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Abstract

This article considers the fusion of target estimates stemming from multiple sensors, where the spatial extent of the targets is

incorporated. The target estimates are represented as ellipses parameterized with center orientation and semi-axis lengths and

width. Here, the fusion faces challenges such as ambiguous parameterization and an unclear meaning of the Euclidean distance

between such estimates. We introduce a novel Bayesian framework for random ellipses based on the concept of a Minimum Mean

Gaussian Wasserstein (MMGW) estimator. The MMGW estimate is optimal with respect to the Gaussian Wasserstein (GW)

distance, which is a suitable distance metric for ellipses. We develop practical algorithms to approximate the MMGW estimate

of the fusion result. The key idea is to approximate the GW distance with a modified version of the Square Root (SR) distance.

By this means, optimal estimation and fusion can be performed based on the square root of the elliptic shape matrices. We

analyze different implementations using, e.g., Monte Carlo methods, and evaluate them in simulated scenarios. An extensive

comparison with state-of-the-art methods highlights the benefits of estimators tailored to the Gaussian Wasserstein distances.
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Fusion of Elliptical Extended Object Estimates
Parameterized with Orientation and Axes Lengths

Kolja Thormann and Marcus Baum

Abstract—This article considers the tracking of elliptical ex-
tended targets parameterized by center, orientation, and semi-
axes. The focus of this article lies on the fusion of extended
target estimates, e.g., from multiple sensors, by handling the
challenges introduced due to ambiguities in this parameterization
and the unclear meaning of the Mean Square Error (MSE).
For this purpose, we introduce a novel Bayesian framework for
elliptic extent estimation and fusion based on two new concepts:
(1) a probability density function for ellipses called Random
Ellipse Density (RED) which incorporates the ambiguities that
come with the ellipse parameterization, and (2) the Minimum
Mean Gaussian Wasserstein (MMGW) estimate which is optimal
with respect to the squared Gaussian Wasserstein (GW) distance
– a suitable distance metric on ellipses. We develop practical
algorithms for ellipse fusion and approximating the MMGW
estimate. Different implementations, e.g., based on Monte Carlo
simulation, are introduced and compared to state-of-the-art
methods, highlighting the benefits of estimators tailored to the
GW distance.

Keywords— Extended Object Tracking, Information Fusion,
Bayesian Estimation

I. INTRODUCTION

In many modern tracking applications the resolution of the
involved sensors is high enough to resolve the spatial extent
of the targets. For this reason, Extended Object Tracking
(EOT) methods that estimate both the shape and kinematic
parameters of a target are becoming increasingly important [1],
[2]. Most EOT methods have been developed for sensors that
resolve a varying number of noisy Cartesian detections from
the target, e.g., based on a spatial distribution model [3]. The
extent can be modeled by basic shapes like rectangles [4], [5]
or ellipses [2], [6]–[9]. More detailed shapes are also possible
by modelling them as a combination of multiple random
matrices [10] or using a Random Hypersurface Model (RHM).
The latter describes star-convex shapes and was modeled by,
e.g., Fourier coefficients [11], Gaussian processes [12]–[14],
or splines [15], [16].

To improve tracking, multiple sensors can be applied.
Communications can be reduced by sending only compact
information, i.e., by tracking the target locally and transmitting
only the estimate and covariance instead of the individual point
clouds (given, e.g., a radar sensor) [17]. These estimates can
be shared between neighboring nodes in a sensor network [18]
or sent to a central fusion unit [17]. In this work, we consider
object level fusion in a centralized fusion unit, i.e., we want to
fuse the local state densities and determine a global estimate.

Kolja Thormann and Marcus Baum are with the Institute of Com-
puter Science, University of Goettingen, Germany, {kolja.thormann,
marcus.baum}@cs.uni-goettingen.de

Sensor 1

Sensor 2

Fig. 1: Ground truth of a vehicle along with the internal
measurement point clouds of sensors 1 and 2 in blue and
purple respectively, as well as their estimates as ellipses. The
transparent ellipses represent orientation uncertainty and the
transparent areas visualize the uncertainty in the semi-axes.

Thus, it is essential that the sensors do not only provide their
estimates, but their uncertainties as well [19].

Elliptic shapes are widely-used to approximate the target’s
extent [2], [6]–[9]. An example application is automotive radar,
as the detections are usually scattered across the entire surface.
Elliptic shapes are useful for targets such as pedestrians [20],
but can also be applied in scenarios with high sensor noise
for other objects, if their actual form is hard to estimate
(see, e.g., the radar point clouds from the nuScenes data
set [21]). Another example is marine radar, as again the
detections are scattered across the surface while the targets
themselves, usually ships, are also elliptical (see, e.g., the Data
Association with Aids to Navigation (DAAN) dataset [22]).
Furthermore, group targets such as groups of pedestrians can
be approximated by ellipses as well, e.g., [2], [23].

Elliptic targets can be tracked using Random Matrices, pio-
neered by Koch et al. [6], [24]. However, it was demonstrated
in [7] that under the assumption that the semi-axes don’t
change, but the orientation does, tracking the orientation and
semi-axes as individual parameters can improve the estimation,
especially in turns. Also, if the same target is detected by dif-
ferent sensors, the estimates may have different uncertainties
depending on the sensor’s qualities and position relative to
the target (see Figure 1). Under these conditions, there might
be different uncertainties for the semi-axes or an increased
uncertainty about the target’s orientation due to, e.g., high
noise or maneuvers like driving around a corner. As a result,
the densities must be fused, not only their local estimates, to
get a proper global estimate.

The goal now is to fuse the estimates and covariances
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provided by the sensors appropriately, preserving as much
information about the uncertainties of the different parameters
as possible. However, when parameterizing the ellipse with
orientation and semi-axes, new unique challenges occur such
as ambiguity, i.e., the same ellipse being parameterized in
different ways, as a result of different initialization or tracking
in high process and sensor noise. To counter this, the shape
orientation could be aligned with the velocity vector. However,
in tracking elliptic targets, velocity and shape orientation are
often decoupled, e.g., [6], [7]. The reason is that the ellipse
orientation is not necessarily equal to the orientation of the
velocity vector, e.g., due to drifting of the vessels in case of
ships [22], [25]. Moreover, if a target is stationary, there is
no velocity vector. Another way to handle these ambiguities
for the estimates at least is by simply transforming them to
shape matrices, but fusing the entire state densities is not so
trivial. This article provides a method to fuse state densities
under these challenges and to find an appropriate estimate
incorporating the geometric properties of the estimated shape.

A. Contributions

The main contribution of this article is a novel Bayesian
framework for estimation and (shape) fusion with elliptic
extended targets parameterized by center, width, length, and
orientation. The contributions include
• the promotion of the squared Gaussian-Wasserstein (GW)

distance [26] as a risk function on elliptic shapes, defin-
ing a Minimum Mean Gaussian Wasserstein (MMGW)
estimator,

• the introduction of a suitable probability density function
on the explicit extent parameters of ellipses, a Random
Ellipse Density (RED),

• the derivation of a MMGW estimator approximation and
fusion method by replacing the GW distance via an
extension of the Square Root (SR) distance [27], the
Extended Square Root (ESR) distance,

• the development of practical implementations of the
MMGW and RED concepts, and

• a comparison of the MMGW estimator and the fusion
via REDs with state-of-the-art concepts, demonstrating
improved performance in high noise scenarios.

This article is based on our previous conference publica-
tion [28]. We further develop our previous results by
• introducing the concept of RED, which allows for a

meaningful Bayesian fusion of uncertain ellipses, along
with an efficient mixture reduction as an improved fusion
method to the one presented previously,

• providing more insight on the effectiveness of approxi-
mating the GW distance with the ESR distance, and

• presenting a new and much more elaborate experimental
evaluation of the fusion methods using moving targets.

B. Related Work

As elliptic targets are often represented by random ma-
trices [6], [24], fusion methods for this representation can
be found in literature as well. These include a combination

of two random matrix estimates utilizing their respective
Poisson rates [29], with a focus on the combination of targets,
also considering that their size might increase. In [18], the
authors argue that as Random Matrices are represented by
Inverse-Wishart distributions, the weighted average of the
shape matrices (and of the degree of freedom) respectively
minimizes the Kullback-Leibler divergence to the densities.
Another approach using point clouds from different sensors
directly, including a method applying a particle filter, can be
found in [30]. The latter draws its particles from an importance
distribution in the space of the explicit parameters with the
orientation, length, and width of the shape matrix as mean. It
then uses the random matrix likelihood to weight the particles
with the point clouds generated by the sensors. There is an
extension of this method for asynchronous sensors in [31],
creating local estimates as particle densities, approximating
them as Gaussian mixtures, and then fusing them via geomet-
ric mean densities. In both works, the mean of the particle
density is calculated as the weighted average of the shape
matrices. Another recent work [32] presents a distributed
fusion method based on a variational Bayesian approach.
They model the state also as a random matrix, define latent
variables as noise-free measurements, and distribute their
statistics across the sensors to approximate the state globally.
[33] propose a combination strategy of ellipses parameterized
with orientation and semi-axes in a distributed sensor network
based on the diffusion Kalman filter. They do however assume
that point clouds are shared between neighboring sensors.
Additionally, they combine the neighboring estimates after the
measurement update by turning them into shape matrices and
finding combination weights. They do however not consider
the covariances in the fusion, which would be able to provide
additional information and improve the estimation [34].

For rectangles, [35] provide a method which focuses on
associating and fusing rectangular shapes by using the co-
variances of their corners. In [36], a method is presented
to fuse rectangular estimates modeled by center, orientation,
length, and width in a Kalman fashion, but considering one
of the corners as a reference point. An approach to fuse
only segments, represented by points, lines, or L-shapes, is
introduced in [37].

For arbitrary shapes there exists a framework by [19] to
combine star-convex forms represented by Gaussian processes,
again using measurements directly. There is also an extension
in [38] which fuses star-convex shapes by determining a new
center and then a new radial function based on the input radial
functions relative to the new center. In [39], estimated Random
Finite Sets (RFS) from multiple sensors are combined using
the Kullback-Leibler Divergence between them.

To the best of our knowledge, there exist no fusion methods
for ellipses explicitly parameterized by orientation and semi-
axes in literature which go beyond applying a Kalman filter
on the state densities or simply combining estimates without
considering their covariances [33]. Additionally, we know of
no other approach in tracking literature to explicitly change
the risk function in estimating an extended target based on its
posterior density. This idea is inspired by the Minimum Mean
Optimal Subpattern Assignment (MMOSPA) estimators [40],
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[41], which estimate multiple point target densities [42] by
minimizing the Optimal Subpattern Assignment (OSPA) dis-
tance [43]. MMOSPA estimation [41] (and this work) is also
related to the concept of a Wasserstein Barycenter [44]–[47].

C. Structure

The remainder of the paper is organized as follows. The
problem this paper deals with is described in Section II. Then,
a novel fusion method for elliptical extended targets based on
REDs is introduced in Section III, along with a more insightful
recapitulation of the MMGW estimator. This is followed
by approximations and implementations of fusion methods
based on the newly derived RED and MMGW estimator
in Section IV. Next, Section V provides an evaluation of
the estimators and the fusion methods and then the results
are discussed in Section VI. This article is concluded in
Section VII.

II. PROBLEM FORMULATION

This work considers the fusion of elliptic target estimates
stemming from multiple sources, e.g., sensors tracking the
same target locally and then sending their estimate to a fusion
center. We assume the sources provide the estimate along with
its uncertainty as a covariance matrix. To clarify the setting, we
first describe the state we want to estimate in Section II-A and
the fusion model we consider in Section II-B. In the following,
lower case letters denote scalars, lower case bold letter denote
vectors, and upper case bold letters denote matrices.

A. State

We model the spatial extent by a center m =
[
m1 m2

]T
,

an orientation α, and semi-axis length l and width w (see also
Figure 2a). This representation explicitly allows for capturing
uncertainties for the different dimensions, providing important
information which can be utilized for the fusion. Its usefulness
has been demonstrated in, e.g., [7].

We also add a kinematic state r, which can be realized as,
e.g., a Cartesian velocity ṁ, a polar velocity consisting of
velocity v and orientation ψ, or even only v while using α as
the orientation, in either case resulting in a state vector

x =
[
mT

x αx lx wx rTx
]T

. (1)

We assume the state to be a Gaussian distributed probability
density with p(x) = N (x; x̂,C).

B. Fusion model

For simplicity, we assume only a single target which is
tracked by multiple sensors. Each sensor can observe the entire
target’s shape, i.e., we assume that the sensors observe a
point cloud distributed across the entire target’s surface [2],
[6], [7], [9], [11], [24], [48], [49]. Due to aspects such as
different sensor quality or sensor to target geometry, the sensor
estimates have different uncertainties, represented by their
covariances.

We now assume that a fusion center keeps track of the global
target state parameterized as in (1) with mean x̂ and covariance

C. A sensor with index s then provides a local estimate x̂s
with uncertainty Cs. They can be related to each other with
the measurement equation

xs = Hx+ws , (2)

with ws ∼ N (0,Cs). We assume the entire shape state is
provided by the sensor. If all of r is provided as well, we
have H = Id with Id being the d-dimensional identity matrix
and d the dimension of x. If only part or none of r is given by
the sensor, the corresponding rows of H are cut. Essentially,
the challenge is to effectively combine elliptic shape estimates,
making use of their covariances and resulting in a new estimate
x̂+ along with a covariance C+.

We want to highlight the importance of tracking the individ-
ual axes and orientation along with their covariances instead
of using a random matrix again, as one sensor from behind
the target might give a precise estimate of the width, but has
almost no information about the length, so that this parameter
should be weighted less when fusing. An alternative example
would be scenarios with highly noisy measurements across the
entire target surface from, e.g., radar. Due to the radial noise,
the uncertainty orthogonal to the measurement direction can
be higher than in measurement direction.

For simplicity’s sake, we assume x and ws are indepen-
dent, as the focus of this work are the unique challenges in
fusing elliptic shape estimates. In practice, possible unknown
correlation can be dealt with by methods such as covariance
intersection [50], [51]. If enough knowledge about the system
is at hand, the correlation can be tracked [17], [52].

III. BAYESIAN FUSION AND ESTIMATION

Consider the global ellipse estimate x with mean x̂ and
covariance C and a sensor s providing a local estimate of
the ellipse x̂s with sensor noise Cs. The naive approach
to combine them would be a linear fusion according to
the Kalman filter. It finds the Minimum Mean Square Error
(MMSE) estimate using the squared Euclidean distance as risk
function according to

ẑ = argmin
z

∫
||z− x||22 · p(x|x̂s)dx = E[x|x̂s] . (3)

The fusion is conducted as

p(x|x̂s) ∼ p(x̂s|x) · p(x) , (4)

with prior p(x) = N (x; x̂,C) and Gaussian likelihood
p(x̂s|x) = N (x̂s;x,Cs).

To demonstrate the issues by means of an example, we
consider the case of equal covariances. The estimate is then
gained by averaging the two means

ẑ =
1

2
(x̂+ x̂s) . (5)

However, as Figure 2 shows, this approach can produce
counter-intuitive results due to ambiguities in the parameteri-
zation. The two ellipses in Figures 2a and 2b are geometrically
the same, just with an orientation shift of π

2 and the semi-axes
switched, resulting in a fusion in Figure 2c which averages the
intuitively wrong axes (lx with ls and wx with ws in Figures 2a
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Fig. 2: Ellipses with parameters mx = [5 5]T, αx = π
2 ,

lx = 4, and wx = 2 in Figure 2a and ms = [5 5]T, αs = 0,
ls = 2, and ws = 4 in Figure 2b and their RMSE estimate
using Euclidean distance in Figure 2c.

and 2b). Such ambiguities can occur for example due to the
placement of the sensors relative to the target, e.g., if the
sensors initialize a target always with the orientation facing
away from the sensor. It could also happen during tracking
under high process and sensor noise that different sensors end
up estimating the target with different orientations.

The reason for this counter-intuitive behavior lies in Equa-
tion (3), namely from
(1) the fusion p(x|x̂s) by means of Equation (4) and
(2) the squared Euclidean distance ||z−x||22 as risk function.

Both (1) and (2) deal with real vectors and do not ac-
count for the elliptic shapes. A straightforward solution is to
transform the estimates into shape matrices and fuse them as
done in [33]. However, to improve the fused estimate, the
covariances must be considered as well. For example, our
estimates can have different uncertainties in, e.g., the semi-
axes, which would be lost if we only transform the estimates
into shape matrices and combine them. Additionally, we want
to fuse the state densities, i.e., we want to calculate the
posterior distribution of the elliptic shape state to incorporate
estimates consecutively. For this reason, in this work, we
propose
(1) a novel probability density for elliptic shapes in Sec-

tion III-A, which allows for a sound Bayesian ellipse
fusion and

(2) to use the squared GW distance to define an MMGW esti-
mator to obtain intuitive point estimates in Section III-B.

The two methods will be summarized and related in Sec-
tion III-C. As the focus is on the shape state, we will omit the
kinematic part r in this section for readability.

A. Random Ellipse Densities

To define a density for ellipses, we need to deal with
the ambiguities and the constraint that semi-axes need to

be positive. For the latter, we create a truncated normal
distribution by setting a lower bound of 0 for l and w,

pt(x) =

{
0 if l < 0 ∨ w < 0,
c · p(x) else,

(6)

with normalizing constant c. Next, to avoid the issue visualized
in Figure 2, we adapt the concept of wrapped distribu-
tions [53]. We define a transformation of x to represent all
equivalent ellipses by

Kk(x) =
[
mT

x αx,k vk(lx, wx) vk+1(lx, wx)
]T

, (7)

with

vk(l, w) =

{
l if k is even,
w if k is odd,

(8)

αx,k = αx + k · π
2
, (9)

and k ∈ Z. It is apparent that the orientation can be restricted
between 0 and π

2 if the semi-axes are switched for each shift.
As the density pt(x) is defined over α ∈ R, all shifts from
k = −∞ to k =∞ need to be considered to include the entire
density, i.e., we want to combine all input states corresponding
to the same elliptic shape. Therefore, we define the wrapped
distribution as

p̃(x) =

{∑∞
k=−∞ pt(Kk(x)) if 0 ≤ αx <

π
2 ,

0 else.
(10)

We call this density a Random Ellipse Density (RED). It
handles the ambiguities by representing only unique ellipses.
The only exception is the case of equal semi-axes, as there is
no unique representation of a circle due to the angle being
chosen arbitrarily. From a mathematical point of view, a
circle is a zero-probability event and does not need special
consideration. However, circular point masses might be of
interest, because from a practical point of view, ellipses which
are close to a circle should be seen as close to each other even
if their angular difference is high.

It is important to note that the Euclidean mean of this multi-
modal density has no meaning and would result in a similar
problem as depicted in Figure 2. To get an intuitive point
estimate from the RED, the MMGW estimator described in
the next section can be applied.

B. MMGW Estimator

As the Euclidean distance does not handle ambiguities
in the ellipse parameterization, we suggest to use a more
suitable metric. In [26], potential distance metrics on ellipses
are evaluated, including Intersection-over-Union [4], the GW
distance [54], Kullback-Leibler Divergence, and the Hausdorff
distance, e.g., [55]. They conclude that the GW distance is the
most suitable measure, as it provides a single, intuitive scalar
value and can be solved in closed form. Therefore, we decided
to use it as a quality measure.

The MMGW estimator changes the squared Euclidean dis-
tance on the explicit parameters in (3) with a true distance
on ellipses. In the following, we will provide a more detailed
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explanation of this estimator and its approximation via the SR
distance [27].

The squared GW distance [54] is defined as

GW(mz,Z,mx,X)2

= ||mz −mx||22 +Tr[Z+X− 2(Z
1
2XZ

1
2 )

1
2 ] . (11)

Normally used for calculating a distance between Gaussian
densities, we utilize it here to calculate the distance between
two ellipses. The estimate and each realization of our state
density describe an ellipse, which can be transformed into a
shape matrix to be used in the GW distance as follows

Z = Rαz ·
[
l2z 0
0 w2

z

]
·RT

αz
, (12)

Rα =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, (13)

and X analogous. Replacing the Euclidean distance results in
the new mean estimate

ẑ = argmin
z

∫
GW(mz,Z,mx,X)2 · p̃(x)dx . (14)

This gives us a MMGW estimator. Note that this estimator
is also applicable on the original density p(x). The question
is how to calculate the estimate. Calculating the Wasserstein
Barycenter from samples already requires iterative optimiza-
tion [56]. To obtain a closed-form solution, we utilize the
Square Root (SR) distance [27]

SR(Z,X) = ||Z 1
2 −X

1
2 ||Frobenius , (15)

and extend its squared form by including the center of the
ellipse, creating the squared Extended Square Root (ESR)
distance

ESR(mz,Z,mx,X)2

= ||mz −mx||22 + SR(Z,X)2 . (16)

We then approximate the GW distance via the ESR distance

GW(mz,Z,mx,X)2

≈ ||mz −mx||22 +Tr[(Z
1
2 −X

1
2 )(Z

1
2 −X

1
2 )]

= ||mz −mx||22 + ||Z
1
2 −X

1
2 ||2Frobenius

= ESR(mz,Z,mx,X)2 , (17)

creating an approximated MMGW estimator. We justify the
approximation in Appendix A and show that it is exact if
the shape matrices would commute. The advantage of this
approximation is that the MMGW estimate can be determined
via averaging. This means if we define the transformation

T (x) =
[
mT

x s
(11)
x s

(12)
x s

(22)
x

]T
, (18)

with s(nm) being cells of the symmetric square root matrix

Rαx ·
[
lx 0
0 wx

]
·RT

αx
=

[
s
(11)
x s

(12)
x

s
(21)
x s

(22)
x

]
= X

1
2 , (19)

we get

ẑ = argmin
z

∫
GW(mz,Z,mx,X)2 · p̃(x)dx

≈ argmin
z

∫
||T (z)− T (x)||22 · p̃(x)dx

= T−1(E[T (x)]) , (20)

using the law of the unconscious statistician. To also include
kinematic parts, the ESR distance in (16) and by that extension
the transformation in (18) need to be extended by r analogous
to m.

Note that representing the elements of the square-root shape
matrix as a state vector has been done previously using the
Cholesky decomposition [11], [49]. But in our case, we repre-
sent the original ellipse parameters as a Gaussian distributed
state vector and then transform the density. We use matrix
square root instead of Cholesky decomposition as it is the type
of square root also used in the calculation of the GW distance
and is therefore necessary in our formulas to minimize the
squared GW distance. Additionally, as we have the original
ellipse parameters, calculation of the square root as in (19) is
straightforward.

C. Summary

To summarize our method and to give an overview of the
spaces and transformations we consider, we refer to Figure 3.
We assume estimates are given in ellipse parameter space,
consisting of center, orientation, semi-axes lengths, and kine-
matics. We further assume the estimates to be regular densities,
i.e., the parameters are Gaussian distributed. We referred to
two challenges we want to tackle in this article, fusion and
estimation.

To handle the challenges introduced by ambiguity in the
fusion, we transform the density into a RED. The fusion is
then conducted on the RED in ellipse parameter space.

To handle estimation, we proposed to replace the squared
Euclidean distance with the squared GW distance, i.e., we
want to consider the actual shape of the ellipse when finding
the best estimate. However, minimizing the GW distance
is not trivial (red arrow in Figure 3). To overcome this
challenge, we introduced the square root space, consisting
of center, the elements of the shape matrix’ square root,
and kinematics. We transform the density into this space via
particle approximation. The property of the square root space
we want to utilize is that the expectation, i.e., the average of the
particle density, minimizes the squared ESR distance, which
is an approximation of the squared GW distance. Therefore,
we can get an approximated MMGW estimate easily using
the approximation via the square root space (blue arrows in
Figure 3). Furthermore, it is of note that if only 1 estimate is
present and no fusion is needed, the transformation into square
root space can also be used directly from the regular density
and not the RED to get the MMGW estimate.

IV. IMPLEMENTATIONS

With the result of the previous section, we end up with
a density on ellipses in ellipse parameter space, the RED,
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ellipse parameter space
[
mT α l w rT

]

estimates as regular density p(x) (1)
transform using (7)

RED p̃(x) (10)

fusion

approximate via particles

square root space
[
mT s11 s12 s22 rT

]

transformed density p(T (x)) (18)

minimize GW distance

average particles
≈

MMGW estimate (20)

Fig. 3: A summary of the two spaces and the densities we
consider and how the MMGW estimate can be gained from
them.

and a transformation of the density to calculate the estimate
with respect to a distance measure on ellipses, the squared
GW distance. In this section, we present two different fusion
approaches based on these concepts. First, we provide an ap-
proximation to fuse in ellipse parameter space in Section IV-A
using the RED. Second, we briefly recap the fusion method
used in our previous work in Section IV-B.

A. Ellipse Parameter Space

For the fusion in ellipse parameter space, each component
of the prior RED needs to be multiplied with each component
of the likelihood RED

p̃(x|x̂s) ∼ p̃(x̂s|x) · p̃(x)

=

∞∑
k=−∞

pt(Kk(x̂s)|x) ·
∞∑

j=−∞
pt(Kj(x))

=

∞∑
j=−∞

∞∑
k=−∞

pt(Kk(x̂s)|x) · pt(Kj(x)) , (21)

with the orientations αx and αx̂s restricted as in (10). The
sums can be simplified using the 2π periodicity of the orien-
tation, so we can write (21) as

p̃(x|x̂s) ≈ c1 ·
∑
j∈J

∑
k∈K

pt(Kk(x̂s)|x)pt(Kj(x)) , (22)

with normalizing constant c1, J = {n, n+1, n+2, n+3} with
n ∈ Z, so that all four orientations are used, and K analogous
and chosen in a way that for each i ∈ J, there is a k ∈
K which minimizes the difference in their α parameter. The
last condition is necessary to avoid the innovation in α being
bigger than π or smaller than −π. We further approximate
the components as Gaussians, assuming the probability mass
of l and w below 0 to be minor. Thus, we get the prior and
likelihood as Gaussians as described in Section III

pt(Kk(x̂s)|x) ≈ p(Kk(x̂s)|x) , (23)
pt(Kj(x)) ≈ p(Kj(x)) . (24)

We end up with 16 components, each individual update
conducted in a Kalman fashion. With consecutive update steps,
the number of components grows, so we apply a mixture
reduction. The MMGW estimate is then approximated by sam-
pling particles from the RED, transforming them as in (18),

input : multimodal global RED with means x̂, covariances C, and
weights w, local sensor estimate’s mean x̂s and covariance
Cs,

output: updated RED means x̂+, covariances C+, and weights w+

for k ∈ {0, 1, 2, 3} do
x̂s.k ← K(x̂s, k)
Cs.k ← K(Cs, k)

end
for n ∈ [0,len(w)] do

for k ∈ {0, 1, 2, 3} do
x̂+.(4n+ k), C+.(4n+ k), w+.(4n+ k)
←kalman(x̂.n, C.n, x̂s.k, Cs.k)

w+.(4n+ k)← w+.(4n+ k) ·w.n
end

end
x̂+, C+, w+ ←reduce_mixture(x̂+, C+, w+)
return x̂+, C+, w+

Algorithm 1: The RED fusion algorithm relies on the fol-
lowing functions: K() switches according to (7) with the last
input as k when given state means and switches covariances
accordingly as well, len() provides the length of the input
vector, kalman() is the Kalman filter correction (restricting
the innovation in α between −π and π) providing updated
mean, covariance, and likelihood, and reduce mixture() is
a mixture reduction function also providing normalized
weights.

and then averaging them (blue arrows in Figure 3). Pseudo-
code can be found in Algorithm 1. As we fuse using REDs
and determine the mean via MMGW estimation, this method
is called Random Ellipse Density Minimum Mean Gaussian
Wasserstein (RED-MMGW).

B. Square Root Space

In our previous work [28], we utilized the transformations
properties

T (K0(x)) = T (Kk(x)) ∀k ∈ Z , (25)
T (x̂1) = T (x̂2) if l1 = w1 = l2 = w2

∧m1 = m2 , (26)

to transform the density before fusion. This idea uses another
property of the square root space, that the ambiguities are not
present anymore. Looking at Figure 3, we start off with the
estimate and instead of transforming into a RED, we directly
go the first blue arrow to transform into square root space. To
conduct a fusion in this space, we approximate the transformed
density as a Gaussian with mean ŷ and covariance D and use
a Kalman filter for the fusion. The MMGW estimate can then
be approximated as the mean of the posterior density. The
approximation is conducted by drawing m particles

p(j) ∼ N (x̂,C) j ∈ {1, ...,m} . (27)

The particles will be in ellipse parameter space (1). We
then transform each individual particle and approximate the
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input : Gaussian approximated global mean ŷ and covariance D in
square root space, local sensor estimate’s mean x̂s and
covariance Cs in ellipse parameter space, and the number
of particles m

output: updated mean ŷ+ and covariance D+

for j ∈ [0,m] do
p.j ← mvn(x̂s, Cs)

end
ŷs ←mean(T(p))
Ds ←mean(outer(T(p)−ŷs, T(p)−ŷs))
ŷ+, D+ ←kalman(ŷ, D, ŷs, Ds)
return ŷ+, D+

Algorithm 2: The MC-MMGW algorithm relies on the
following functions: mvn() provides a sample from a multi-
variate normal distribution, T() describes the transformation
from (18), mean() provides a mean, outer() describes the
outer product, and kalman() is a regular Kalman update.

transformed particle density as a Gaussian distribution

ŷ ≈ 1

m

m∑
j=1

T (p(j)) , (28)

D ≈ 1

m

m∑
j=1

(T (p(j))− ŷ)(T (p(j))− ŷ)T . (29)

The local estimate x̂s with covariance Cs is transformed anal-
ogously. The fusion is then conducted based on the Kalman
filter formulas. This method using Monte Carlo approximation
of the density is called Monte Carlo Minimum Mean Gaussian
Wasserstein (MC-MMGW) with pseudo-code provided in Al-
gorithm 2. It should be noted here that this method is related
to fusing the shape matrices. It uses the square roots however
(due to the aforementioned properties of the square root space)
and transforms not just the estimates, but the entire density,
preserving additional information from the covariances. In the
next section, we show that the Gaussian approximation of the
density is not enough to deal with the non-linearities in certain
scenarios and that the fusion via REDs improves the results.

V. EXPERIMENTS

To support our findings, we provide experiments for a
comparison of the MMSE estimate using Euclidean distance,
the MMGW estimate including its approximation using ESR
distance, and a simple averaging of the shape matrices in
Section V-A. Additionally, we evaluate the RED-MMGW
and the MC-MMGW in a simulation with a moving ellipse
in Section V-B, comparing them to the state-of-the-art. The
source code for the experiments is publicly available1.

A. Ellipse estimation

In this section, we provide a more detailed evaluation of
the MMGW estimator, by comparing different approaches for
determining point estimates of a Gaussian distributed posterior
density on ellipses. The first naive approach is the mean as it
minimizes the mean squared Euclidean error on the original el-
lipse parameter space. Our proposed method, the approximated

1https://github.com/Fusion-Goettingen/

Euclidean params Euclidean shape ESR GW
Test 1 1.5888 1.6043 1.5834 1.5817
Test 2 4.2849 3.7328 3.6477 3.6458
Test 3 4.8260 3.7834 3.6917 3.6916

TABLE I: Squared GW error of MMSE estimate using Eu-
clidean distance in parameter space, Euclidean distance in
shape matrix space, the approximated MMGW estimate using
ESR distance, and the MMGW estimate using GW distance.
The first test uses low, the second medium, and the third high
orientation noise.

MMGW estimate from Section III-B, minimizes the squared
ESR distance. In essence, it approximates the state density
via particles, transforms them into square root matrix space
via (18), and averages (blue arrows in Figure 3). To highlight
the difference of just averaging the shape matrices instead of
their square roots, which might seem more intuitive given a
particle density of shape matrices, we include this approach
as well under the name Euclidean distance in shape space,
in contrast to the Euclidean distance in (ellipse) parameter
space. Finally, we provide the MMGW estimate as the optimal
solution, minimizing the squared GW distance, which we
proposed as a more appropriate metric on ellipses than the
squared Euclidean distance. For the calculation, we utilized
the optimization described by [56] with initially equal weights
and the mean from the ESR distance as initial guess.

We conducted three experiments. For the first, we took
an ellipse estimate with mean x̂ =

[
0 0 0 8 3

]T
and

covariance C = diag(
[
0.5 0.5 0.01π 0.5 0.5

]
), for the

second one, we modified the orientation noise to 0.2π, and for
the third to 0.5π, because the differences are most prominent
with higher orientation uncertainty. The state consists of the
2D center, orientation, length, and width. As the estimator
focuses on the shape, the kinematics are omitted for these tests
(see also Section III). In all cases, we drew 1000 particles to
approximate the density for the estimators and to approximate
the mean squared GW error of each estimate. The results can
be found in Table I and Figure 4.

We find that the MMGW estimator approximated using ESR
distance is quite accurate with respect to the actual MMGW
estimate obtained via optimization. This coincides with the
findings from Appendix A. Another important aspect is the
relation to the Euclidean distance. For low orientation noise,
the estimates are similar, but for high noise, i.e., if we have
very low information on the actual orientation, the GW based
estimators tend to a more circular form, which looks more
intuitive as a high orientation noise means the true ellipse
could be near 90 degree to the Euclidean estimate, making
a circular estimate more reasonable if the actual area of the
ellipse is considered. In other words, the Euclidean estimate
we get as the mean of our Gaussian distributed state might
seem intuitive at first, but the higher the noise, the further
away it is from minimizing the squared GW distance.

Another interesting comparison is the Euclidean mean in
shape matrix space, calculated as the mean of the particles’
shape matrices. While this seems to be an intuitive estimate
regarding a particle density of shape matrices, it can be seen

https://github.com/Fusion-Goettingen/
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Fig. 4: MMSE estimates based on Euclidean distance in pa-
rameter space (red), Euclidean distance in shape matrix space
(magenta), ESR distance (green), and GW distance (dotted
black) for different orientation noises. 20 sample particles to
highlight uncertainty are drawn in grey.

that it is slightly larger than the MMGW estimate and even
worse than the Euclidean mean in low orientation noise. This
phenomenon is further elaborated in Section VI-B.

B. Shape Fusion

For the evaluation of the fusion algorithms, the methods
described in Section IV are compared with each other and with
the state-of-the-art. This includes the regular fusion with Eu-
clidean distances and random matrix based fusion approaches.
Regarding the latter, a direct comparison is difficult however,
as we assume that sensors provide estimates parameterized
as (1), not as random matrices and not as measurement points,
i.e., we assume the sensor to be a black box offering us mean
and covariance of an ellipse as discussed in Section II-B. To
still offer a baseline, we transform the ellipse estimates into
a shape matrix and handle all of them as Random Matrices
with the same degree. We then utilize the method described
by [18], giving all sensor estimates the same weight. Each
random matrix gets the degree 6 and to consider a forget
model, we utilize the version of the predict function from [57].
We call this method simply ”shape mean”. More details on the
relation to random matrix based distributed fusion approaches
can be found in Section VI-B. While the method from [33]
also considers orientation and semi-axes, it is not considered
here. The reason is that we focus on the shape fusion itself,
i.e., we do not consider point clouds to be shared. Excluding
the point clouds would reduce the method to the averaging of
the estimates’ shape matrices, which boils down to the ”shape
mean” method, but without the forget model. Removing the
forget model would be counter productive however, as the

shape (specifically the orientation) can change. Therefore, we
consider it not appropriate for our setting.

For the MC-MMGW, we used 1000 particles. For the
RED-MMGW, we apply mixture reduction, discarding com-
ponents with low weights, merging those close to each other,
and pruning unlikely components to ensure the number of
components is below a threshold. On the result, we apply the
MMGW estimator (using 1000 particles to approximate the
transformed density). We also utilize the MMGW estimator
on the posterior of the standard Kalman filter, named here
Regular-MMGW. To make the scenario more realistic, we
consider moving ellipses, utilizing a Nearly Constant Velocity
(NCV) model, i.e., the kinematic part is a Cartesian velocity
r = ṁ.

The experiments provide the methods with a prior from
which the ground truth is sampled in each run. We simulate
sensors with different uncertainties in the semi-axis length and
width, i.e., the sensor has a higher uncertainty in the direction
it is facing. In addition, the sensors use different orientations
for the ellipse to include the problem of ambiguous parame-
terization (as discussed in Section III). Before calculating an
estimate, the simulated sensor switches the parameterization
by a random integer k according to (7). The sensors provide
ellipse estimates (drawn from the ground truth) and their
covariances. We conduct three experiments with low, medium,
and high orientation noise. For each experiment, we conducted
1000 Monte Carlo runs and plotted the convergence of the
squared GW error over 20 time steps, i.e., 20 local estimates
are provided over time. Each time step is 1 second. To also
provide a shape change, the ellipse will simply turn along
with the velocity. The axes of the ground truth stay constant
between time steps. An example run with estimates from the
RED-MMGW can be seen in Figure 5, with only every other
time step plotted for better visibility.

The prior mean x̂ =
[
0 0 0 8 3 10 0

]T
is

used and to model that no prior knowledge is avail-
able for the orientation, the prior covariance matrix C =
diag(

[
0.5 0.5 0.5π 0.5 0.5 10.0 10.0

]
) is chosen

with a relatively high orientation uncertainty. After the
ground truth is drawn from the prior and after each pre-
diction step, the orientation and velocity vector are aligned
with each other. We conduct three tests with three sensor
noise settings. One is sensor low with covariance Cs =
diag(

[
0.5 0.5 0.01π 0.5 0.1 0.05 0.05

]
) (similar to

Figure 4a). Note that before drawing the estimates from
the ground truth, the orientation and semi-axes are shifted
according to (7) as described above, resulting in the noise on
the semi-axes being actually different between the sensors.
For sensor medium the variance of the orientation in the
covariance is set to 0.2π (similar to Figure 4b) and for high,
it is 0.5π (similar to Figure 4c). As the shape mean does
not consider the estimates’ covariances and to cope with the
change in orientation of the true ellipse during the movement,
we modified the forget parameter τ in its prediction step,
providing 0.2 in low noise, 5.0 in medium noise, and 10.0
in high noise, which produced the best results in our tests.

The results can be found in Figure 6. Note that the squared
GW distance is used as the error function.
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Fig. 5: Sample run under low orientation noise with ground
truth in grey, sensor estimates in blue, and the centrally fused
RED-MMGW estimate in green for every other time step.

The results of test 1 in Figure 6a show the problems of the
regular fusion with the ambiguous parameterization clearly.
The shape mean converges, but it does not consider the
different uncertainties in the semi-axes and is overall worse
than the RED-MMGW and MC-MMGW, which deal with the
ambiguity very well.

The results of test 2 in Figure 6b demonstrate the advan-
tages of the RED fusion, dealing with the ambiguities and
incorporating information about different axes uncertainties.
Especially in this case, it can also be seen how MC-MMGW
is outperformed by RED-MMGW, as the approximation of the
transformed density as a Gaussian fails under the increased
noise.

Finally, the results of test 3 in Figure 6c show an interest-
ing phenomenon. As the MMGW based methods estimate a
circular target to deal with the low amount of orientation infor-
mation, which actually minimizes the squared GW distance,
the regular fusion also seemingly improves, as the estimate is
also more round. It must be noted here that the reason for
that is the mixing of the axes due to ambiguity (see also
Figure 2), so the result is good by coincidence. The same
holds for the MC-MMGW, as the approximation also leads to
a round estimate, explaining the improvements compared to
test 2.

Given the Kalman filter-based linear fusion and the shape
mean as the state-of-the-art in fusion of elliptical estimates
parameterized by orientation and semi-axes, we demonstrated
that our method offers improvements of up to 40% with respect
to the squared GW distance.

Due to page constraints, we excluded tests with no am-
biguous parameterizations. In these cases, where semi-axes
and orientation are always correctly assigned and thus can
be seen as simple Gaussian distributed random variables, the

Kalman filter is of course the best choice. However, using the
MMGW estimator on the Kalman filter posterior still provides
a better estimate with respect to the squared GW distance, as
is demonstrated in Section V-A.

VI. DISCUSSION

In this section, we provide further insights on different
behavior and properties of the discussed methods, comparing
the MMGW estimation with the minimization of the Euclidean
distance on ellipse parameters in Section VI-A and with the
minimization of the Euclidean distance in shape matrix space
in Section VI-B.

A. GW vs Euclidean distance on ellipse parameters

In this article, we demonstrated in simulations that in
scenarios with high orientation noise, the Euclidean mean
provides worse results with respect to the squared GW distance
compared to the MMGW estimate (and the regular Kalman
filter provides worse results than the Regular-MMGW Kalman
filter). We further elaborate this difference by providing the
MMSE estimates using Euclidean and ESR distance in low and
high orientation noise scenarios. In the case of an uncertain
orientation, the methods based on Euclidean distance would
keep the semi-axes and average the orientation. With low
information on the orientation, this can provide poor results.
The ESR based methods systematically deal with this issue
by providing more circular shaped estimates. Depending on
the scenario, this may be more desirable. Such a situation
could happen, e.g., if the semi-axis uncertainty was low (due
to long tracking or prior knowledge) and the target would
turn under high sensor noise. As the target’s dimensions are
certain, the uncertainty would be reflected in the orientation.
As a result, the estimate could be turned 90 degree in relation
to the ground truth. Especially with long ellipses, this would
lead to a high squared GW error. The advantage of the GW
distance here is that, unlike the Euclidean distance, it does not
just consider the individual state parameters, but interprets the
state as a shape and considers the area of that shape (this is
demonstrated fairly well in Figure 4c). This leads to the more
circular estimate, which minimizes the squared GW distance.
Note here that the certain estimates of the semi-axes in this
example are still preserved in the state density and can be
utilized if the orientation uncertainty gets smaller during an
update. Only the estimate is circular.

This brings us to an important parallel between the regular
estimation and the MMGW based approaches, which occurs
when the shape matrices commute, i.e., if the axes of the
ellipses align. It can be shown that in these cases, the ESR
distance would boil down to the Euclidean distance between
state vectors containing only center and the overlapping semi-
axes

ESR(mz,Z,mx,X)2

= ||
[
(mz −mx)

T vk(lz, wz)− lx vk+1(lz, wz)− wx

]
||22

∀αz, k with (αz = αx + k
π

2
) and k ∈ Z , (30)
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Fig. 6: Tests comparing different ellipse fusion approaches under different sensor noise.

with vk() from (8). Now, if the ellipse orientation has a
low uncertainty, so the corresponding value in the covariance
tends to 0, most particles would nearly commute. As a
result, the MMGW estimate would be almost the same as the
regular estimate. Additionally, as the approximation of the GW
distance via ESR distance would be exact in this case, both
estimates would also be optimal with respect to the squared
GW distance. This is further demonstrated by the results of
Section V-A.

In this context, we also highlight that the standard Kalman
filter would provide better results than the RED if the axes
association was known, i.e., if there were no ambiguities. This
could happen if the orientation and velocity vector were linked.
However, as this assumption might not hold true, e.g., the
ellipse is used to model a group target or the sensors decouple
shape and kinematics or targets are stationary, the RED is still
a useful tool to avoid counter-intuitive fusion results due to
wrongly assigned semi-axes.

While the focus of this article is the fusion of estimates, we
still want to comment on data association, another important
topic of multi-sensor fusion, e.g., in a multi-target context.
As it did for the fusion itself, ambiguity can lead to counter-
intuitive results for the association as well, leading to the
possibility of the distance between the same ellipse being
unequal to zero (see Figure 2). The GW distance can solve this,
but the entire density needs to be considered. Transforming it
as is done in MC-MMGW or using REDs can both tackle this
challenge, but an evaluation and comparison for this usage is
future work.

B. GW vs Euclidean distance on shape matrix space

The particles from an empirical density in matrix square root
space can simply be averaged to compute the approximated
MMGW estimate. Note that [30] calculate the weighted sum
of their particle density using the shape matrices, not their
square roots, finding the estimate which minimizes the squared
Euclidean distance between the matrices instead. Similarly,
[33] combine estimates from different sensors by turning
them to shape matrices and then calculating their weighted
average. However, based on our experience, using the shape
matrices’ square roots provides better results with respect to
the Gaussian Wasserstein distance and the ellipse parameters.

This can be demonstrated with a simple example regarding
commute matrices. As shown in (30), averaging the square
roots in this special case boils down to averaging the lengths
and widths. However, averaging the shape matrices would
mean averaging the squared lengths and widths. This provides
ellipses which are too large, which can be seen in Figure 4.
For example, if two equally likely estimates with lengths 2 and
10 are drawn, averaging the square root matrices results in a
length estimate 2+10

2 = 6 and averaging the shape matrices

produces
√

4+100
2 ≈ 7.

We also want to discuss the difference to random matrix
based fusion approaches. In general, as these approaches
employ an Inverse-Wishart distribution to represent an ellipse,
their applicability on ellipses parameterized with orientation
and semi-axes is limited.

The method from [29] is made for merging of shapes,
also increasing their size if both shapes are further apart
which is a different type of application. The weighted average
to minimize the Kullback-Leibler divergence [18] does not
use the estimates’ covariances, i.e., it is not suitable if they
differ between estimates. The method from [30] utilizes the
measurement point clouds directly, which we do not consider
is this article. [31] provide a method sharing Gaussian mixture
approximations of the density transformed into the same pa-
rameterization we use between sensors. However, the Gaussian
mixtures are generated by sampling from Random matrices
based on an importance distribution and weighting them with
their likelihoods, while our approach assumes elliptical esti-
mates and their covariances are given. These estimates cannot
be directly translated to those Gaussian mixtures. Hence, a
direct comparison with our work is not feasible. The same
holds for the latent variable approximations in [32].

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel Bayesian framework
for estimation and fusion of ellipse densities represented by
center, orientation, and semi-axis length and width. The main
concepts are the identification of a density on ellipses, the
RED, and the utilization of the squared GW distance to create
a MMGW estimator. Approximating the GW distance with the
ESR distance, we derived an estimator which can be calculated
via averaging of particles. In simulations, we demonstrated the
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Fig. 7: Comparison of squared GW and squared ESR distance
with metric output on the left (red: GW, green: ESR), metric
difference in the middle, and ground truth with every tenth
iteration of the estimate on the right (black: ground truth,
green: estimates).

robustness of this approximation and compared our methods to
state-of-the-art algorithms in respect to estimation and fusion.
We highlighted the advantages of our approach, those being
the inclusion of the ellipse parameter state’s covariance, the
dealing with ambiguous parameterizations of ellipses, and
more intuitive estimates in scenarios with high orientation
noise. In summary, the RED provides a suitable way of
handling the ambiguous parameterization of ellipses during
fusion if the parameterization of the ellipse is unclear. The
MMGW estimator provides an intuitive estimate based on the
posterior density, RED or not.

For future work, we intend to further improve the mixture
reduction of RED based fusion. Regarding the Monte Carlo-
based approach for fusion in square root space, we seek to
better preserve the transformed density by means of direct
multiplication of particle densities [58]. As for other shapes,
we want to investigate appropriate metrics for rectangles and
test if the MMGW and RED concepts also work for them due
to the equal parameterization. Regarding more complex con-
tours, like star-convex shapes, we wish to determine whether
we can apply the same principle of finding an appropriate
distance measure and density representation here as well. As
data association is also an important topic in multi-sensor
fusion, we also wish to investigate the use of GW distance
instead of Euclidean distance in this area. An extension to 3D
is also an interesting topic. The REDs would face additional
challenges, i.e., more possibilities of representing the same
ellipsoid and the issue of the corner case in 2D, that a circle

has an arbitrary orientation, would be provoked for one of the
three angles if only two of the three axes were equal. For
the MMGW estimate however, the ESR distance can easily be
used in 3D.

APPENDIX

A. Comparison of GW and ESR distance

For the comparison, we utilized the experiments from [26]
with the GW and the ESR distances only (see Figure 7). For
the first experiment, the ellipses’ orientations are the same.
With the approximation of the GW distance by the ESR
distance being exact in this case, the two metrics behave the
same (see Figure 7a). For the second experiment, the second
ellipse is tilted slightly. A difference can thus be seen here,
getting larger with the ellipse’s length increasing beyond the
ground truth’s length, but except for that shift, they still behave
similar (see Figure 7b). Finally, for the rotation experiment, the
general behavior is also the same, with the difference between
the metrics being greatest when the angle offset between the
ellipses is π

4 shifted by a multiple of π
2 (see Figure 7c), so

when the angle is in the middle of two orientations which
would make the estimate and the ground truth commute.
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