splines [15], [16].

This work focuses on (multiple) sensors (or sources) that
directly produce width, length, and orientation estimates of
elliptical targets, either because they generate that kind of mea-
surements or because the fusion is conducted in a distributed
fashion, with locally generated estimates which are then send
to a central fusion unit [17] or shared among neighboring
nodes of the sensor network [18]. The objective is to fuse
the extended target densities, i.e., we consider object level
fusion, and to gain an appropriate estimate from the fusion
result. Thus, it is essential that the sensors not just provide
their estimates, but their uncertainties as well [19].

Kolja Thormann and Marcus Baum are with the Institute of Com-
puter Science, University of Goettingen, Germany, {kolja.thormann,
marcus.baum}@cs.uni-goettingen.de

Sensor 1

Sensor 2

Fig. 1: A vehicle as ground truth along with two measurements
from sensors 1 and 2 in light blue and purple respectively. Both
measurements are ellipses and posses different uncertainties
in the semi-axes and orientation represented by their more
transparent versions.

Elliptic shapes are widely-used to approximate the target
extent [2], [6]–[9]. An advantage is not only the simple
model, but also the usage in high noise scenarios in which
the actual shape is hard to determine, as can be the case for
automotive radar. A typical application scenario is tracking
of traffic participants, e.g., cars or pedestrians, using multiple
sensors, e.g., camera and radar, all providing ellipse estimates
at each time step. The estimates have different uncertainties
depending on the sensor’s qualities and position relative to
the target (see Figure 1). Under these conditions, there might
be different uncertainties for the semi-axes or an increased
uncertainty about the target’s orientation due to, e.g., high
noise or maneuvers like driving around a corner.

A. Contributions
The main contribution of this article is a novel Bayesian

framework for estimation and (shape) fusion with elliptic
extended targets parameterized by center, width, length, and
orientation. The contributions include
• the promotion of the Gaussian-Wasserstein (GW) dis-

tance [20] as a risk function on elliptic shapes, defining
a Minimum Mean Gaussian Wasserstein (MMGW) esti-
mator,

• the introduction of a suitable probability density function
on the explicit extent parameters of ellipses, a Random
Ellipse Density (RED),

• the derivation of a MMGW estimator approximation and
fusion method by replacing the GW distance via an
extension of the Square Root (SR) distance [21], the
Extended Square Root (ESR) distance,
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• the development of practical implementations of the
MMGW and RED concepts, and

• a comparison of the MMGW estimator and the fusion
via REDs with state-of-the-art concepts, demonstrating
improved performance in high noise scenarios.

This article is based on our previous conference publica-
tion [22]. We further develop our previous results by
• introducing the concept of RED, which allows for a

meaningful Bayesian fusion of uncertain ellipses, along
with an efficient mixture reduction as an improved fusion
method to the one presented in the previous work,

• providing more insight on the effectiveness of approxi-
mating the GW distance with the ESR distance, and

• presenting a new and much more elaborate experimental
evaluation of the fusion methods using moving targets.

B. Related Work

As elliptic targets are often represented by random ma-
trices [6], [23], fusion methods for this representation can
be found in literature as well. These include a combination
of two random matrix estimates utilizing their respective
Poisson rates [24], with a focus on combination of targets,
also considering that their size might increase. In [18], they
argue that as Random Matrices are represented by Inverse-
Wishart distributions, the weighted average of the shape ma-
trices (and of the degree of freedom) respectively minimizes
the Kullback-Leibler divergence to the densities. Another
approach to use measured point clouds from different sensors
directly, including a method applying particle filter, can be
found in [25]. The latter draws its particles from an importance
distribution in the space of the explicit parameters with the
orientation, length, and width of the shape matrix as mean. It
then uses the random matrix likelihood to weight the particles
with the point clouds generated by the sensors. There is an
extension of this method for asynchronous sensors in [26],
creating local estimates as particle densities, approximating
them as Gaussian mixtures, and fusing via geometric mean
densities. In both works, the mean of the particle density
is calculated as the weighted average of the shape matrices.
Another recent work [27] presents a distributed fusion method
based on a variational Bayesian approach. They model the
state also as a random matrix, define latent variables as noise-
free measurements, and distribute their statistics across the
sensors to approximate the state globally.

For rectangles, [28] provide a method which focuses on
associating and fusing rectangular shapes by using the co-
variances of their corners. In [29], a method is presented
to fuse rectangular estimates modeled by center, orientation,
length, and width in Kalman fashion, but considering one
of the corners as a reference point. An approach to fuse
only segments, represented by points, lines, or L-shapes, is
introduced in [30].

For arbitrary shapes there exists a framework by [19] to
combine star-convex forms represented by Gaussian processes,
again using measurements directly. There is also an extension
in [31] which fuses star-convex shapes by determining a new
center and then a new radial function based on the input radial

functions relative to the new center. In [32], estimated Random
Finite Sets (RFS) from multiple sensors are combined using
the Kullback-Leibler Divergence between them.

To the best of our knowledge, there exist no fusion methods
for ellipses explicitly parameterized by orientation and semi-
axes in literature which go beyond applying a Kalman filter on
the state densities. Additionally, we know of no other approach
in tracking literature to explicitly change the risk function in
estimating an extended target based on its posterior density.
This idea is inspired by the Minimum Mean Optimal Sub-
pattern Assignment (MMOSPA) estimators [33], [34], which
estimate multiple point target densities [35] by minimizing
the Optimal Subpattern Assignment (OSPA) distance [36].
MMOSPA estimation [34] (and this work) is also related to
the concept of a Wasserstein Barycenter [37]–[40].

C. Structure

The remainder of the paper is organized as follows. The
problem this paper deals with is described in Section II. Then,
a novel fusion method for elliptical extended targets based on
REDs is introduced in Section III, along with a more insightful
recapitulation of the MMGW estimator. This is followed
by approximations and implementations of fusion methods
based on the newly derived RED and MMGW estimator
in Section IV. Next, Section V provides an evaluation of
the estimators and the fusion methods and then the results
are discussed in Section VI. This article is concluded in
Section VII.

II. PROBLEM FORMULATION

This work considers tracking of elliptic targets given ellipses
either directly as measurements or as estimates provided by a
sensor to the fusion center (for simplicity, we will refer only
to measurements from now on). To clarify the setting, we first
describe the state we want to estimate in Section II-A and the
measurements we want to fuse the state with in Section II-B.
In the following, lower case letters denote scalars, lower case
bold letter denote vectors, and upper case bold letters denote
matrices.

A. State

We model the spatial extent by a center m =
[
m1 m2

]T
,

an orientation α, and semi-axis length l and width w (see also
Figure 2a). This representation explicitly allows for capturing
uncertainties for the different dimensions, providing important
information which can be utilized for the fusion. Its usefulness
has been demonstrated in, e.g., [7].

We also add a kinematic state r (depending on the choice
of the kinematic model, r can also be a scalar), resulting in a
state vector

x =
[
mT

x αx lx wx rTx
]T

. (1)

We assume the state to be a Gaussian distributed probability
density with p(x) = N (x; x̂,C).
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B. Measurement model

This work deals with “shape level” fusion, i.e., the mea-
surements consist of the same parameters as the state (1). In
other words, we assume that we have some estimate x̂ with
covariance C and get an elliptic extended target measurement
x̂2 stemming from a sensor with noise C2 (see Figure 1). They
can be related to each other with the measurement equation

x2 = Hx+ w2 , (2)

with w2 ∼ N (0,C2). We assume the entire shape is detected.
If all of r is detected as well, we have H = Id with Id being
the d-dimensional identity matrix and d the dimension of x. If
only part or none of r is detected, the corresponding rows of
H are cut. Essentially, the challenge is to effectively combine
elliptic shape measurements with the current estimate, result-
ing in a new estimate along with a covariance. We assume w2

to be independent of x, ignoring cross-correlations for now.
The importance of tracking the axis and orientation sep-

arately becomes quite clear here, as one measurement from
behind the target might give a precise estimate of the width, but
has almost no information about the length, so that parameter
should be weighted much less when fusing with the estimate.
An alternative example would be scenarios with highly noisy
measurements across the entire target surface from, e.g., radar.
Due to the radial noise, the uncertainty orthogonal to the
measurement direction can be higher than in measurement
direction.

III. BAYESIAN FUSION AND ESTIMATION

Consider the prior ellipse estimate x with mean x̂ and
covariance C and a measurement of the ellipse x̂2 with sensor
noise C2. The naive approach to combine them would be
a linear fusion according to the Kalman filter. It finds the
Minimum Mean Square Error (MMSE) estimate using the
squared Euclidean distance as risk function according to

ẑ = argmin
z

∫
||z− x||22 · p(x|x̂2)dx = E[x|x̂2] . (3)

The fusion is conducted as

p(x|x̂2) ∼ p(x̂2|x) · p(x) , (4)

with prior p(x) = N (x; x̂,C) and Gaussian likelihood
p(x̂2|x) = N (x̂2;x,C2).

To demonstrate the issues by means of an example, we
consider the case of equal covariances. The estimate is then
gained by averaging the two means

ẑ =
1

2
(x̂+ x̂2) . (5)

However, as Figure 2 shows, this approach can produce
counter-intuitive results due to ambiguities in the parameteri-
zation. The two ellipses in Figures 2a and 2b are geometrically
the same, just with an orientation shift of π

2 and the semi-axes
switched, resulting in a fusion in Figure 2c which averages the
intuitively wrong axes (lx with l2 and wx with w2 in Figures 2a
and 2b).

The reason for this counter-intuitive behavior lies in Equa-
tion (3), namely from

5
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Fig. 2: Ellipses with parameters mx = [5 5]T, αx = π
2 ,

lx = 4, and wx = 2 in Figure 2a and m2 = [5 5]T, α2 = 0,
l2 = 2, and w2 = 4 in Figure 2b and their RMSE estimate
using Euclidean distance in Figure 2c.

(1) the fusion p(x|x̂2) by means of Equation (4) and
(2) the Euclidean distance ||z− x||22 as risk function.

Both (1) and (2) deal with real vectors and do not account
for the elliptic shapes. For this reason, in this work, we propose
(1) a novel probability density for elliptic shapes in Sec-

tion III-A, which allows for a sound Bayesian ellipse
fusion and

(2) to use the GW distance to define an MMGW estimator
to obtain intuitive point estimates in Section III-B.

As the focus is on the shape state, we will omit the
kinematic part r in this section for readability.

A. Random Ellipse Densities

To define a density for ellipses, we need to deal with
the ambiguities and the constraint that semi-axes need to
be positive. For the latter, we create a truncated normal
distribution by setting a lower bound of 0 for l and w,

pt(x) =

{
0 if l < 0 ∨ w < 0,
c · p(x) else,

(6)

with normalizing constant c. Next, to avoid the issue visualized
in Figure 2, we adapt the concept of wrapped distribu-
tions [41]. We define a transformation of x to represent all
equivalent ellipses by

Kk(x) =
[
mT

x αx,k vk(lx, wx) vk+1(lx, wx)
]T

, (7)

with

vk(l, w) =

{
l if k is even,
w if k is odd,

(8)

αx,k = αx + k · π
2
, (9)
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and k ∈ Z. It is apparent that the orientation can be restricted
between 0 and π

2 if the semi-axes are switched for each shift.
We then define the wrapped distribution

p̃(x) =

{∑∞
k=−∞ pt(Kk(x)) if 0 ≤ αx <

π
2 ,

0 else.
(10)

We call this density a Random Ellipse Density (RED). It
handles the ambiguities by representing only unique ellipses.
The only exception is the case of equal semi-axes, as there is
no unique representation of a circle due to the angle being
chosen arbitrarily. From a mathematical point of view, a
circle is a zero-probability event and does not need special
consideration. However, circular point masses might be of
interest, because from a practical point of view, ellipses which
are close to a circle should be seen as close to each other even
if their angular difference is high.

It is important to note that the Euclidean mean of this multi-
modal density has no meaning and would result in a similar
problem as depicted in Figure 2. To get an intuitive point
estimate from the RED, the MMGW estimator described in
the next section can be applied.

B. MMGW Estimator

As the Euclidean distance does not handle ambiguities
in the ellipse parameterization, we suggest to use a more
suitable metric. In [20], potential distance metrics on ellipses
are evaluated, including Intersection-over-Union [4], the GW
distance [42], Kullback-Leibler Divergence, and the Hausdorff
distance, e.g., [43]. They conclude that the GW distance is the
most suitable measure, as it provides a single, intuitive scalar
value and can be solved in closed form. Therefore, we decided
to use it as a quality measure.

The MMGW estimator changes the squared Euclidean dis-
tance on the explicit parameters in (3) with a true distance
on ellipses. In the following, we will provide a more detailed
explanation of this estimator and its approximation via the SR
distance [21].

The GW distance [42] is defined as

GW(mz,Z,mx,X)

= ||mz −mx||22 +Tr[Z+X− 2(Z
1
2XZ

1
2 )

1
2 ] , (11)

with shape matrix

Z = Rαz ·
[
l2z 0
0 w2

z

]
·RT

αz
, (12)

Rα =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, (13)

and X analogous. Replacing the Euclidean distance results in
the new mean estimate

ẑ = argmin
z

∫
GW(mz,Z,mx,X) · p̃(x)dx . (14)

This gives us a MMGW estimator. Note that this would also
be valid on the original density p(x). The question is how
to calculate the estimate. Already calculating the Wasserstein
Barycenter from samples requires iterative optimization [44].

To obtain a closed-form solution, we utilize the Square Root
(SR) distance [21]

SR(Z,X) = ||Z 1
2 −X

1
2 ||2Frobenius , (15)

and extend it by including the center of the ellipse, creating
the Extended Square Root (ESR) distance

ESR(mz,Z,mx,X)

= ||mz −mx||22 + SR(Z,X) . (16)

We then approximate the GW distance via the ESR distance

GW(mz,Z,mx,X)

≈ ||mz −mx||22 +Tr[(Z
1
2 −X

1
2 )(Z

1
2 −X

1
2 )]

= ||mz −mx||22 + ||Z
1
2 −X

1
2 ||2Frobenius

= ESR(mz,Z,mx,X) , (17)

creating an approximated MMGW estimator. We justify the
approximation in Appendix A and show that it is exact if
the shape matrices would commute. The advantage of this
approximation is that the MMGW estimate can be determined
via averaging. This means if we define the transformation

T (x) =
[
mT

x s
(11)
x s

(12)
x s

(22)
x

]T
, (18)

with s(nm) being cells of the symmetric square root matrix

Rαx ·
[
lx 0
0 wx

]
·RT

αx
=

[
s
(11)
x s

(12)
x

s
(21)
x s

(22)
x

]
= X

1
2 , (19)

we get

ẑ = argmin
z

∫
GW(mz,Z,mx,X) · p̃(x)dx

≈ argmin
z

∫
||T (z)− T (x)||22 · p̃(x)dx

= T−1(E[T (x)]) , (20)

using the law of the unconscious statistician. To also include
kinematic parts, the ESR distance in (16) and by that extension
the transformation in (18) need to be extended by r analogous
to m.

IV. IMPLEMENTATIONS

With the result of the previous section, we end up with a
density on ellipses in explicit parameter space and a transfor-
mation of the density to calculate the estimate with respect to
a distance measure on ellipses. In this section, we present two
different fusion approaches based on these concepts. First, we
provide an approximation to fuse in ellipse parameter space
in Section IV-A using the RED. Second, we briefly recap the
fusion method used in our previous work in Section IV-B.
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A. Ellipse Parameter Space

For the fusion in ellipse parameter space, each component
of the prior RED needs to be multiplied with each component
of the likelihood RED

p̃(x|x̂2) ∼ p̃(x̂2|x) · p̃(x)

=

∞∑
k=−∞

pt(Kk(x̂2)|x) ·
∞∑

j=−∞
pt(Kj(x))

=

∞∑
j=−∞

∞∑
k=−∞

pt(Kk(x̂2)|x) · pt(Kj(x)) , (21)

with the orientations αx and αx̂2
restricted as in (10). The

sums can be simplified using the 2π periodicity of the ori-
entation to reduce the number of components to the 4 most
likely ones. So, we can write (21) as

p̃(x|x̂2) ≈ c1 ·
3∑
j=0

3∑
k=0

pt(Kk(x̂2)|x)pt(Kj(x)) , (22)

with normalizing constant c1. We further approximate the
components as Gaussians, assuming the probability mass of
l and w below 0 to be minor. Thus, we get the prior and
likelihood as Gaussians as described in Section III

pt(Kk(x̂2)|x) ≈ p(Kk(x̂2)|x) , (23)
pt(Kj(x)) ≈ p(Kj(x)) . (24)

We end up with 16 components, each individual update con-
ducted in Kalman fashion. With consecutive update steps, the
number of components grows, so we apply mixture reduction.
The MMGW estimate is then approximated by sampling
particles from the RED, transforming them as in (18), and then
averaging them. Pseudo-code can be found in Algorithm 1. As
we fuse using REDs and determine the mean via MMGW
estimation, this method is called Random Ellipse Density
Minimum Mean Gaussian Wasserstein (RED-MMGW). A
simple approximation is to fuse only the four most likely
representations with the measurement and then keep the one
with the highest weight. As the weight is calculated via the
weighted distance between the ellipses’ means, we called it
the Random Ellipse Density Minimum Weighted Distance
Parameterization (RED-MWDP).

B. Transformed Space

In our previous work [22], we utilized the transformations
properties

T (K0(x)) = T (Kk(x)) ∀k ∈ Z , (25)
T (x̂) = T (x̂2) if l1 = w1 = l2 = w2

∧m1 = m2 , (26)

to transform the density before fusion (as in transformed space,
there are no ambiguities). To deal with the non-linearity of
the transformation, we approximate the transformed density
as a Gaussian with mean ŷ and covariance D and use a
Kalman filter for the fusion. The approximation is conducted
by drawing m particles

p(j) ∼ N (x̂,C) j ∈ {1, ...,m} . (27)

input : multimodal input RED with means x̂, covariances C, and
weights w, measurement mean x̂2 and covariance C2

output: updated RED means x̂+, covariances C+, and weights w+

for k ∈ {0, 1, 2, 3} do
x̂2.k ← K(x̂2, k)
C2.k ← K(C2, k)

end
for n ∈ [0,len(w)] do

for k ∈ {0, 1, 2, 3} do
x̂+.(4n+ k), C+.(4n+ k), w+.(4n+ k)
←kalman(x̂.n, C.n, x̂2.k, C2.k)

w+.(4n+ k)← w+.(4n+ k) ·w.n
end

end
x̂+, C+, w+ ←reduce_mixture(x̂+, C+, w+)
return x̂+, C+, w+

Algorithm 1: The RED fusion algorithm relies on the
following functions. K() switches according to (7) with
the last input as k when given state means and switches
covariances accordingly as well, len() provides the length
of the input vector, kalman() is the Kalman filter correc-
tion providing updated mean, covariance, and likelihood,
and reduce mixture() is a mixture reduction function also
providing normalized weights.

input : Gaussian approximated transformed state mean ŷ and
covariance D, ellipse parameter measurement mean x̂2 and
covariance C2, and the number of particles m

output: updated mean ŷ+ and covariance D+

for j ∈ [0,m] do
p.j ← mvn(x̂2, C2)

end
ŷ2 ←mean(T(p))
D2 ←mean(outer(T(p)−ŷ2, T(p)−ŷ2))
ŷ+, D+ ←kalman(ŷ, D, ŷ2, D2)
return ŷ+, D+

Algorithm 2: The MC-MMGW algorithm relies on the
following functions. mvn() provides a sample from a multi-
variate normal distribution, T() describes the transformation
from (18), mean() provides a mean, outer() describes the
outer product, and kalman() is a regular Kalman update.

The particles will be in state space (1). We then transform each
individual particle and approximate the transformed particle
density as a Gaussian distribution

ŷ ≈ 1

m

m∑
j=1

T (p(j)) , (28)

D ≈ 1

m

m∑
j=1

(T (p(j))− ŷ)(T (p(j))− ŷ)T . (29)

The estimate x̂2 with noise C2 is transformed analogously.
The fusion is then conducted based on the Kalman filter
formulas. This method using Monte Carlo approximation of
the density is called Monte Carlo Minimum Mean Gaussian
Wasserstein (MC-MMGW) with pseudo-code provided in Al-
gorithm 2. In the next section, we show that the Gaussian
approximation is not enough to deal with the non-linearities
in certain scenarios and that the fusion via REDs improves the
results.



6

Euclidean params Euclidean shape ESR GW
Test 1 1.5888 1.6043 1.5834 1.5817
Test 2 4.2849 3.7328 3.6477 3.6458
Test 3 4.8260 3.7834 3.6917 3.6916

TABLE I: GW error of MMSE estimate using Euclidean
distance in parameter space, Euclidean distance in shape
matrix space, the approximated MMGW estimate using ESR
distance, and the MMGW estimate using GW distance. The
first test uses low, the second medium, and the third high
orientation noise.

V. EXPERIMENTS

To support our findings, we provide experiments for a
comparison of the MMSE estimate using Euclidean distance,
the MMGW estimate including its approximation using ESR
distance, and a simple averaging of the shape matrices in
Section V-A. Additionally, we evaluate the RED-MMGW and
the MC-MMGW in a simulation with a moving ellipse in
Section V-B, comparing them to state-of-the-art. The source
code for the experiments is publicly available1.

A. Ellipse estimation

In this section, we compare different approaches for de-
termining point estimates of a Gaussian distributed posterior
density on ellipses. The first naive approach is the mean as it
minimizes the mean Euclidean error on the original ellipse
parameter space. Our proposed method, the approximated
MMGW estimate from Section III-B, minimizes the ESR
distance. In essence, it approximates the state density via par-
ticles, transforms them into square root matrix space via (18),
and averages. To highlight the difference of just averaging
the shape matrices instead of their square roots, which might
seem more intuitive given a particle density of shape matrices,
we include this approach as well under the name Euclidean
distance in shape space, in contrast to Euclidean distance in
(ellipse) parameter space. Finally, we provide the MMGW
estimate as the optimal solution, minimizing the GW distance,
which we proposed as a more appropriate metric on ellipses
than the Euclidean distance. For the calculation, we utilized
the optimization described by [44] with initially equal weights
and the mean from the ESR distance as initial guess.

We conducted three experiments. For the first, we took
an ellipse estimate with mean x̂ =

[
0 0 0 8 3

]T
and

covariance C = diag(
[
0.5 0.5 0.01π 0.5 0.5

]
), for the

second one, we modified the orientation noise to 0.2π, and for
the third to 0.5π, because the differences are most prominent
with higher orientation uncertainty. The state consists of 2D
center, orientation, length, and width. As the estimator focuses
on the shape, the kinematics are omitted for these tests (see
also Section III). In all cases, we drew 1000 particles to
approximate the density for the estimators and to approximate
the mean GW error of each estimate. The results can be found
in Table I and Figure 3.

We find that the MMGW estimator approximated using
ESR distance is quite accurate with respect to the actual

1https://github.com/Fusion-Goettingen/
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Fig. 3: MMSE estimates based on Euclidean distance in
parameter space (red), Euclidean distance in shape space
(magenta), ESR distance (green), and GW distance (dotted
black) for different orientation noises. 20 sample particles to
highlight the orientation uncertainty are drawn in grey.

MMGW estimate obtained via optimization. This coincides
with the findings from Appendix A. Another important aspect
is the relation to the Euclidean distance. For low orientation
noise, the estimates are similar, but for high noise, the GW
based estimators tend to a more circular form, which looks
more intuitive as a high orientation noise means the true
ellipse could be near 90 degree to the Euclidean estimate,
making a circular estimate more reasonable. In other words,
the Euclidean estimate we get as the mean of our Gaussian
distributed state might seem intuitive at first, but the higher the
noise, the further away it is from minimizing the GW distance.

Another interesting comparison is the Euclidean mean in
shape matrix space, calculated as the mean of the particles’
shape matrices. While this seems to be an intuitive estimate
regarding a particle density of shape matrices, it can be seen
that it is slightly larger than the MMGW estimate and even
worse than the Euclidean mean in low orientation noise. This
phenomenon is further elaborated in Section VI-B.

B. Shape Fusion

For the evaluation of the fusion algorithms, the methods
described in Section IV are compared with each other and with
the state-of-the-art. This includes the regular fusion with Eu-
clidean distances and random matrix based fusion approaches.
Regarding the latter, a direct comparison is difficult however,
as we assume sensors provide estimates parameterized as (1),
not as random matrices and not as measurement points, i.e.,
we assume the sensor to be a black box offering us mean and
covariance of an ellipse as discussed in Section II-B. To still
offer a baseline, we transform the measurement ellipse into a

https://github.com/Fusion-Goettingen/
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Fig. 4: Exemplary input of two consecutive time steps with
ground truth in gray and imaginary sensors 1 in magenta and
2 in cyan. The measurements’ orientations are represented by
arrows and the uncertainties are visualized as pale ellipses.
Note how the semi-axes possess different uncertainties.

shape matrix and handle all of them as Random Matrices with
the same degree. We then utilize the method described by [18],
giving all measurements the same weight. Each measurement
random matrix gets the degree 6 and to consider a forget
model, we utilize the version of the predict function from [45].
We call this method simply ”shape mean”. More details on the
relation to random matrix based distributed fusion approaches
can be found in Section VI-B.

For the MMGW-MC, we used 1000 particles. For the
RED-MMGW, we apply mixture reduction, discarding com-
ponents with low weights, merging those close to each other,
and pruning unlikely components to ensure the number of
components is below a threshold. On the result, we apply
the MMGW estimator (using 1000 particles to approximate
the transformed density). We also include the RED-MWDP
described in Section IV-A and utilize the MMGW estimator
on the posterior of the standard Kalman filter, entitled Regular-
MMGW. To make the scenario more realistic, we consider
moving ellipses, utilizing a Nearly Constant Velocity (NCV)
model, i.e., the kinematic part is a Cartesian velocity r = ṁ.

The experiments provide the methods with a prior from
which the ground truth is sampled in each run. We simulate
sensors with different uncertainties in the semi-axis length
and width, i.e., the sensor has a higher uncertainty in the
direction it is facing. In addition, the sensors use different ori-
entations for the ellipse to include the problem of ambiguous
parameterization (see Figure 4 for an exemplary input). Before
taking a measurement, the simulated sensor switches the
parameterization by a random integer k according to (7). The
sensors provide ellipse estimates (drawn from the ground truth)
and their covariances. We conduct three experiments with low,
medium, and high orientation noise. For each experiment, we
conducted 1000 Monte Carlo runs and plotted the convergence
of the GW error over 20 time steps, i.e., 20 measurements.
Each time step is 1 second. To also provide a shape change,
the ellipse will simply turn along with the velocity. The axes
of the ground truth stay constant between time steps.

The prior mean x̂ =
[
0 0 0 8 3 10 0

]T
is

used and to model that no prior knowledge is avail-
able for the orientation, the prior covariance matrix C =

diag(
[
0.5 0.5 0.5π 0.5 0.5 10.0 10.0

]
) is chosen

with a relatively high orientation uncertainty. After the
ground truth is drawn from the prior and after each pre-
diction step, the orientation and velocity vector are aligned
with each other. We conduct three tests with three sensor
noise settings. One is sensor low with covariance C2 =
diag(

[
0.5 0.5 0.01π 0.5 0.1 0.05 0.05

]
) (similar to

Figure 3a). Note that before drawing the estimates from
the ground truth, the orientation and semi-axes are shifted
according to (7) as described above, resulting in the noise on
the semi-axes being actually different between the sensors (see
Figure 4). For sensor medium the variance of the orientation
in the covariance is set to 0.2π (similar to Figure 3b) and
for high, it is 0.5π (similar to Figure 3c). As the shape mean
does not consider the measurement covariance, we modified
the forget parameter τ in its prediction step, providing 0.2 in
low noise, 5.0 in medium noise, and 10.0 in high noise, which
produced the best results in our tests.

The results can be found in Figure 5. Note that the GW
distance is used as an error function.

The results of test 1 in Figure 5a show the problems
of the regular fusion with the ambiguous parameterization
clearly. The shape mean converges, but it does not consider the
different uncertainties in the semi-axes, so it is overall worse
than the following approaches. The RED-MWDP, dealing with
the ambiguity, demonstrates that minimization via Euclidean
distance also provides good results in the case of low orien-
tation noise, similar to the MMGW based approaches. This
conforms with the findings of Figure 3a of Section V-A.

The results of test 2 in Figure 5b demonstrate the advan-
tages of the RED fusion, dealing with the ambiguities and
incorporating information about different axes uncertainties.
Especially in this case, it can also be seen how MC-MMGW
is outperformed by the REDs, as the approximation of the
transformed density as a Gaussian fails under the increased
noise. It becomes also more clear how the MMGW estimation
outperforms the classical estimate.

Finally, the results of test 3 in Figure 5c demonstrate
the issue of classical estimation and by extend, the issue of
RED-MWDP. It keeps the shape, but due to the high noise,
the orientation can be quite off, resulting in a high error. The
MMGW based methods however estimate a circular target
to deal with the low amount of orientation information. Two
other things are of note here. First, as a clarification to avoid
confusion regarding the regular fusion, we highlight that it
produces more round estimates due to the axis switch (see
also Figure 2). As a round target is a good estimate in this
scenario, the result is good by coincidence. The same holds for
the MMGW-MC, as the approximation also leads to a round
estimate, explaining the improvements compared to test 2.

Given the Kalman filter-based linear fusion and the shape
mean as the state-of-the-art in fusion of elliptical estimates
parameterized by orientation and semi-axes, we demonstrated
that our method offers improvements of up to 40% with respect
to the GW distance.

Due to page constraints, we excluded tests with no ambigu-
ous parameterizations. In these cases, where semi-axes and
orientation is always correctly assigned and thus can be seen
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Fig. 5: Tests comparing different ellipse fusion approaches under different sensor noise.

as simple Gaussian distributed random variables, the Kalman
filter is of course the best choice. However, using the MMGW
estimator on the Kalman filter posterior still provides a better
estimate with respect to the GW distance.

VI. DISCUSSION

In this section, we provide further insights on different
behavior and properties of the discussed methods, comparing
the MMGW estimation with the minimization of the Euclidean
distance on ellipse parameters in Section VI-A and with the
minimization of the Euclidean distance in shape matrix space
in Section VI-B.

A. GW vs Euclidean distance on ellipse parameters

In this article, we demonstrated in simulations that in sce-
narios with high orientation noise, the RED-MWDP provides
worse results with respect to the GW distance compared to the
RED-MMGW (and the regular Kalman filter provides worse
results than the Regular-MMGW Kalman filter). We further
elaborate this difference by providing the MMSE estimates
using Euclidean and ESR distance in low and high orientation
noise scenarios. In the case of an uncertain orientation, the
methods based on Euclidean distance would keep the semi-
axes and average the orientation. With low information on the
orientation, this can provide poor results, especially with only
few measurements. The ESR based methods systematically
deal with this issue by providing circular shaped estimates.
Depending on the scenario, this may be more desirable. Such
a situation could happen, e.g., if the semi-axis uncertainty was
low (due to long tracking or prior knowledge) and the target
would turn under high measurement noise. As the target’s
dimensions are certain, the uncertainty would be reflected in
the orientation. This brings us to an important parallel between
the regular estimation and the MMGW based approaches,
which occurs when the shape matrices commute. It can be
shown that in these cases, the ESR distance would boil down
to the Euclidean distance between state vectors containing only
center and the overlapping semi-axes

ESR(mz,Z,mx,X)

= ||
[
(mz −mx)

T vk(lz, wz)− lx vk+1(lz, wz)− wx

]
||22

∀αz, k with (αz = αx + k
π

2
) and k ∈ Z , (30)

with vk() from (8). Now, if the ellipse orientation has a high
certainty, so the corresponding value in the covariance tends
to 0, most particles would nearly commute. As a result, the
MMGW estimate would be almost the same as the regular es-
timate. Additionally, as the approximation of the GW distance
via ESR distance would be exact in this case, both estimates
would also be optimal in respect to the GW distance. This is
further demonstrated by the results of Section V.

In this context, we also highlight that the standard Kalman
filter would provide better results than the RED if the axes
association was known, i.e., if there were no ambiguities. This
could happen if the orientation and velocity vector were linked.
However, as this assumption might not hold true, e.g., the
ellipse is used to model a group target or the sensors decouple
shape and kinematics or targets are stationary, the RED is still
a useful tool to avoid counter-intuitive fusion results due to
wrongly assigned semi-axes.

B. GW vs Euclidean distance on shape matrix space

The particles from an empirical density in matrix square root
space can simply be averaged to compute the approximated
MMGW estimate. Note that [25] calculate the weighted sum of
their particle density using the shape matrices, not their square
roots, finding the estimate which minimizes the Euclidean
distance between the matrices instead. However, based on our
experience, using the shape matrices’ square roots provides
better results with respect to the Gaussian Wasserstein distance
and the ellipse parameters. This can be demonstrated with
a simple example regarding commute matrices. As shown
in (30), averaging the square roots in this special case boils
down to averaging the lengths and widths. However, averaging
the shape matrices would mean averaging the squared lengths
and widths. This provides ellipses which are too large, which
can be seen in Figure 3. For example, if two equally likely
estimates with lengths 2 and 10 are drawn, averaging the
square root matrices results in a length estimate 2+10

2 = 6

and averaging the shape matrices produces
√

4+100
2 ≈ 7.

We also want to discuss the difference to random matrix
based fusion approaches. In general, as these approaches
employ an Inverse-Wishart distribution to represent an ellipse,
their applicability on ellipses parameterized with orientation
and semi-axes is limited.
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The method from [24] is made for merging of shapes, also
increasing their size if both shapes are further apart which
is a different type of application. The weighted average to
minimize the Kullback-Leibler divergence [18] does not use
the measurement covariances, i.e., it is not suitable if they dif-
fer between measurements. The method from [25] utilizes the
measurements directly, which we do not consider is this article.
[26] provide a method sharing Gaussian mixture approxima-
tions of the density transformed into the same parameterization
we use between sensors. However, the Gaussian mixtures
are generated from sampling from Random matrices based
on an importance distribution and weighting them with their
likelihoods, while our approach assumes elliptical estimates
and their covariances are given. These estimates cannot be
directly translated to those Gaussian mixtures. Hence, a direct
comparison with our work is not feasible. The same holds for
the latent variable approximations in [27].

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel Bayesian framework
for estimation and fusion of ellipse densities represented by
center, orientation, and semi-axis length and width. The main
concepts are the identification of a density on ellipses, the
RED, and the utilization of the GW distance to create a
MMGW estimator. Approximating the GW distance with the
ESR distance, we derived an estimator which can be calculated
via averaging of particles. In simulations, we demonstrated the
robustness of this approximation and compared our methods to
state-of-the-art algorithms in respect to estimation and fusion.
We highlighted the advantages of our approach, those being
the inclusion of the ellipse parameter state’s covariance, the
dealing with ambiguous parameterizations of ellipses, and
more intuitive estimates in scenarios with high orientation
noise. In summary, the RED provides a suitable way of
avoiding the ambiguous parameterization of ellipses during
fusion, if the parameterization of the ellipse is unclear. The
MMGW estimator provides an intuitive estimate based on the
posterior density.

For future work, we intend to further improve the mixture
reduction of RED based fusion. Regarding the Monte Carlo-
based approaches for fusion in transformed space, we seek
to better preserve the transformed density by means of direct
multiplication of particle densities [46]. As for other shapes,
we want to investigate appropriate metrics for rectangles and
test if the MMGW and RED concepts also work for them due
to the equal parameterization. Regarding more complex con-
tours, like star-convex shapes, we wish to determine whether
we can apply the same principle of finding an appropriate
distance measure and density representation here as well.

APPENDIX

A. Comparison of GW and ESR distance

For the comparison, we utilized the experiments from [20]
with the GW and the ESR distances only (see Figure 6). For
the first experiment, the ellipses’ orientations are the same.
With the approximation of the GW distance by the ESR
distance being exact in this case, the two metrics behave the
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Fig. 6: Comparison of GW and ESR distance with metric
output on the left (red: GW, green: ESR), metric difference in
the middle, and ground truth with every tenth iteration of the
estimate on the right (black: ground truth, green: estimates).

same (see Figure 6a). For the second experiment, the second
ellipse is tilted slightly. A difference can thus be seen here,
getting larger with the ellipse’s length increasing beyond the
ground truth’s length, but except for that shift, they still behave
similar (see Figure 6b). Finally, for the rotation experiment, the
general behavior is also the same, with the difference between
the metrics being greatest when the angle offset between the
ellipses is π

4 shifted by a multiple of π
2 (see Figure 6c), so

when the angle is in the middle of two orientations which
would make the estimate and the ground truth commute.
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