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Abstract

A memory state equation consistent with several experimental observations is presented and discussed within the framework

of Chua’s memristive systems theory. The proposed equation describes the evolution of the memory state corresponding to a

bipolar resistive switching device subjected to a variety of electrical stimulus.
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 
Abstract— A memory state equation consistent with several 

experimental observations is presented and discussed within the 
framework of Chua’s memristive systems theory. The proposed 
equation describes the evolution of the memory state 
corresponding to a bipolar resistive switching device subjected to 
a variety of electrical stimulus. It is shown that our approach is 
consistent with: i) the characteristic switching time associated with 
the ions/vacancies displacement within dielectric films, ii) the 
SET/RESET voltage dependence on the voltage sweep ramp rate, 
iii) the hysteretic nature of the memory state as a function of time 
and voltage for arbitrary input signals, iv) the generation of self-
similar hysteron loops for different initial conditions, and v) the 
collapse of the memory window with the increment of the input 
signal frequency. It is also shown that the proposed equation 
admits a circuital representation suitable for circuit simulations.    
 
Index Terms—memristor, resistive switching, memory  

I. INTRODUCTION 

central issue in L. Chua’s memristive devices theory is 
the definition of the memory state (-t) represented by a 

first order time differential equation [1]. This equation in 
combination with an expression for the current-voltage (I-V) 
characteristic describes the hysteretic behavior observed in 
many oxide-based resistive switching (RS) devices [2,3]. The 
memory equation (ME) relates to the nonvolatile system’s 
conduction properties and is physically associated in the case of 
CBRAMs/OxRAMs with the metal ions/oxygen vacancies 
displacement (heavy particles flow) within the dielectric film 
caused by the application of an external electrical stimulus [4]. 
The I-V relationship describes the specific electron transport 
mechanism (light particles flow) considered in the conducting 
filament (CF). In general, the picture resembles cars (electrons) 
passing across a drawbridge (ions/vacancies) with variable load 
capacity (). Since the first proposal of a memristive ME by 
Strukov et al. [5] many others followed [6-8]. The introduction 
of a window function in the ME acting as a boundary condition 
for  represented a breakthrough in the modeling of the 
SET/RESET transitions but the approach was demonstrated to 
be not exempted of serious mathematical drawbacks [9,10]. 
Interestingly, even for nonlinear electron transport, the memory 
state  is a measure of the device conductance in the low-
voltage region which contains all the information relevant to 
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whole I-V curve [11,12]. However, beyond the many efforts 
carried out in the last decade, there is still no consensus on 
which ME better represents a wide spectrum of RS behaviors. 
Here, we explore up to what extend the ME can be simplified 
without sacrificing the constraints imposed by experiments. Of 
course, as happens with any other model, the elaboration of an 
analytic approach dismisses a large number of particularities 
which cannot be covered by a basic general framework. We 
show that the proposed model is consistent with several 
experimental observations for a variety of input signals 
including constant, ramped, pulsed and sinusoidal. To the best 
of our knowledge, this thorough analysis was not carried out 
before and demonstrates that simplicity, dimensional 
considerations, and symmetry arguments are essential 
ingredients for seting up a well-posed physical and 
mathematical model for RS devices. 
 
 
 
 

 
 
 
Fig.1: a) Schematic model for the SET (green) and RESET (red) characteristic 
switching times given by (2). b) Equivalent circuit model for the balance 
differential equation (1).  is the memory state (voltage) and 0 its initial value. 

 
 The central points of this new development are: first, we 

eliminate the so-called hysteron structure for the memory state 
as presented in [11,12]. Here, the proposed ME generates the 
hysteretic memory map by itself without ad hoc definitions. 
Second, we demonstrate through an in-depth analysis of its 
derivative that the proposed ME equation coinciliates both the 
static and dynamic switching conditions [2], and third, we show 
that the proposed ME not only has a compact recursive solution 
for the whole memory loop but also that it complies with Chua’s 
observation regarding the collapse of the memory window with 
the signal frequency [1]. In addition, we show that the reported 
ME admits a simple equivalent circuit representation. This is of 
utmost importance for circuit simulations in which the timestep 
parameter is under the control of the simulator itself and not in 
hands of the user.  
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Fig.2: a) Potentiation and depression characteristics for constant voltage input, 
b) Evolution of the positive ridge function, c) Inflection point of (V).  

 
 
 
 
 
 
 
 
 
 
 

Fig.3: a) Effect of RR on the positive ridge function as a function of time, b) 
SET voltage shift, c) Evolution of the inflection point of (V) (normalized). 

II. MEMORY STATE EQUATION AND CIRCUITAL APPROACH 

The simplest first order time differential equation for  
satisfying dynamic balance, dimensional homogeneity, and 
long-term self-saturating behavior with end values 1 (LRS: low 
resistance state) and 0 (HRS: high resistance state) for opposite 
biases reads:  

 

ௗఒ

ௗ௧
ൌ

ଵିఒ

ఛೄሺఒ,௏ሻ
െ

ఒ

ఛೃሺఒ,௏ሻ
                            (1) 

 

where S,R [s] are characteristic times associated with the SET 
(V>0) and RESET (V<0) transients. We assume for S,R a 
voltage dependence of the form (see Fig.1.a): 
 

𝜏ௌ,ோሺ𝑉ሻ ൌ 𝑒𝑥𝑝ൣെ𝜂ௌ,ோ൫𝑉 െ 𝑉ௌ,ோ൯൧                   (2) 
 

where S,R [V-1] and VS,R [V] are the transition rates (S>0, 
R<0) and the reference switching voltages (VS>0, VR<0), 
respectively. Any dependence of S,R on  in (2) requires the use 
of a circuit simulator. Notice that (2) is a convenient 
approximation since S,R(V=0)=∞ would be ideally expected 
(infinite retention time) [13]. In any case, for typical parameter 
values, the balance equation (1) yields d/dt(V=0)0 as 
required for the equilibrium state. (1) has also been used in the 
past but in connection with physical parameters of the CF [14-
17], not as a general memory state variable. Before solving (1) 
for some cases of particular interest, it is worth pointing out that 
its mathematical structure is that of an RC circuit with V-
dependent resistors (see Fig.1.b). At the end, this will allow us 
to solve  for arbitrary input signals.  corresponds to the 
voltage drop across the capacitor C=1F (this is not a physical 

capacitor) with initial voltage 0. This representation replaces 
the V-controlled memory subcircuits considered in many 
memristor models [10].  

III. MODEL RESULTS AND ANALYSIS 

Let us focus now on some relevant analytic results for the 
SET transition (V>0). Corresponding results for RESET (V<0) 
can be obtained mutatis mutandis.  

 

i) Memory state evolution under constant voltage input signal 
Neglecting the second term in the right-hand side of (1) and 

considering a constant voltage V>0 applied across the device, 
we find: 

 

ሺ𝑡, 𝑉ሻ ൌ ሺ𝜆଴ െ 1ሻ𝑒𝑥𝑝ሼെ𝑡/𝜏ௌሺ𝑉ሻሽ ൅ 1              (3) 
 

which has attractor 1 as t regardless of 0 and S.  As shown 
in Fig.2.a, (3) and its counterpart for V<0 (not shown here), 
describe the typical potentiation/depression effect in a synaptic 
cell [18]. If we identify the SET time 𝜏ௌ

ᇱ  with the inflection point 
of (3) as a function of V, d2/dV2=0, we obtain: 
  

𝜏ௌ
ᇱሺ𝑉ሻ ൌ 𝑒𝑥𝑝ሾെ𝜂ௌሺ𝑉 െ 𝑉ௌሻሿ ൌ 𝜏଴𝑒𝑥𝑝ሺെ𝑉 𝑉଴⁄ ሻ        (4) 

 

which coincides with the original expression (2) corresponding 
to the voltage-acceleration law for metal ions/oxygen vacancies 
displacement [19-23]. As illustrated in Figs.2.b and 2.c, this can 
be alternatively visualized as the time required by the point 
=(0-1)exp(-1)+1 (=0.63 for 0=0) in the travelling ridge 
function to reach the SET voltage condition (vertical dashed 
line). Within this picture, the inflection point moves towards the 
left with non-uniform velocity v=(t)-1 [Vs-1]. 0=exp(SVS) [s] 
and V0=1/S [V] in (4) are constants of the model and can be 
found experimentally [24].  
 
 
 
 
 
 
 
 
 
Fig.4: a) Pulsed signals with different number of pulses per second, b) Hysteron 
structure generated as a function of the applied bias using (7). 
 

ii) Memory state evolution under a linear voltage sweep 
Now, if we let V=RRt, with RR>0 [Vs-1] the ramp rate, (1) 

can be integrated in terms of V>0 (see Figs. 3.a and 3.b): 
 

ሺ𝑉ሻ ൌ ሺ𝜆଴ െ 1ሻ𝑒𝑥𝑝 ቄെ ௏బ
ఛబோோ

ቂ𝑒𝑥𝑝 ቀ௏
௏బ
ቁ െ 1ቃቅ ൅ 1      (5) 

 

As in i), the SET voltage 𝑉ௌ
ᇱ corresponds to the condition 

d2/dV2=0 (Fig. 3.c), yielding: 
 

𝑉ௌ
ᇱ ൌ 𝑉଴ lnሺ𝑅𝑅ሻ ൅ 𝑉଴𝑙𝑛 ቀ

ఛబ
௏బ
ቁ                       (6) 

 

which expresses the well-known VS-ln(RR) linear relationship 
[4,25-28]. Remarkably, (6) provides the link between the 
dynamical and static switching condition case given by (4).  
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iii) Hysteretic behavior for arbitrary input signals 
 In the case of an arbitrary input signal V(t) (positive or 
negative, continuous or discontinuous, derivable or not), (3) can 
be discretized following the recursive scheme: 
 

𝜆௧ାଵ ൌ ሾ𝜆௧ െ 𝐻ሺ𝑉௧ሻሿ𝑒𝑥𝑝൛െΔ𝑡/𝜏ௌ,ோሺ𝑉௧ሻൟ ൅ 𝐻ሺ𝑉௧ሻ        (7) 
 

where t is the timestep considered between the states t and t+1, 
Vt the voltage applied during this time, and H(x) the Heaviside 
function. Notice that (7) is suitable for dealing with excitations 
formed by train of pulses with varying amplitude and different 
pulse rates as illustrated in Figs. 4.a and 4.b. In the continuous 
limit, (7) naturally generates the sigmoidal hysteron structure 
-V (positive and negative ridge functions) introduced in 
[11,29,30]. In the present approach, this mathematical structure 
is no longer required. 
   

 
 
 
 
 
 
 
 
 
Fig.5: Major and minor positive ridge functions. Symbols are the SET voltages 
as a function of the initial condition 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6: a) Evolution of  for different input frequencies, b) Collapse of the 
memory window for a sinusoidal signal with fixed amplitude A=2V.    
 

iv) Self-similar loops and role played by the initial condition 
 As showed in [31], major (maximum voltage excursion) and 
minor (bounded voltage excursions) memory loops exhibit self-
similar properties. The positive ridge function for the major 
loop  is obtained from (5) considering 0=0:  
 

ሺ𝑉ሻ ൌ 1 െ 𝑒𝑥𝑝 ቄെ ௏బ
ఛబோோ

ቂ𝑒𝑥𝑝 ቀ௏
௏బ
ቁ െ 1ቃቅ             (8) 

 

Minor  loops with arbitrary initial conditions (see Fig.5) can 
be expressed as affine transformations of  since: 
 

ሺ𝑉ሻ ൌ ሺ1 െ 𝜆଴ሻሺ𝑉ሻ ൅ 𝜆଴                        (9) 
 

In other words, this means that the properties found for the 
major loop propagate to the minor loops after appropriate 
scaling. If we adopt a definition for the SET condition based on 
the current magnitude (=0.5 for instance) instead of on the 
voltage, Fig. 5 reveals that V’S reduces as 0 increases. This 
indicates that more leaky devices switch on first [32]. 

 
 
 
 
 
 
 
 
 
 
Fig.7: a) Effect of an increasing sinusoidal voltage (blue line) on the current 
(red) as a function of time. b) Corresponding evolution of the memory state 
(green) and generation of intermediate states in the I-V characteristic (red). 
 
v) Memory window vs input signal frequency  
 A natural consequence of (6) is the collapse of the memory 
window (difference between max and min in the attractor curve) 
as the input signal frequency increases [1,33,34]. Figure 6 
illustrates the effect of a sinusoidal voltage with constant 
amplitude A and frequency  on the hysteretic behavior of . 
These results were obtained using the circuit shown in Fig.1.b. 
From (6), it is clear that for any signal of amplitude A, ideally, 
one can always find a sufficiently large RR such that 𝑉ௌ

ᇱ > A. 
This corresponds to a partial SET condition which limits the 
maximum excursion of . Physically, the collapse of the 
memory window is often attributed to the inability of 
ions/vacancies to follow the input signal [35,36]. This 
connection is theoretically demonstrated here using an 
experimentally validated voltage-acceleration law for the 
hopping time of the heavy particles, eq. (4).   

IV. SIMULATION OF THE I-V CHARACTERISTIC 

This final Section illustrates how the memory state  is 
linked to a specific electron transport model. For the sake of 
simplicity, a linear I-V characteristic was chosen [5], but more 
complex behaviors are acceptable [12]. In this case: 

 

𝐼 ൌ ሾሺ1 െ 𝜆ሻ𝐺௠௜௡ ൅ 𝜆𝐺௠௔௫ሿ𝑉                      (10) 
 

where Gmin and Gmax [S] are the minimum and maximum 
conductance values, respectively, achievable without inducing 
irreversible damage to the device. These parameters are 
required to calibrate the model with the experimental HRS and 
LRS curves. Typical simulations results for I-t and I-V showing 
intermediate conduction states are depicted in Figs. 7.a and 7.b. 

V. CONCLUSIONS 

In this letter, a dynamic balance model for the memory 
equation of memristive devices exhibiting the bipolar resistive 
switching mode is proposed. The model complies with several 
experimental observations related to the switching voltages and 
times. Because of its simple mathematical structure, the model 
can be described in terms of an equivalent circuit with voltage-
dependent components. This property makes the proposed 
approach very useful for circuit simulation environments.  
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