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Abstract

In this paper, a new hypervolume-based evolution- ary multi-objective optimization algorithm (EMOA), namely R2HCA-EMOA

(R2-based Hypervolume Contribution Approx- imation EMOA), is proposed for many-objective optimization. The core idea

of the algorithm is to use an R2 indicator variant to approximate the hypervolume contribution. The basic framework of the

proposed algorithm is the same as SMS- EMOA. In order to make the algorithm computationally efficient, a utility tensor

structure is introduced for the calculation of the R2 indicator variant. Moreover, a normalization mechanism is incorporated

into R2HCA-EMOA to enhance the performance of the algorithm. Through experimental studies, R2HCA-EMOA is compared

with three hypervolume-based EMOAs and several other state-of-the-art EMOAs on 5-, 10- and 15-objective DTLZ, WFG

problems and their minus versions. Our results show that R2HCA-EMOA is more efficient than the other hypervolume- based

EMOAs, and is superior to all the compared state-of-the- art EMOAs.
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Abstract—In this paper, a new hypervolume-based evolution-
ary multi-objective optimization algorithm (EMOA), namely
R2HCA-EMOA (R2-based Hypervolume Contribution Approx-
imation EMOA), is proposed for many-objective optimization.
The core idea of the algorithm is to use an R2 indicator
variant to approximate the hypervolume contribution. The basic
framework of the proposed algorithm is the same as SMS-
EMOA. In order to make the algorithm computationally efficient,
a utility tensor structure is introduced for the calculation of the
R2 indicator variant. Moreover, a normalization mechanism is
incorporated into R2HCA-EMOA to enhance the performance
of the algorithm. Through experimental studies, R2HCA-EMOA
is compared with three hypervolume-based EMOAs and several
other state-of-the-art EMOAs on 5-, 10- and 15-objective DTLZ,
WFG problems and their minus versions. Our results show that
R2HCA-EMOA is more efficient than the other hypervolume-
based EMOAs, and is superior to all the compared state-of-the-
art EMOAs.

Index Terms—Many-objective optimization, Evolutionary al-
gorithms, Hypervolume contribution approximation.

I. INTRODUCTION

MULTI-OBJECTIVE optimization problems (MOPs)
have two or more objectives that need to be optimized

simultaneously. When the number of objectives is more than
three, an MOP is often referred to as a many-objective
optimization problem (MaOP) [1]. In the evolutionary multi-
objective optimization (EMO) community, MaOPs have posed
a number of challenges to the development of evolutionary
multi-objective optimization algorithms (EMOAs) [2].

EMOAs are often classified into three categories: Pareto-
based, decomposition-based and indicator-based EMOAs. The
Pareto-based EMOAs (e.g., NSGA-II [3] and SPEA2 [4])
use the Pareto dominance as the main selection criterion in
environmental selection. The convergence of the population
is achieved by Pareto-based selection criterion. However,
the main challenge of the Pareto-based EMOAs for solving
MaOPs is that the selection pressure towards the Pareto front
(PF) is weakened in high-dimensional objective spaces (e.g.,
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10-dimensional objective space). Almost all individuals in
the population are non-dominated with each other in high-
dimensional objective spaces, which makes the Pareto-based
selection inefficient. The decomposition-based EMOAs (e.g.,
MOGLS [5] and MOEA/D [6]) decompose an MOP into a
set of single-objective sub-problems. Then the sub-problems
are optimized simultaneously in a collaborative manner. The
convergence and diversity of the population are achieved
by the scalarizing function criterion. However, for those
decomposition-based EMOAs using a fixed weight vector grid,
usually the obtained solutions cannot be uniformly distributed
on the PF when the shape of the PF is irregular (e.g., the
inverted triangular PF [7]). Thus, adaptively adjusting weight
vectors in decomposition-based EMOAs is a hot research topic
to deal with this issue [8], [9]. The indicator-based EMOAs
(e.g., IBEA [10] and SMS-EMOA [11], [12]) use performance
indicators (e.g., hypervolume [13], inverted generational dis-
tance (IGD) [14], R2 indicator [15]) as the main selection
criterion. By properly setting the parameters of the indicators
(e.g., the reference point for the hypervolume indicator and the
reference point set for the IGD indicator) and optimizing the
indicator values of the population, a solution set with good
convergence and diversity can be obtained by the indicator-
based EMOAs.

Among the indicator-based EMOAs, the hypervolume-based
EMOAs (e.g., SMS-EMOA, FV-MOEA [16], HypE [17])
adopt the hypervolume indicator within the algorithms. The
general idea of the hypervolume-based EMOAs is to transform
an MOP into a single-objective optimization problem, where
the single-objective is to maximize the hypervolume value
of the population. The hypervolume indicator is widely used
for performance evaluation of EMOAs. The advantages of
the hypervolume-based EMOAs over the other EMOAs are
twofold. One is that the hypervolume indicator is strictly
Pareto compliant. Thus the hypervolume-based EMOAs are
sensitive to any improvement to a set with respect to Pareto
dominance. The other is that the hypervolume-based EMOAs
can directly optimize the hypervolume of the population. Thus,
good performance comparison results are likely to be obtained
by the hypervolume-based EMOAs.

The key procedure in the hypervolume-based EMOAs is the
calculation of the hypervolume contribution of each individual.
It has been proven that the exact calculation of the hyper-
volume and hypervolume contributions is #P-hard [18], [19].
Even though there exist O(N logN) algorithms to compute
the hypervolume and hypervolume contributions in two- and
three-dimensional objective spaces [20], [21], where N is the
population size, the computational time of the hypervolume
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and hypervolume contributions increases exponentially with
the increase in the number of objectives. This limited the
applicability of the hypervolume-based EMOAs for solving
MaOPs with many objectives (e.g., more than 10 objectives).
In order to overcome this drawback, the use of hypervolume
approximation (instead of exact calculation) has been proposed
for hypervolume-based EMOAs. HypE is a representative
hypervolume-based EMOA which uses a Monte Carlo sam-
pling method for hypervolume approximation. However, in
order to achieve a good hypervolume approximation, a large
number of sampling points are needed in HypE. Thus, it is
still a time-consuming algorithm.

The above discussions motivate us to develop a new
EMOA which inherits the advantage of the hypervolume-based
EMOAs and at the same time is computationally efficient for
solving MaOPs. In order to fulfil this goal, an efficient hy-
pervolume approximation method is needed. Currently, there
are mainly two methods to approximate the hypervolume.
One is the Monte Carlo sampling method which is adopted
in HypE. The other method is the achievement scalarizing
function method proposed in [22], [23]. The basic idea of this
method is to use the average length of a set of line segments
from the reference point to the hypervolume attainment surface
to approximate the hypervolume. Recently, a new R2 indicator
is proposed to approximate the hypervolume [24], which is
an extension of the achievement scalarizing function method.
Based on [24], an R2-based hypervolume contribution approx-
imation method is proposed in [25]. The proposed method
shows its superiority over the Monte Carlo sampling method
[26] for the hypervolume contribution approximation in terms
of both the runtime and the approximation accuracy.

In this paper, a new hypervolume-based evolutionary algo-
rithm, namely R2HCA-EMOA, is proposed for many-objective
optimization. The proposed algorithm, which is based on the
SMS-EMOA framework, employs the R2-based hypervolume
contribution approximation method in [25] in environmental
selection. Our algorithm has the following two advantages: 1)
It inherits the advantage of the hypervolume-based EMOAs,
i.e., it can directly optimize the hypervolume of the population;
2) It has a worst-case time complexity of O(N2|Λ|) in one
generation where N is the population size and |Λ| is the
number of the direction vectors. Since the worst-case time
complexity does not increase exponentially with the number
of objectives, it is suitable for solving MaOPs. The main
contributions of this paper are listed as follows:
• Using the R2-based hypervolume contribution approxi-

mation method in [25], a new hypervolume-based EMOA,
namely R2HCA-EMOA, is proposed for many-objective
optimization. A normalization mechanism is incorporated
into R2HCA-EMOA to enhance its performance.

• In order to make R2HCA-EMOA computationally ef-
ficient, a utility tensor structure is introduced for the
calculation of the R2 indicator variant. By efficiently
updating the utility tensor, we can avoid the repeated
calculation and ensure the efficiency of the algorithm.

• R2HCA-EMOA is compared with three hypervolume-
based EMOAs and several other state-of-the-art EMOAs
on 5-, 10- and 15-objective DTLZ and WFG problems

and their minus versions. The results demonstrate the ef-
ficiency and effectiveness of R2HCA-EMOA for solving
MaOPs.

The rest of the paper is organized as follows: In Section
II, we briefly review three representative hypervolume-based
EMOAs. The proposed algorithm R2HCA-EMOA is elabo-
rated in Section III. Experiments are given in Section IV. We
conclude the paper in Section V.

II. RELATED WORKS

A. SMS-EMOA

SMS-EMOA [11], [12] is a classical hypervolume-based
EMOA. In SMS-EMOA, the population evolves in a steady-
state manner. In each generation, a single offspring is gen-
erated and added to the population, then the non-dominated
sorting is applied to the updated population, and the individual
with the smallest hypervolume contribution among the last
front individuals is removed from the population. In this
manner, SMS-EMOA ensures that the hypervolume of the
whole population monotonically increases as the number of
generations increases.

SMS-EMOA already showed its promising performance
on MOPs and MaOP with 4-6 objectives [27]. However,
the main drawback of SMS-EMOA is that it can hardly be
applied to MaOPs with many objectives (e.g., more than 10
objectives) because the exact hypervolume calculation is time-
consuming in high-dimensional spaces. This drawback has
been addressed in the following two ways: One is to apply
a faster hypervolume calculation method, and the other way
is to apply a hypervolume approximation method. These two
research directions lead to the following two algorithms: FV-
MOEA [16] and HypE [17].

B. FV-MOEA

FV-MOEA [16] is a recently proposed hypervolume-based
EMOA. Differs from SMS-EMOA, FV-MOEA has the frame-
work of a (µ + µ′) evolution strategy. In each generation,
a set of offspring is generated and added to the population.
Next, non-dominated sorting-based environmental selection
is performed to identify the last front to be included in
the next generation. Then individuals in the last front are
selected based on a fast hypervolume update procedure. The
general idea of this procedure is to delete the individual
with the smallest hypervolume contribution one by one. The
hypervolume contribution of each of the remaining individuals
in this front is updated once an individual is removed.

As reported in [16], FV-MOEA is much faster than SMS-
EMOA on up to 5-objective MaOPs. This is due to the
following two reasons:

1) FV-MOEA adopts a (µ + µ′) evolution strategy while
SMS-EMOA adopts a (µ+ 1) evolution strategy. It has
been shown that a (µ + 1) EMOA takes much longer
runtime than its (µ + µ′) counterpart when they are
compared under the same number of function evalua-
tions [28]. For this reason, FV-MOEA is more efficient
than SMS-EMOA.
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2) FV-MOEA has a fast hypervolume contribution update
procedure. Once a solution is removed from the popula-
tion, the hypervolume contribution of each individual in
the remaining population is efficiently updated instead
of recalculated. In this manner, FV-MOEA can achieve
a fast computational performance. However, there is no
such an update procedure in SMS-EMOA.

FV-MOEA shows a good performance on two- and three-
objective MOPs and up to five-objective MaOPs. However,
because of the #P-hardness of the exact hypervolume calcula-
tion [18], FV-MOEA becomes time-consuming in much higher
dimensional spaces (e.g., 10-dimensional space), which limits
the applicability of FV-MOEA for solving MaOPs with 10 or
more objectives.

To overcome the limitation of the exact hypervolume calcu-
lation, while keeping the advantage of the hypervolume-based
EMOAs, hypervolume approximation can be applied instead
of the exact hypervolume calculation.

C. HypE

HypE [17] is a hypervolume estimation-based EMOA with a
(µ+µ′) evolution strategy. The framework of HypE is similar
to that of FV-MOEA. After a set of offspring is generated
and added to the population, the non-dominated sorting is
performed to identify the last front to be included. Instead of
using the exact hypervolume calculation for selecting individ-
uals from the last front as in FV-MOEA, HypE uses a Monte
Carlo sampling method to estimate the expected hypervolume
loss (i.e., fitness value) attributed to each individual in the last
front to be included. The individual with the smallest fitness
value is removed one by one, and the fitness value of each
of the remaining individuals is updated once an individual is
removed.

HypE has been tested on up to 50-objective MaOPs and
showed its effectiveness for solving MaOPs. However, HypE
is still very time-consuming if a large number of sampling
points are used in order to achieve a good hypervolume
approximation.

III. R2HCA-EMOA

A. R2-based Hypervolume Contribution Approximation

In our previous work [25], we defined the following R2
indicator variant to approximate the hypervolume contribution
of a solution s to a solution set A in an m-dimensional
objective space1:

RHCA
2 (s, A,Λ, r, α)

=
1

|Λ|
∑
λ∈Λ

min

{
min

a∈A\{s}

{
g*2tch(a|λ, s)

}
, gmtch(r|λ, s)

}α
,

(1)
where A is a non-dominated solution set and s ∈ A, Λ
is a direction vector set and each direction vector λ =
(λ1, λ2, ..., λm) ∈ Λ satisfies ‖λ‖2 = 1 and λi ≥ 0,
i = 1, ...,m, r is the reference point, α is a parameter that is

1In this paper, the solutions (individuals) are discussed in the objective
space, i.e., a solution s denotes an objective vector.
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Fig. 1. An illustration of the geometric meaning of RHCA
2 and a traditional

method for the hypervolume contribution approximation.

chosen to be α = m as suggested in [25]. For convenience, we
use RHCA

2 (s) to denote RHCA
2 (s, A,Λ, r, α) in the remaining

of this paper.
The g*2tch(a|λ, s) function is defined for minimization prob-

lems as

g*2tch(a|λ, s) = max
j∈{1,...,m}

{
aj − sj
λj

}
, (2)

For maximization problems, it is defined as

g*2tch(a|λ, s) = max
j∈{1,...,m}

{
sj − aj
λj

}
. (3)

The gmtch function is defined for both minimization and
maximization problems as

gmtch(r|λ, s) = min
j∈{1,...,m}

{
|sj − rj |
λj

}
. (4)

The R2 indicator variant in Eq. (1) has a clear geometric
meaning to approximate the hypervolume contribution which
is illustrated in Fig. 1 (a). Suppose we have three non-
dominated solutions a1, a2 and a3, a set of direction vectors
Λ, and the reference point r. If we draw different line segments
with different directions starting from a2 and ending on the
boundary of the hypervolume contribution region of a2 as
shown in Fig. 1 (a), then RHCA

2 (a2) is the hypervolume
contribution of a2 approximated by 1

|Λ|
∑|Λ|
i=1 l

m
i where li is

the length of the line segment associated with the ith direction
vector in Λ.

A traditional method for the hypervolume contribution ap-
proximation which is based on the achievement scalarizing
function method in [22] is illustrated in Fig. 1 (b). The
hypervolume contribution of a2 is approximated by the hyper-
volume approximation of solution set {a1,a2,a3} minus the
hypervolume approximation of solution set {a1,a3}, where
the hypervolume of a solution set is approximated by the line
segments starting from the reference point r and ending on
the hypervolume attainment surface. As shown in Fig. 1 (b),
the hypervolume contribution of a2 is approximated by the red
lines in the hypervolume contribution region of a2. Comparing
with the method in Fig. 1 (a), the traditional method is less
accurate if the same finite number (especially a small number)
of direction vectors are used in both methods. This is because
RHCA

2 can utilize all direction vectors whereas the traditional
method can utilize only a part of them which go through the
hypervolume contribution region. The approximation accuracy
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of these two methods are compared in [25], and the results
clearly show that RHCA

2 is much more accurate than the
traditional method.

The R2 indicator variant defined in Eq. (1) is the foundation
for the development of the new algorithm. For more detailed
explanations of this R2 indicator variant, please refer to [25].
Based on this R2 indicator variant, we will introduce R2HCA-
EMOA in the following subsections.

B. General Framework

Algorithm 1 R2HCA-EMOA
Input: Population Size N , Maximum Function Evaluations

FEsmax.
Output: Final Population P .

1: Initialize Population P , Direction Vector Set Λ, Utility
Tensor T, reference point r, FEs = N ;

2: while FEs ≤ FEsmax do
3: q = GenerateOffspring(P );
4: P = P ∪ {q};
5: [P,T] = EnvironmentalSelection(P,Λ,T, r);
6: FEs = FEs + 1;
7: end while

The general framework of R2HCA-EMOA follows a steady-
state (µ + 1) evolution strategy, which is similar to SMS-
EMOA. Algorithm 1 gives the pseudocode of R2HCA-EMOA.
In each generation, an offspring q is generated from population
P (Line 3). Then the population P is updated by incorporating
offspring q (Line 4). After that, an environmental selection
procedure is performed to remove one individual from popu-
lation P to keep the population size constant (Line 5). Lastly,
the current function evaluations FEs is incremented by 1 since
only one offspring is produced in each generation (Line 6).

In GenerateOffspring procedure, the offspring is gen-
erated as follows: two parents are randomly selected from
population P , and the offspring is produced based on its two
parents by applying simulated binary crossover (SBX) [29]
and polynomial mutation [30] operators, which are commonly
used in the EMO community. With respect to other procedures
in R2HCA-EMOA, detailed descriptions are presented in the
following subsections.

C. Reference Point Specification in R2HCA-EMOA

In fact, R2HCA-EMOA is a hypervolume-based EMOA
where its objective is to maximize the hypervolume of the
final population. As suggested in [31], the specification of
the reference point for the hypervolume indicator should be
carefully treated. The specification of the reference point has a
large effect on the optimal distribution of the final population
on the PF in hypervolume-based EMOAs (e.g., SMS-EMOA,
FV-MOEA). If the reference point is too close to the PF, then
the solutions cannot widely distribute on the PF. However,
if the reference point is too far away from the PF, then the
solutions tend to distribute on the boundaries of the PF when
the shape of the PF is inverted triangular. In order to obtain
widely and evenly distributed solutions on the PF, the reference

point r = (r, r, ..., r) can be specified in the normalized
objective space with the ideal point (0, 0, ..., 0) and the nadir
point (1, 1, ..., 1) as follows as suggested in [31]:

r = 1 +
1

H
, (5)

where H is an integer satisfying CH+m−1
m−1 ≤ N < CH+m

m−1 ,
and Cnm is the total number of combinations for choosing m
elements from a set of n elements, i.e., Cnm = n!

m!(n−m)! .
In each generation of R2HCA-EMOA, the current popula-

tion P will be normalized to the objective space (0, 0, ..., 0)
to (1, 1, ..., 1), and the reference point r is specified according
to Eq. (5).

D. Environmental Selection

Algorithm 2 EnironmentalSelection(P,Λ,T, r)

Input: P,Λ,T, r.
Output: Updated P and T.

1: P ′ = Normalize(P );
2: T = UpdateUtilityTensor(T, P ′,Λ);
3: {F1, F2, ..., Fl} = NondominatedSort(P ′);
4: if |Fl| == 1 then
5: RHCA

2 (s) = 0, ∀s ∈ Fl;
6: else if |Fl| == N + 1 then
7: RHCA

2 (s) = CalculateR2HCA(T), ∀s ∈ Fl;
8: else
9: T′ = ExtractUtilityTensor(T, Fl);

10: RHCA
2 (s) = CalculateR2HCA(T′), ∀s ∈ Fl;

11: end if
12: sworst = arg mins∈Fl

RHCA
2 (s);

13: P = P \ {sworst};

Algorithm 2 gives the pseudocode of the environmental
selection procedure. Firstly, the population P is normalized to
P ′ (Line 1), then the utility tensor T is updated based on P ′

(Line 2). After that, the non-dominated sorting is performed
to divide population P ′ into different front levels (Line 3).
Lastly, one individual with the smallest RHCA

2 value from
the last front Fl is removed from P (Line 4-13). If there is
only one individual in Fl, then this individual can be directly
removed without calculating its RHCA

2 value (Line 4-5). If there
is more than one individual in Fl, then the RHCA

2 values of all
individuals in Fl need to be calculated first (Line 6-10).

In Algorithm 2, a utility tensor T is used to assist the
calculation of the RHCA

2 values. In the next subsection, we
will explain tensor T and its operations in detail.

E. Utility Tensor T

1) Definition of Tensor T: In R2HCA-EMOA, the most
time-consuming part is the calculation of the RHCA

2 values. In
order to maximize the computational efficiency of this part, a
utility tensor T is introduced to assist the calculation of RHCA

2 .
Suppose the current population with the offspring included
is P = {s1, s2, ..., sN+1}. T is a 3-order tensor with the
following elements

Tijk =

{
g*2tch(ai|λj , sk), i = 1, ..., N
gmtch(r|λj , sk), i = N + 1

, (6)
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where sk ∈ P, k = 1, ..., N + 1, ai ∈ P \ {sk}, i = 1, ..., N ,
λj ∈ Λ, j = 1, ..., |Λ|. So the size of T is (N + 1) × |Λ| ×
(N + 1).

Once the tensor T is obtained, its information can be used
to calculate the RHCA

2 values. Suppose P is a non-dominated
solution set, then for a solution sk ∈ P , its RHCA

2 value can
be calculated as follows:

RHCA
2 (sk) =

1

|Λ|

|Λ|∑
j=1

(
N+1
min
i=1

Tijk)m. (7)

Notice that P should be a non-dominated solution set. If P
contains dominated solutions, then we cannot directly use T
to calculate RHCA

2 values by Eq. (7). We will discuss how to
deal with this situation later in this section.

Next we give a toy example to illustrate the tensor T defined
above, and how it can be used to calculate RHCA

2 .

Example 1. Suppose we have a solution set A = {a1,a2,a3},
a direction vector set Λ = {λ1, λ2, λ3}, and the reference point
r. Then the tensor T is depicted in Fig. 2. Suppose A is a non-
dominated solution set, then the RHCA

2 values of the solutions
in A are calculated as follows:

RHCA
2 (a1) = 1

3

∑3
j=1(min3

i=1 Tij1)m

RHCA
2 (a2) = 1

3

∑3
j=1(min3

i=1 Tij2)m

RHCA
2 (a3) = 1

3

∑3
j=1(min3

i=1 Tij3)m

. (8)

𝑔∗#$%&(𝐚#|𝜆+,𝐚+) 𝑔∗#$%&(𝐚#|𝜆#,𝐚+) 𝑔∗#$%&(𝐚#|𝜆.,𝐚+)

𝑔∗#$%&(𝐚.|𝜆+,𝐚+) 𝑔∗#$%&(𝐚.|𝜆#,𝐚+) 𝑔∗#$%&(𝐚.|𝜆.,𝐚+)

𝑔/$%&(𝐫|𝜆+,𝐚+) 𝑔/$%&(𝐫|𝜆#,𝐚+) 𝑔/$%&(𝐫|𝜆.,𝐚+)

𝑔∗#$%&(𝐚+|𝜆+,𝐚#) 𝑔∗#$%&(𝐚+|𝜆#,𝐚#) 𝑔∗#$%&(𝐚+|𝜆.,𝐚#)

𝑔∗#$%&(𝐚.|𝜆+,𝐚#) 𝑔∗#$%&(𝐚.|𝜆#,𝐚#) 𝑔∗#$%&(𝐚.|𝜆.,𝐚#)

𝑔/$%&(𝐫|𝜆+,𝐚#) 𝑔/$%&(𝐫|𝜆#,𝐚#) 𝑔/$%&(𝐫|𝜆.,𝐚#)

𝑔∗#$%&(𝐚+|𝜆+,𝐚.) 𝑔∗#$%&(𝐚+|𝜆#,𝐚.) 𝑔∗#$%&(𝐚+|𝜆.,𝐚.)

𝑔∗#$%&(𝐚#|𝜆+,𝐚.) 𝑔∗#$%&(𝐚#|𝜆#,𝐚.) 𝑔∗#$%&(𝐚#|𝜆.,𝐚.)

𝑔/$%&(𝐫|𝜆+,𝐚.) 𝑔/$%&(𝐫|𝜆#,𝐚.) 𝑔/$%&(𝐫|𝜆.,𝐚.)

𝑇23+

𝑇23#

𝑇23.

Fig. 2. An illustration of tensor T in Example 1.

2) Update of Tensor T: In R2HCA-EMOA, only one
offspring is generated in each generation. Thus we do not
have to recalculate all elements of the tensor T in each
generation. We update only a small number of elements in
T for computational efficiency. Once an individual is removed
from the population, a new offspring is added. This generation
update mechanism can be viewed as the replacement of the
removed individual with the new offspring. Thus, all elements
in T related to the removed individual are updated with the
new offspring (Line 2 in Algorithm 2).

To be more specific, suppose sk
′ ∈ P is replaced by a

new solution q, then P = {s1, ..., sk
′−1,q, sk

′+1, ..., sN+1}.
T will be updated as follows:

For all k = 1, ..., N + 1 and j = 1, ..., |Λ|,

If k = k′, then Tijk =

{
g*2tch(ai|λj ,q), i = 1, ..., N
gmtch(r|λj ,q), i = N + 1

,

If k < k′, then Tijk = g*2tch(q|λj , sk), i = k′ − 1,

If k > k′, then Tijk = g*2tch(q|λj , sk), i = k′,
(9)

where ai ∈ P \ {q}, i = 1, ..., N .
From the above equation we can see that totally (N+1)|Λ|+

N |Λ| elements of tensor T need to be updated. We illustrate
this update procedure by the following toy example.

Example 2. Let us consider the case in Example 1. Suppose
a2 is removed and q is added, then the tensor T is updated
as depicted in Fig. 3 where the updated elements are shaded.
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𝑔∗#$%&(𝐚/|𝜆+,𝐚+) 𝑔∗#$%&(𝐚/|𝜆#,𝐚+) 𝑔∗#$%&(𝐚/|𝜆/,𝐚+)
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𝑇34#

𝑇34/

Fig. 3. An illustration of tensor update in Example 2.

3) Extraction of Tensor T: In R2HCA-EMOA, one indi-
vidual in the last front Fl is removed. If Fl is the same as the
whole population (i.e., l = 1, which means all individuals in
the population are non-dominated with each other), then the
tensor T can be directly used to calculate the RHCA

2 values of
all individuals (Line 7 in Algorithm 2). However, Fl usually
contains only a part of the population (i.e., l > 1). In this case,
a subtensor T′ is extracted from T (Line 9 in Algorithm 2)
in order to calculate the RHCA

2 values of the individuals in Fl.
The extraction is straightforward, i.e., elements in T that are
related only to individuals in Fl (i.e., those that are not related
to any individual in the other fronts) are extracted to form the
subtensor T′.

To be more specific, suppose P = {s1, s2, ..., sN+1}, Fl =
{sI1 , sI2 , ..., sIM } and I = {I1, I2, ..., IM}, where 1 ≤ I1 <
I2 < ... < IM ≤ N + 1 and |Fl| = M with 1 < M < N + 1,
then the subtensor T′ is extracted from T as follows:

For all k = 1, ...,M , i = 1, ...,M , and j = 1, ..., |Λ|,
T ′ijk = Ti′j′k′ ,

(10)
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where k′ = Ik, j′ = j, and

If k = 1, then i′ =

{
I ′i − 1, if i < M
N + 1, if i = M

,

If k = M, then i′ =

{
I ′i, if i < M

N + 1, if i = M
,

If 1 < k < M, then i′ =

 I ′i, if i < k
I ′i − 1, if k ≤ i < M
N + 1, if i = M

,

(11)

where I ′ = I \ {Ik}, and I ′i denotes the ith element in I ′.
From the above equation we can see that the size of T′ is

M ×|Λ|×M , which means that totally M2|Λ| elements need
to be extracted from T.

Once the subtensor T′ is extracted from T, we can use it to
calculate the RHCA

2 values of the individuals in Fl as follows:

RHCA
2 (sIk) =

1

|Λ|

|Λ|∑
j=1

(
M

min
i=1

T ′ijk)m. (12)

We will use the following toy example to illustrate this
procedure.

Example 3. Let us consider the case in Example 1 again.
Suppose Fl = {a1,a3}, i.e., a2 dominates a1 and a3 while a1

and a3 are non-dominated with each other. Thus all elements
related to a1 and a3 and not related to a2 are extracted from
T to form T′ as shown in Fig. 4, where the extracted elements
in T are shaded. Then the RHCA

2 values of the solutions in Fl
are calculated as follows:RHCA

2 (a1) = 1
3

∑3
j=1(min2

i=1 T
′
ij1)m

RHCA
2 (a3) = 1

3

∑3
j=1(min2

i=1 T
′
ij2)m

. (13)

F. Normalization Mechanism

In R2HCA-EMOA, the normalization mechanism is incor-
porated before the update of the tensor T (Line 1 in Algorithm
2). The normalization works as follows: First, we estimate
the ideal point z∗ and the worst point zwst from the current
population P as z∗i = mins∈P si and zwst

i = maxs∈P si,
i = 1, ...,m. Then each solution s ∈ P is normalized as
s′i = (si − z∗i )/(zwst

i − z∗i ), i = 1, ...,m where s′ ∈ P ′ is the
normalized solution. After the normalization, the population
P ′ is within the objective space (0, 0, ..., 0) to (1, 1, ..., 1).

The normalization mechanism is used to tackle the MOPs
and MaOPs with a totally different scale in each objective. For
such a problem, the hypervolume contribution approximation
by RHCA

2 can be inaccurate if no normalization is performed.
The normalization mechanism remedies this potential diffi-
culty. However, the normalization will bring an issue for the
update of the tensor T. In the last subsection, we explained
that only the elements in the tensor T related to the removed
individual are updated with those to the newly added offspring
in order to improve the computational efficiency. If the nor-
malization is performed, the locations of all solutions in the
objective space can be changed. If this happens, we need to
update all elements instead of updating only a small number of

𝑔∗#$%&(𝐚#|𝜆+,𝐚+) 𝑔∗#$%&(𝐚#|𝜆#,𝐚+) 𝑔∗#$%&(𝐚#|𝜆.,𝐚+)
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Extract

Fig. 4. An illustration of tensor extraction in Example 3.

elements in the tensor T. Actually, this can happen frequently
in the early generations of the optimization process. Thus the
tensor T needs to be recalculated frequently which leads to
low computational efficiency.

In this paper, in order to incorporate the normalization
mechanism in R2HCA-EMOA while keeping the algorithm
computationally efficient, we simply ignore the normalization
in the update phase of the tensor T. That is, we only replace
the elements in T related to the removed individual with those
to the new offspring (even if other solutions are changed in the
objective space after the normalization). In this manner, the
computational efficiency of the proposed R2HCA-EMOA is
not degraded. This simple approach is based on the following
considerations. In early generations, accurate approximation of
hypervolume contributions is not important since the search is
mainly driven by non-dominated sorting and/or the differences
of the hypervolume contributions among the individuals are
large. In late generations, the update of the estimated ideal and
worst points does not happen frequently. In Section IV-D1, we
will show the effectiveness of the normalization mechanism
together with the simple update strategy in R2HCA-EMOA.

G. Computational Complexity

The computational complexity of one generation of
R2HCA-EMOA is analyzed as follows. The main compu-
tational cost is from the environmental selection procedure
(line 5 in Algorithm 1). The normalization of population P
(line 1 in Algorithm 2) requires O(mN) computations. In the
tensor update procedure, totally (N + 1)|Λ|+N |Λ| elements
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of tensor T need to be updated. Therefore, update of tensor T
(line 2 in Algorithm 2) requires m(2N + 1)|Λ| = O(mN |Λ|)
computations. The non-dominated sorting procedure used here
is the T-ENS algorithm [32] with a time complexity of
O(mN logN/ logm). The calculation of the RHCA

2 values
using tensor T (line 7 in Algorithm 2) requires O(N2|Λ|)
computations. The extraction of tensor T requires O(N2|Λ|)
operations in the worst case. Thus, the calculation of the RHCA

2

values using the extracted subtensor T′ (line 10 in Algorithm
2) requires O(N2|Λ|) computations in the worst case. Finally,
finding the worst solution (line 12 in Algorithm 2) requires
O(N) comparisons in the worst case. In summary, because
usually m < N , the overall worst-case time complexity of
one generation of R2HCA-EMOA is O(N2|Λ|).

If the tensor T is not used in R2HCA-EMOA, that is, the
RHCA

2 values of the individuals in Fl are recalculated in each
generation, it requires O(mN2|Λ|) computations in the worst
case. So the overall worst-case time complexity of R2HCA-
EMOA will be O(mN2|Λ|). By introducing the tensor T
and its operations, we can improve the time complexity of
R2HCA-EMOA by a factor of m in each generation.

IV. EXPERIMENTAL STUDIES

A. Experiment Settings

1) Platforms: The software platform we use in our exper-
iments is PlatEMO [33], which is a MATLAB-based open
source platform for evolutionary multi-objective optimization.
The R2HCA-EMOA is implemented in PlatEMO. All the
other EMOAs used in our experiments are based on their
implementations in PlatEMO2. The hardware platform is a
PC equipped with Intel Core i7-8700K CPU@3.70GHz, 16GB
RAM.

2) Test Problems: We choose DTLZ1-4 [34], WFG1-9 [35],
and their minus version MinusDTLZ1-4, MinusWFG1-9 [7]
for testing. The number of objectives is set to m = 5, 10, 15.
The number of decision variables is set to m+ 4 for DTLZ1
and MinusDTLZ1, and m+9 for other DTLZ and MinusDTLZ
problems. The distance- and position-related decision variables
are set to 24 and m−1, respectively, for WFG and MinusWFG
problems.

3) Parameter Settings: The population size N is set to 100
for all test problems. For DTLZ1, DTLZ3, WFG1 and their
minus versions, the maximum function evaluations FEsmax is
set to 100,000, while FEsmax is set to 30,000 for the other test
problems. These values of FEsmax are used as the termination
condition. Simulated binary crossover (SBX) and polynomial
mutation are used where the distribution index is specified as
20 in both operators. The crossover and mutation rates are set
to 1.0 and 1/n, respectively, where n is the number of decision
variables. Each algorithm is applied to each test problem 20
times (i.e., 20 independent runs).

4) Performance Metrics: The hypervolume indicator is em-
ployed to evaluate the performance of the compared EMOAs.
For 5- and 10-objective problems, the WFG algorithm [36] is
employed to calculate the exact hypervolume of the obtained

2FV-MOEA is implemented by ourselves according to [16] since it is not
implemented in PlatEMO.

solution set in each run of each algorithm on each test problem,
whereas for 15-objective problems, the Monte Carlo method
is employed to estimate the hypervolume. We calculate the
hypervolume as follows. First, using the true ideal point z∗

and the true nadir point znad obtained from the true PF,
the objective values of the obtained solutions are normalized
so that two points z∗ and znad are (0, ..., 0) and (1, ..., 1),
respectively. Then the reference point r is set to (1.1, ..., 1.1)
to calculate the hypervolume. Furthermore, the results are
analyzed by the Wilcoxon rank sum test with a significance
level of 0.05 to determine whether one algorithm shows a
statistically significant difference with the other, where ‘+’,
‘−’ and ‘≈’ indicate that the compared EMOA is ‘significantly
better than’, ‘significantly worse than’ and ‘statistically similar
to’ R2HCA-EMOA, respectively.

5) Compared Algorithms: First, three hypervolume-based
EMOAs (i.e., SMS-EMOA, FV-MOEA and HypE) are com-
pared with R2HCA-EMOA. Both SMS-EMOA and FV-
MOEA employ the WFG algorithm for the hypervolume
calculation inside their implementations. In HypE, the number
of sampling points is set to 10,000, which is the same as
in [17]. The reference point is specified as 1 + 1/H in the
normalized objective space in the three hypervolume-based
EMOAs, which follows the same manner as in R2HCA-
EMOA.

We also compare R2HCA-EMOA with several other state-
of-the-art EMOAs. They are briefly introduced as follows:

• AR-MOEA [37] is an indicator-based EMOA, which
is based on an enhanced inverted generational distance
indicator (IGD-NS). The reference points are adaptively
adjusted based on the IGD-NS contributions of the can-
didate solutions in an external archive, thus taking both
uniform distribution and Pareto front approximation into
consideration.

• SPEA2+SDE [38] is a combination of SPEA2 and the
shift-based density estimation (SDE) strategy. SDE mod-
ifies the density estimation strategy in traditional Pareto-
based EMOAs and is able to cover both the distribution
and convergence information of individuals. Thus, it can
make Pareto-based algorithms suitable for MaOPs.

• GFM-MOEA [39] is an EMOA based on PF modeling.
The shape of the PF is estimated by training a generalized
simplex model, then the algorithm is driven by this
approximated PF during the optimization process. The
penalty parameter θ and the frequency fr in GFM-MOEA
are set to 0.2 and 0.1 respectively, which are the same as
in [39].

• BCE-IBEA [40] is an EMOA with a bi-criterion evolution
(BCE) framework. BCE-IBEA integrates IBEA [10] into
the BCE framework, where the Pareto criterion evolution
and the non-Pareto criterion evolution (i.e., IBEA) work
collaboratively to facilitate each other’s evolution. IBEA
is based on Iε+ indicator [41] and the scaling factor κ in
IBEA is set to 0.05.

The parameters involved in R2HCA-EMOA are set as
follows: The number of the direction vectors |Λ| is set to 100.
The direction vectors used in RHCA

2 are generated by sampling
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points uniformly on the unit hypersphere [42]3.
For all the EMOAs involved in our experiments, SMS-

EMOA and R2HCA-EMOA follow the (µ + 1) evolution
strategy, while the other EMOAs follow the (µ+µ′) evolution
strategy where µ = µ′ (i.e., N offspring are generated from
N parents in each generation).

B. Comparison with the hypervolume-based EMOAs

In this subsection, we compare R2HCA-EMOA with
the three representative hypervolume-based EMOAs: SMS-
EMOA, FV-MOEA and HypE.

First we compare the runtime among the four algorithms to
evaluate their computational efficiency. As SMS-EMOA and
FV-MOEA become very time-consuming for solving 10- and
15-objective problems, we only test the four algorithms on
DTLZ2 with 5, 10 and 15 objectives by a single run, and set
FEsmax to 3000 (i.e., 1/10 of the original FEsmax setting for
DTLZ2).
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SMS-EMOA
FV-MOEA
HypE
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Fig. 5. Runtime comparison among SMS-EMOA, FV-MOEA, HypE and
R2HCA-EMOA in a single run on DTLZ2 with 5,10 and 15 objectives and
3000 FEsmax (in seconds). Notice that the number of the direction vectors
(i.e., |Λ|) is 100 in our algorithm.

Figure 5 shows the runtime comparison of the four algo-
rithms in a single run on DTLZ2 with 5, 10 and 15 objectives.
From Figure 5 we can observe that, for the 5-objective DTLZ2,
FV-MOEA is the fastest algorithm. The runtime of R2HCA-
EMOA is comparable to that of FV-MOEA. SMS-EMOA
and HypE consume much longer time than the other two
algorithms. However, for the 10- and 15-objective DTLZ2, the
runtime of SMS-EMOA and FV-MOEA increase exponentially
while the runtime of HypE and R2HCA-EMOA increase
linearly. It should be noted that SMS-EMOA and FV-MOEA
take several hours for the 15-objective DTLZ2 even when
we decrease the termination condition from 30,000 function
evaluations to 3,000. R2HCA-EMOA is the fastest algorithm
for the 10- and 15-objective DTLZ2. Because 10,000 sampling
points are used in HypE while only 100 direction vectors are
used in R2HCA-EMOA, HypE is much slower than R2HCA-
EMOA in all the cases.

From Figure 5 we can also observe that FV-MOEA is
faster than SMS-EMOA for the 5-objective DTLZ2, while
it is slower than SMS-EMOA for the 10- and 15-objective

3First we randomly sample points x according to the normal distribution
Nm(0, Im), then the corresponding direction vectors are obtained by λ =
|x|/ ‖x‖2.

DTLZ2. The main reason is that with the offspring included
in each generation, the population size of SMS-EMOA and
FV-MOEA is N + 1 and 2N respectively. The almost 2
times larger population size of FV-MOEA will lead to much
longer computational time of the hypervolume in 10- and
15-objective space. The observation suggests that FV-MOEA
is more efficient than SMS-EMOA for 5-objective problems
which is consistent with the results in [16]. However, FV-
MOEA is less efficient than SMS-EMOA for 10- and 15-
objective problems due to the exponentially increasing time
in the hypervolume calculation.

On account of the very long runtime of SMS-EMOA and
FV-MOEA on 10- and 15-objective problems, we will only
compare the four algorithms on 5-objective problems. The
results are shown in Table I. In Table I, we only show the
Wilcoxon rank sum test results. Detailed numerical results are
provided in Appendix A in the supplementary material.

TABLE I
WILCOXON RANK SUM TEST RESULTS BASED ON HYPERVOLUME VALUES
OBTAINED BY SMS-EMOA, FV-MOEA, HYPE AND R2HCA-EMOA ON
5-OBJECTIVE DTLZ & WFG, MINUSDTLZ & MINUSWFG PROBLEMS.

+/− / ≈ SMS-EMOA FV-MOEA HypE

DTLZ & WFG 12/1/0 10/2/1 0/9/4

MinusDTLZ & MinusWFG 13/0/0 11/2/0 0/13/0

The results show that SMS-EMOA and FV-MOEA out-
perform HypE and R2HCA-EMOA, which is consistent with
our intuition. Since SMS-EMOA and FV-MOEA are based on
exact hypervolume calculation, it is likely that they can achieve
better hypervolume results than HypE and R2HCA-EMOA
with hypervolume approximation. However, SMS-EMOA and
FV-MOEA become very time-consuming for solving 10- and
15-objective problems, which limited their applicability for
solving MaOPs with more than 10 objectives.

We can also observe that R2HCA-EMOA clearly outper-
forms HypE (+/−/≈ is 0/9/4 for DTLZ & WFG and 0/13/0
for MinusDTLZ & MinusWFG as shown in Table I). HypE
employs the Monte Carlo sampling method while R2HCA-
EMOA employs the R2-based hypervolume contribution ap-
proximation method. Notice that 10,000 sampling points are
used in HypE while only 100 direction vectors are used
in R2HCA-EMOA. Comparing with HypE, R2HCA-EMOA
consumes much less runtime and is able to achieve better
hypervolume results, which shows that R2HCA-EMOA is an
efficient and effective hypervolume-based EMOA for solving
MaOPs.

In addition, the hypervolume variations over function eval-
uations obtained by the four hypervolume-based EMOAs
on all 5-objective problems are shown in Figure 6. Instead
of showing the hypervolume values directly, we show the
hypervolume difference from the maximum value maxVal, i.e.,
each hypervolume value is subtracted from maxVal. For each
test problem, the maximum value maxVal is determined as the
maximum mean plus standard deviation of all the hypervolume
values obtained by all the algorithms over all the function
evaluations. In each figure, the solid line represents the mean
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X-axis: Function evaluations
Y-axis: Hypervolume difference

Fig. 6. Hypervolume variations over function evaluations obtained by SMS-EMOA, FV-MOEA, HypE and R2HCA-EMOA on the 5-objective problems. The
solid line represents the mean values while the transparent area around the line represents the standard deviations.
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TABLE II
WILCOXON RANK SUM TEST RESULTS BASED ON HYPERVOLUME VALUES OBTAINED BY AR-MOEA, SPEA2+SDE, GFM-MOEA, BCE-IBEA AND

R2HCA-EMOA ON 5-, 10- AND 15-OBJECTIVE DTLZ & WFG, MINUSDTLZ & MINUSWFG PROBLEMS.

+/− / ≈ AR-MOEA SPEA2+SDE GFM-MOEA BCE-IBEA

DTLZ & WFG 2/36/1 1/34/4 1/29/9 3/28/8

MinusDTLZ & MinusWFG 2/35/2 3/33/3 3/35/1 5/33/1

values while the transparent area around the line represents
the standard deviations. The Y-axis is shown in log scale for
better discrimination of different lines.

From the figures we can observe that in general, the mean
hypervolume difference decreases with the increase of FEs
for all the four algorithms (except for HypE on WFG3
where the hypervolume difference increases with the increase
of FEs). For most of the problems, R2HCA-EMOA has a
competitive performance compared with SMS-EMOA and FV-
MOEA, and clearly outperforms HypE. On some problems
(e.g., DTLZ1, DTLZ3, MinusDTLZ1, MinusWFG3), R2HCA-
EMOA performs even better than FV-MOEA. Meanwhile,
R2HCA-EMOA has a relatively small standard deviation on
most of the problems (except for MinusDTLZ1), which shows
that R2HCA-EMOA has a stable performance in general.
Figure 6 provides us a deeper insight into the behavior of
R2HCA-EMOA, which clearly shows the ability of R2HCA-
EMOA for achieving a good hypervolume performance.

C. Comparison with other state-of-the-art EMOAs

In this subsection, we compare R2HCA-EMOA with
the four state-of-the-art EMOAs: AR-MOEA, SPEA2+SDE,
GFM-MOEA and BCE-IBEA.

The results are shown in Table II where only the Wilcoxon
rank sum test results are shown and detailed numerical results
are provided in Appendix B in the supplementary material.
From Table II we can observe that R2HCA-EMOA clearly out-
performs all the other algorithms (+/−/≈ is 2/36/1, 1/34/4,
1/29/9, 3/28/8 on DTLZ & WFG, and 2/35/2, 3/33/3, 3/35/1,
5/33/1 on MinusDTLZ & MinusWFG as shown in Table
II). This is because only R2HCA-EMOA is a hypervolume-
based EMOA whereas the other algorithms are not. We need
to mention that in terms of the hypervolume metric, AR-
MOEA outperforms MOEA/DD [43], NSGA-III [44], RVEA
[45] and MOMBI-II [46] as reported in [37], and GFM-
MOEA outperforms MOEA/DD, RVEA, MOEA/D-PaS [47]
and VaEA [48] as reported in [39]. However, these two
algorithms are both defeated by R2HCA-EMOA. Our results
clearly demonstrate the effectiveness of R2HCA-EMOA for
solving MaOPs in terms of the hypervolume metric.

We also show the hypervolume variations over function
evaluations obtained by the five EMOAs on all the 10-
objective problems in Figure 7 (The figures related to 5-
and 15-objective problems are provided in Appendix B in
the supplementary material). Same as in Figure 6, the hy-
pervolume difference is shown in Figure 7. For each figure,
the Y-axis is shown in linear scale if the lines are easy to
discriminate, otherwise it is shown in log scale. From the
figures we can observe that R2HCA-EMOA outperforms the

other compared algorithms on most of the problems (except
for DTLZ4, WFG4, MinusDTLZ1, MinusWFG3). However,
as will be seen in Section IV-E, R2HCA-EMOA outperforms
the other algorithms on all minus problems based on a different
reference point specification for hypervolume calculation. We
can also observe that R2HCA-EMOA has a stable performance
on most of the problems. The results in Figure 7 clearly show
the superiority of R2HCA-EMOA over the other algorithms
for achieving high average hypervolume values.

D. Further investigations on R2HCA-EMOA

1) The effect of the normalization mechanism: R2HCA-
EMOA has introduced the normalization mechanism to en-
hance the performance of the algorithm. In order to investigate
the effectiveness of this mechanism, we compare R2HCA-
EMOA with and without the normalization mechanism.

The results are shown in Table III for 5-objective DTLZ
and WFG problems. From Table III we can see that R2HCA-
EMOA with normalization clearly outperforms that without
normalization (+/−/≈ is 1/5/7 as shown in Table III), which
means that the effect of the normalization mechanism is
significant on the performance of the algorithm.

TABLE III
STATISTICAL RESULTS OF HYPERVOLUME VALUES OBTAINED BY

R2HCA-EMOA WITH AND WITHOUT NORMALIZATION ON DTLZ1-4
AND WFG1-9 WITH 5 OBJECTIVES.

Problem Without Normalization With Normalization

DTLZ1 1.5654e+0 (6.30e-4) ≈ 1.5657e+0 (5.17e-4)
DTLZ2 1.2855e+0 (1.40e-3) ≈ 1.2862e+0 (1.35e-3)
DTLZ3 1.2828e+0 (2.95e-3) ≈ 1.2829e+0 (3.30e-3)
DTLZ4 1.0925e+0 (1.96e-1) ≈ 1.2122e+0 (1.06e-1)
WFG1 1.5808e+0 (3.13e-2) ≈ 1.5895e+0 (1.67e-2)
WFG2 1.5848e+0 (5.11e-3) ≈ 1.5849e+0 (7.37e-3)
WFG3 1.0541e+0 (1.31e-2) + 1.0430e+0 (1.26e-2)
WFG4 1.2357e+0 (2.54e-2) − 1.2571e+0 (6.84e-3)
WFG5 1.1872e+0 (5.62e-3) − 1.1980e+0 (2.49e-3)
WFG6 1.1977e+0 (9.40e-3) ≈ 1.2057e+0 (1.16e-2)
WFG7 1.2663e+0 (5.49e-3) − 1.2758e+0 (2.34e-3)
WFG8 1.1450e+0 (1.19e-2) − 1.1592e+0 (7.56e-3)
WFG9 1.1874e+0 (2.88e-2) − 1.2023e+0 (2.37e-2)

+/− / ≈ 1/5/7

We can also observe that R2HCA-EMOA with normaliza-
tion clearly achieves better results than that without normal-
ization on almost all problems (except for WFG3). Moreover,
R2HCA-EMOA with normalization is significantly better than
that without normalization on many WFG problems which are
MaOPs with a different scale in each objective. As discussed
in Section III-F, the normalization mechanism is introduced
to tackle this type of problems. We also use a simple update
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X-axis: Function evaluations
Y-axis: Hypervolume difference

Fig. 7. Hypervolume variations over function evaluations obtained by AR-MOEA, SPEA2+SDE, GFM-MOEA, BCE-IBEA and R2HCA-EMOA on the
10-objective problems. The solid line represents the mean values while the transparent area around the line represents the standard deviations.
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strategy to update the tensor T in order to keep the algorithm
computationally efficient. The results in Table III demonstrate
the effectiveness of the normalization mechanism together
with the simple update strategy in R2HCA-EMOA.

2) The influence of the number of the direction vectors: In
our experiments, we only use 100 direction vectors in R2HCA-
EMOA. Intuitively, a larger number of the direction vectors
can improve the performance of R2HCA-EMOA. In order to
investigate this issue, we additionally use 50 and 200 direction
vectors in R2HCA-EMOA. We test R2HCA-EMOA with 50,
100 and 200 direction vectors on the 5-objective DTLZ and
WFG problems. The other settings are the same as in Section
IV-A. The results are shown in Table IV.

From Table IV we can see that the results are consistent
with our intuition. R2HCA-EMOA with 200 direction vectors
outperforms that with 100 direction vectors, and R2HCA-
EMOA with 100 direction vectors outperforms that with 50
direction vectors. However, a larger number of the direction
vectors means longer runtime. There is a tradeoff between the
runtime and the performance of R2HCA-EMOA. The principle
to set the number of the direction vectors should depend
on the computing power, available time and performance
requirement, etc.

TABLE IV
STATISTICAL RESULTS OF HYPERVOLUME VALUES OBTAINED BY

R2HCA-EMOA WITH 50, 100 AND 200 DIRECTION VECTORS ON
DTLZ1-4 AND WFG1-9 WITH 5 OBJECTIVES.

Problem |Λ| = 50 |Λ| = 200 |Λ| = 100

DTLZ1 1.5640e+0 − 1.5666e+0 + 1.5657e+0
DTLZ2 1.2808e+0 − 1.2888e+0 + 1.2862e+0
DTLZ3 1.2784e+0 − 1.2855e+0 + 1.2829e+0
DTLZ4 1.2008e+0 ≈ 1.1902e+0 ≈ 1.2122e+0
WFG1 1.5901e+0 ≈ 1.5885e+0 ≈ 1.5895e+0
WFG2 1.5824e+0 ≈ 1.5861e+0 ≈ 1.5849e+0
WFG3 1.0268e+0 − 1.0493e+0 ≈ 1.0430e+0
WFG4 1.2469e+0 − 1.2645e+0 + 1.2571e+0
WFG5 1.1927e+0 − 1.2029e+0 + 1.1980e+0
WFG6 1.2047e+0 ≈ 1.2135e+0 + 1.2057e+0
WFG7 1.2692e+0 − 1.2808e+0 + 1.2758e+0
WFG8 1.1487e+0 − 1.1617e+0 ≈ 1.1592e+0
WFG9 1.2007e+0 − 1.2147e+0 + 1.2023e+0

+/− / ≈ 0/9/4 8/0/5

3) The influence of the population size: In our experiments,
we set the population size N to 100 for all test problems.
In order to investigate the influence of the population size
on the performance of R2HCA-EMOA, we also perform our
computational experiments with N = 50 and N = 200.
R2HCA-EMOA is compared with AR-MOEA, SPEA2+SDE,
GFM-MOEA and BCE-IBEA on the 5-objective DTLZ and
WFG problems. The other settings are the same as in Section
IV-A. The results are shown in Table V. Detailed numerical
results are provided in Appendix C in the supplementary
material.

From Table V we can see that R2HCA-EMOA outperforms
all the compared algorithms in terms of the hypervolume
metric in both cases: N = 50 and N = 200. This observation
further demonstrate the effectiveness of R2HCA-EMOA for
solving MaOPs under different population sizes.

TABLE V
WILCOXON RANK SUM TEST RESULTS BASED ON HYPERVOLUME VALUES

OBTAINED BY AR-MOEA, SPEA2+SDE, GFM-MOEA, BCE-IBEA
AND R2HCA-EMOA ON 5-OBJECTIVE DTLZ & WFG PROBLEMS.

+/− / ≈ AR-MOEA SPEA2+SDE GFM-MOEA BCE-IBEA

N = 50 1/10/2 0/12/1 1/11/1 1/12/0

N = 200 0/13/0 1/12/0 2/10/1 2/11/0

E. Additional Results

In our experiments, the hypervolume indicator is em-
ployed to evaluate the performance of R2HCA-EMOA. Since
R2HCA-EMOA is a hypervolume-based EMOA, the hyper-
volume indicator is able to directly evaluate the ability of
R2HCA-EMOA for maximizing the hypervolume value of
the population. In addition to the hypervolume indicator, the
inverted generational distance (IGD) indicator [14] is another
widely used performance indicator for the performance evalua-
tion. We provide the IGD results of all the compared EMOAs
in this paper in Appendix D in the supplementary material.
Interested readers can refer to the detailed discussions there.

In addition, the hypervolume indicator is evaluated based
on the reference point specification r = 1.1 as explained in
Section IV-A4. This reference point specification is commonly
used in the EMO community for the hypervolume perfor-
mance evaluation of EMOAs. However, different reference
point specifications may affect the hypervolume evaluation
results [31]. Thus, in order to fairly compare the hypervolume
performance of different EMOAs, we provide the hypervolume
results of all the compared EMOAs based on the reference
point specification r = 1 + 1/H in Appendix E in the
supplementary material. Detailed discussions can be found
there.

Lastly, in order to visually explain the behavior of R2HCA-
EMOA, we show the final solution distributions on some
3-objective test problems obtained by R2HCA-EMOA and
the other three hypervolume-based EMOAs. The results are
provided in Appendix F in the supplementary material.

V. CONCLUSIONS

In this paper, we proposed R2HCA-EMOA, a new
hypervolume-based EMOA for many-objective optimization.
By using the R2-based hypervolume contribution approxi-
mation method in environmental selection, R2HCA-EMOA
is able to inherit the advantage of the hypervolume-based
EMOAs. At the same time, it is efficient for solving MaOPs.
We demonstrated the efficiency and the effectiveness of the
proposed algorithm through comparative experiments. First,
we showed that R2HCA-EMOA is slightly outperformed
by SMS-EMOA and FV-MOEA, both of which need much
longer computation time than R2HCA-EMOA. Comparing
with HypE, R2HCA-EMOA is superior in terms of both
the runtime and the hypervolume metric. Lastly, we com-
pared R2HCA-EMOA with several state-of-the-art EMOAs.
Our results showed that R2HCA-EMOA outperforms all the
compared algorithms in terms of the hypervolume metric.
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As future research, we have the following three research
directions: 1) It has been shown that a dynamic reference
point specification mechanism can enhance the performance
of the hypervolume-based EMOAs [49]. In the future, we
will investigate the effect of the dynamic reference point
mechanism on the performance of the proposed algorithm;
2) It is interesting to test the proposed algorithm on real-
world problems; 3) It is also interesting to extend the proposed
algorithm for solving large-scale MOPs [50] and multi-modal
MOPs [51].

The source code of R2HCA-EMOA is available at
https://github.com/HisaoLabSUSTC/R2HCA-EMOA.
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