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Abstract

This paper studies the effects of different bio-synaptic membrane potential mechanisms on the inference speed of both spiking feed-
forward neural networks (SFNNs) and spiking convolutional neural networks (SCNNs). These mechanisms inspired by biological
neuron phenomenon, such as electronic conduction in neurons, chemical neurotransmitter attenuation between presynaptic and
postsynaptic neurons, are considered to be modeled in mathematical and applied to artificial spiking networks. In the field of spiking
neural networks, we model some biological neural membrane potential updating strategies based on integrate-and-fire (I&F) spiking
neuron, which includes spiking neuron model with membrane potential decay (MemDec), spiking neuron model with synaptic
input current superposition at spiking time (SynSup) and spiking neuron model with synaptic input current accumulation(SynAcc).
Experiment results show that compared with the general I&F model (one of the most commonly used spiking neuron models),
SynSup and SynAcc can effectively improve the learning speed in the inference stage of SCNNs and SFNNs.

Keywords: Spiking Neural Network, Inference Acceleration, Neural Plasticity
2018 MSC: 00-01, 99-00

1. Introduction

Biologically inspired artificial intelligence has been an in-
creasingly attractive topic during these decades, such as the par-
ticle swarm optimization (PSO) [1] which originates from the
predation behavior of flocks, the ant colony algorithm which5

learns from the behaviors of ants finding paths during food
search, the genetic algorithm (GA) which simulates the natural
evolution of Darwin’s biological evolution theory and the evo-
lution process of genetic mechanism, and the artificial neural
networks (ANNs) which refers the connection structure of ani-10

mal neural systems and the way in which information is trans-
mitted and processed, and so on.

Among these algorithms, ANNs have been considered to be
the most promising one to realize “true” artificial intelligence,
and they have also been widely applied in various applications,15

e.g. face recognition, object detection, self-driving car, data
prediction, etc.. Currently, almost all these mature engineer-
ing applications are developed based on the second-generation
of ANN models (also called rate-based neural networks, such
as the traditional BP networks, Convolutional neural networks20

(CNNs), LSTM, and so on). However, although these above-
mentioned ANNs are historically thought to be brain-inspired,
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there are fundamental differences in structure, computation and
learning rule that compared with the brain.

Spiking neural networks (SNNs), a neural computational25

framework that more similar to the biological information en-
coding and neuronal information processing mechanism, have
been proved to be a computationally effective framework which
is firstly proposed by G. Maass [2] as the third-generation of
ANNs, and have also shown their superiorities in rich neural30

plasticity and low energy consumption. SNNs based neuromor-
phic vision has become a more and more popular research field
over the world. And further, there are many research results
about effective computing frameworks of SNN that have been
proposed in recent years. [3] derived a new solution method35

that allowed efficient simulation of Izhikevich spiking neuron
model. In [4], the authors studied the necessary time steps and
corresponding computational costs required to make the func-
tion approximation accurate of spiking neuron models, includ-
ing Hodgkin-Huxley, Izhikevich, and leaky integrate-and-fire40

model. And they concluded that the leaky integrate-and-fire
model needs the least number of computations and the least
operations for a crude approximation. [5] proposed an evolu-
tionary algorithms and graphics processing units (GPUs) based
automated parameter tuning framework that capable of tuning45

SNNs quickly and efficiently. [6] presented a linear spiking de-
coding algorithm for computationally efficient implementation
of the decoding joint model for the electrode spike counts and
waveform features, which is reported to have low storage and
computationally requirements.50
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One of the main drawbacks of SNNs is the lower real-time
performance compared with the second generation of ANNs
due to that SNNs take some time to reach the homeostatic fir-
ing state. [7] proposed a mode of spike information propaga-
tion through feedforward networks which consisting of layers55

of integrate-and-firing neurons, and the experimental results
demonstrated that this mode allows for fast computation with
population coding based on firing rates. [8] reported that the
output delay involved in achieving acceptable classification ac-
curacy, and the suitable trade-off between energy benefits and60

classification accuracy can be obtained by optimizing the in-
put firing rate and output delay. In [8], Diehl et al. proposed
two normalization methods named as Model Normalization and
Data Normalization to obtain fast and accurate SNNs. Zhang et
al. [9, 10] applied intrinsic plasticity, an unsupervised biolog-65

ical plausible mechanism, to spiking feedforward neural net-
works to accelerate the convergence speed during the inference
stage.

Unlike the connection weights normalization methods in [8]
or external neuronal parameters importation methods in [9, 10],70

in this paper, we proposed three novel biological plausible spik-
ing neuron models which update their states of membrane po-
tential only using local information. We constructed both spik-
ing feedforward neural networks (SFNNs) and spiking convo-
lutional neural networks (SCNNs) consisting of the proposed75

neuron models, respectively, and then compared their compu-
tational performance in terms of real-time inference with the
conventional I&F spiking neuron model. The experimental re-
sults show that except the MemDec model, the inference speed
of the other two proposed models (SynAcc and SynSup) is sig-80

nificantly better than the I&F model, while still achieve slightly
higher classification accuracy.

The rest of this paper is organized as following. Sec.2 intro-
duces some basic concept of spiking neural network. In Sec.3,
three different inherent properties of spiking neuron model are85

proposed. The spiking neural network construction method, as
well as the datasets are presented in Sec. 4. Experiment results
are showed in Sec.5. At last, the conclusion has been drawn to
end this paper in Sec.6.

2. Spiking Neural Network90

Fig.1 shows the physical connection structure between two
biological neurons and the signal transmission direction is also
marked. The postsynaptic neuron (the larger one in the left) re-
ceives the signal from the presynaptic neuron (the smaller one
in the right) by connecting its dendrites to the presynaptic neu-95

ron’s axon terminals. In biological neural systems, signals are
transmitted at a faster speed in the form of electrical current
in neural bodies, while among neurons, signals are transmitted
through chemicals (called neurotransmitters). Due to both the
signal conversion between electrical current and neurotransmit-100

ters, and the time cost of spreading the neurotransmitters in the
gap of presynaptic axon terminals and postsynaptic dendrites,
signal transmission speed turns relative slower than through
electrical current.

Figure 1: A simple presentation of biological neuron and information transmis-
sion among neurons.

In the long-term evolutionary process, animals have always105

tried to transmit the sensory signals of various parts of the limb
to the brain in the least costly and most efficient way, and to
transmit the command signals of the brain to various executing
organs. Faster signal transmission helps animals to perceive
the external environment and respond more quickly. Recently,110

researchers found that the event-driven mechanism
In conventional artificial neural networks (ANNs), input sig-

nal is feed into network at one time and processed layer-by-
layer, then network produces the output value, while in SNNs,
input signal processing flow of ANNs, in SNNs, inputs are typ-115

ically transformed into streams of spike events at first, then the
created spike streams are feed into SNNs and communicate in-
formation to subsequent layers over time.

2.1. Spiking Computational Operation

SNNs use spikes to transmit and process information instead120

of continuous numeric values, thus some conventional oper-
ations for continuous-valued neurons should be mapped into
spiking ones before using them [8, 11].

1) For ReLU activation function, it is converted to

ai = max
{
0,

∑
j

w jis j

}
(1)

where ai denotes the activation of neuron i, w ji is the connection
weight from neuron j to i, s j is the spike signal of j, and s j = 1125

only if neuron j fires, otherwise s j = 0.
2) For convolutional computation, it is converted to

ak = f
(∑

l

Wk ∗ al + bk
)

(2)

where {Wk, (k = 1, 2, ..., n)} denotes a set of convolutional ker-
nels, {ak, (k = 1, 2, ..., n)} denotes the resulting feature maps
with the same number with convolutional kernels. f is an acti-
vation function, the symbol * is a 2D valid-region convolution,130

and bk is a bias term.
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3) For average pooling and max pooling computation
Pooling is a common operation to reduce the size of pre-

ceding feature maps, which often follows with convolutional
layers. Both average pooling and max pooling have been the135

main choices in building CNNs. For averaging kernel in pool-
ing layer, the activation can also be identical to Equ. (2), ex-
cept that the kernel weights Wk are fixed to 1/size(Wk), where
size(Wk) represents the multiplication of the width and height
of kernel Wk. While for max kernel in pooling layer, if any of140

the neurons within a pooling window is fired, then it outputs 1,
otherwise it outputs 0.

4) For Softmax classification, it is converted to

c = argmax
({

Oi(t), i = 1, 2, ..., P
})

(3)

where t denotes the time step from 0, P denotes the number of
neuron in output layer, and Oi(t) is the count of spike times of
neuron i from time 0 to t. c is the practical output of label index.145

2.2. Training SNNs

Several algorithms have been proposed to well train an SNN.
The most popular one is spike-time-dependent plasticity (in-
cluding related STDP-based algorithm), which is a bio-inspired
unsupervised learning method found in the mammalian vi-150

sual cortex [12, 13, 14]. By biological STDP mechanism,
synapses through which a presynaptic spike arrived before (re-
spectively after) a postsynaptic one are reinforced (respectively
depressed), it brings benefit to primates, especially humans,
can learn from far few examples while most of them are unla-155

belled. A simplified version of STDP used for training artificial
SNNs was proposed by Masquelier in 2007, where a connec-
tion weight between two neurons depends on the exact spiking
times of them, respectively, for more details, see [15].

Akin to conventional error-backpropagation training method,160

supervised learning rules using the output error backpropaga-
tion during the training procedure, like S pikeProp and its ex-
tensions [16, 17, 18, 19], aiming to minimize the time differ-
ence between the target spike and the actual output spike. Tem-
potron, proposed by [20], is another gradient-descent learning165

approach to minimizing an energy cost function determined by
the distance of the neuron membrane potential and its corre-
sponding firing threshold.

Unlike the above-mentioned methods that train an SNN
model using the exact signal of spiking time, [11] proposed170

an SCNN generating solution by directly converting from the
corresponding well-trained ANN model. What should be paid
attention to is the difficulties of representing the negative val-
ues and biases in conventional rate-based ANNs. To avoid this
obstacle, rectified linear unit (ReLU) activation function and175

zero biases are set to the ANN before training it. [11] reported
the method outperformed other previous approaches, and [8]
extended it to spiking fully-connected feed-forward neural net-
work (SFNN) conversion and presented several optimization
tools for both SCNN and SFCN for faster classification based180

on fewer output spikes. Further, [21] developed a set of tools, as

well as presented related theory for converting more other pop-
ular elements of CNN (e.g. max-pooling, batch normalization,
softmax classification) into spiking form.

2.3. Inference Latency185

In traditional rate-based neural networks, signals are trans-
mitted from the input layer to the neural network at one time,
and processed through layers, resulting in the final output by
the output layer. However, in SNNs, signals are presented
by streams of spike events, and flow layer by layer via spikes190

which created by neurons, ultimately, drive firing of output neu-
rons that collect evidence over time. This mechanism gives
SNN some advantages such as efficient processing of time-
varying inputs [22] and high computational performance on
specialized hardware [23].195

However, it also implies that even for a time-invariant input,
network output maybe varies over time, especially at the be-
ginning of the spike signal input to the network because that
sufficient spike evidence has not been collected by the output
neurons. This phenomenon was studied by [24], which named200

pseudo-simultaneity, means that we can obtain a reliable or sta-
ble output immediately once the signal flows from the input
layer to the output layer. To improve the real-time performance
of SNN, [8] proposed two optimization methods to normal-
ize the network weights, namely model-based normalization205

and data-based normalization, so that the neuron activations
were sufficiently small to prevent from overestimating output
activations. Retraining based layer-wise quantization method
to quantize the neuron activation and pooling layer incorpora-
tion to reduce the number requirement of neurons were pro-210

posed in [25], the authors reported that these methods can build
hardware-friendly SNNs with ultra-low-inference latency.

3. Spiking Neuron Model

In this work, we proposed several spiking neuron mod-
els inspired by possible biological neural mechanisms, in-215

cluding spiking neuron model with membrane potential decay
(MemDec), spiking neuron model with synaptic input current
accumulation (SynAcc) and spiking neuron model with synap-
tic input current superposition at spiking time (SynSup). All
these proposed models are studied whether they contribute to220

computational efficiency.
The membrane potential dynamics of a single IF neuron is

defined by

dVmem(t)
dt

= I(t) (4)

where Vmem(t) denotes the membrane potential at time t, and
if Vmem(t) crosses the firing threshold Vthreshold, a spike is gen-225

erated and it will be reset to the rest potential Vreset instanta-
neously and then stay at Vreset for a time period tre f , namely
the refractory period. I(t) presents the sum of presynaptic input
current, and it can be simply calculated by

I(t) =
∑
i∈N

wiδ(t − t(i)
s ), t(i)

s ∈ T (i)
S (5)
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(a) Neuron model of SCNN (b) Neuron model of SCNN-MemDec

(c) Neuron model of SCNN-SynAcc (d) Neuron model of SCNN-SynSup

Figure 2: Operation of four event-driven spiking neuron models. It should be noted that the input spike weight, refractory period after reset, threshold voltage
Vthreshold , rest voltage Vreset are the neuron operation parameters, while current membrane voltage is the neuron state parameter. (a) Operation diagram of general IF
neuron model. (b) Operation diagram of IF neuron model with membrane potential decaying. (c) Operation diagram of IF neuron model with continuous synaptic
input current accumulation. (d) Operation diagram of IF neuron model with synaptic input current superposition at spiking time.

where N is the presynapse set of the IF neuron. wi is the weight230

of the ith presynapse, T (i)
S = {t(i)

1 , t
(i)
2 , ...} denotes the set of spik-

ing time instants of the ith presynapse, δ(t − t(i)
s ) is a dirac-delta

function, that is, δ(t− t(i)
s ) = 1 if t = t(i)

s , otherwise δ(t− t(i)
s ) = 0.

The neuron membrane potential update diagram is as shown in
Fig.2(a).235

3.1. IF Model with Membrane Potential Decay

Due to the ion permeation effect of the biological nerve cell
membrane, the ions (for example, sodium ions, potassium ions
and chloride ions both inside and outside the cell membrane of
a neuron) spontaneously flow from the high concentration side240

to the low concentration side, thereby changing the membrane
potential.

Motivated by this biological phenomenon, we also per-
formed a simple model simulation, namely, the spiking neuron
model with membrane potential decay (MemDec) of this mech-245

anism. The MemDec neuron model is presented as Fig.2(b),
what different with the general neuron model is that the mem-
brane potential decays over time described by

dVmem(t)
dt

= I(t)

− λ

∫ t

t̂s

exp
(
−
τ − t̂s

τs

)
dτ, t ∈ [t̂s, t̂s+1)

(6)

where t̂s is the spike time of this neuron itself and t̂s+1 is the
next spike time, τs is a time constant, and λ is a coefficient.250

3.2. IF Model with Synaptic Input Current Accumulation
Spiking neuron model with synaptic input current accumula-

tion (SynAcc) mimics the biological neuron mechanism. Due
to the capacitance and resistance effects of neurons, the ions in-
side the neurons do not flow out completely in an instant time,255

but flow out in an approximate exponential form over time. The
SynAcc neuron model is designed as

dVmem(t)
dt

= I(t)

+ wi

∑
i

∫ t

t(i)
s

exp
−τ − t(i)

s

τr

 dτ, t ∈
[
t(i)
s , t

(i+1)
s+1

) (7)

where τr is a time constant, t(i)
s is the spike time of the ith presy-

naptic neuron, and t(i)
s+1 denotes the next spike time. In Fig.2(c),

a simple membrane potential update mechanism is given for a260

clear understanding of SynAcc.

3.3. IF Model with Synaptic Input Current Superposition at
Spiking Time

The model with Synaptic Input Current Superposition at
Spiking Time (SynSup) can be given by265

dVmem(t)
dt

= I(t)

+
∑

i

I(i)(t)

exp
(
−

t − t(i)
s−1

τp

)
− exp

(
−

t − t(i)
s−1

τq

) (8)

where I(i)(t) denotes the input current produced by the ith presy-
naptic neuron, and

∑
i I(i)(t) = I(t), τp and τq are time constants

satisfying τp > τq.
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Figure 3: Transform original images to spike streams using Poisson sampling.

3.4. Comparison between These Models
All the spiking models can be implemented by the event-270

driven way, and they focus on regulating the presynaptic in-
put current which received by the dendrites of postsynaptic
neuron, when their membrane potential exceeds the threshold
value, they are activated to fire and their membrane potential are
then reset to Vreset. The normal IF neuron model only changes275

its membrane potential by receiving input current if some of
the presynaptic neurons fire to generate spikes at a time step,
otherwise, its membrane potential keeps unchanged. How-
ever, MemDec, SynAcc and SynSup continuously change their
membrane potential based on themselves or external input cur-280

rent. Among them, the membrane potential of MemDec gradu-
ally decreases in the non-firing period due to the current decay
of the neuron membrane. In the SynAcc mechanism, all presy-
naptic neurons that have fired will continue to deliver current to
the postsynaptic neurons, besides the connection weights, the285

time interval between current time and the last firing time of
the presynaptic neurons also affects the total amount of current
delivered by presynaptic neurons to postsynaptic neuron. Syn-
Sup considers an input current enhancement mechanism, that
is the shorter the time interval between pre- and post-synaptic290

neurons, the more obvious the subsequent output current en-
hancement effect.

The most significant difference between SynAcc and Syn-
Sup is that, in SynAcc mechanism, no matter a presynaptic
generates a spike or not, the postsynaptic neuron always re-295

ceives synaptic current from it. For a deeper understanding,
one can compare the diagram Fig.2(d) of SynSup with Fig.2(c)
of SynAcc.

4. Material and Method

4.1. Dataset300

Two image classification oriented benchmarks, MNIST and
Fashion-MNIST, are used to compare the performance be-
tween SNN, SNN-MemDec, SNN-SynAcc and SNN-SynSup.
MNIST is a handwritten digit dataset that has been a ubiquitous
benchmark in machine learning, and it is also chosen for our305

experiments. MNIST consists of 60000 labeled training sam-
ples and 10000 labeled test samples, each sample is organized

Figure 4: A diagram of general convolutional neural networks (CNNs) con-
sisted of convolutional layers and pool layers.

as a 28 × 28 pixel grayscale image. Fashion-MNIST [26] is
another benchmarking dataset which is intended to serve as a
direct drop-in replacement for the original MNSIT dataset, and310

it is also consisting of the same number and pixel scale of a sam-
ple as MNIST. Fashion-MNIST contains 10 classes of samples
which labeled “T-shirt, Trouser, Pullover, Dress, Coat, Sandal,
Shirt, Sneaker, Bag” and “ Ankle boot”.

It should be noted that the MNIST image is not directly in-315

putted to the SFNN and SCNN, instead, the original image
firstly converted into 2-dimension spike streams, and then in-
put the spike signal to the input layer of SFNN or SCNN. In
detail, as the spike conversion method proposed by [26], the
intensity values of MNIST images are linearly normalized be-320

tween 0 and 1, and the 2-dimension spike signal sequence is
generated by Poisson distribution based on the image’s inten-
sity values, further, the probability of a spike generated for an
image pixel is proportional to the input rates. which is as pre-
sented in Fig.3.325

4.2. Network Model Construction

Two classical artificial neural network models, feed-forward
neural network (FNN) and convolutional neural network
(CNN), are used as the fundamental network frameworks.
There are several types of training methods to get the330

spiking-version models of FNN and CNN, such as error
backpropagation-like algorithms, Hebbain-like and reinforce-
ment learning-based algorithms, direct conversion from ANNs,
and so on. However, it should be noted that in this paper,
we don’t focus on how to get the well-trained spiking network335

models, but focus on the effects of the above mentioned synap-
tic mechanisms on spiking neurons.

The SFNN consists of an input layer, two hidden layers with
1200 neurons per layer, and an output layer. The structure of
SCNN is as shown in Fig.4, which constructed by two convo-340

lutional layers, two average pool layers and a fully-connected
layer. The input signal of 2-dimension spike is with the size of
28×28, convolved by 16 convolutional kernels of size 5×5, and
then averagely pooled with the window size 2 × 2. The convo-
lutional and pooling operations are repeated in a second stage345

with 64 maps, then flatted by a fully connected layer of size
1024 × 10, where 10 is the number of output nodes determined
by the class number of MNIST labels.
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5. Experiment Results

5.1. Parameter Setting350

Some important model parameters are given in TABLE.1. It
should be noted that since the connection weights of the SFNN
and SCNN networks are obtained through the conversion of
rate-based FNN and CNN which have been well trained before,
parameters for training the rate-based networks need to be in-355

troduced here because they have no direct effects on the SFNN
and SCNN.

5.2. Inference Speed and Accuracy on Normal Test Sets

Two key performance indicators, i.e., final accuracy (FA)
and matching time (MT) are measured to evaluate the proposed360

spiking networks, where FA denotes the final classification ac-
curacy when the spiking network achieves homeostatic state,
and MT denotes the first time when the network achieves the
accuracy that greater than 99% of FA.

Table 2 shows both the FA and MT values of different neu-365

ron updating strategies of SFNN and SCNN. The faster increase
in classification accuracy implies that the spiking network has
faster learning speed at the inference stage. It can be seen the
network performance difference exhibited by different neuron
updating strategies are particularly noticeable at low input rates.370

However, even at different input rates, the network performance
under these neuron updating strategies remains consistently or-
dered.

SNN-SynSups (both SFNN-SynSup and SCNN-SynSup)
present the best performance in terms of synaptic plasticity, in375

Fig.2(d), we can know that compared with SNNs (SFNN and
SCNN), SNN-SynAccs (SFNN-SynAcc and SCNN-SynAcc)
improve the learning speed at the beginning, however, it can-
not be guaranteed that the network can achieve high classifica-
tion accuracy in the subsequent time. Further, SNN-MemDecs380

(SFNN-MemDec and SCNN-MemDec) reduce the learning
speed of SNNs in spite of remaining the same final classifi-
cation accuracy. Thus, we can conclude that SCNN-SynSups
get better performance than SNNs on learning speed and clas-
sification accuracy, while SNN-SynAccs and SNN-MemDecs385

both show their performance disadvantage especially at low in-
put firing rates.

5.3. Inference Speed and Accuracy on Noisy Test Sets

We also compare the classification accuracy and inference
speed between SNNs, SNN-MemDecs, SNN-SynAccs and390

SNN-SynSups on the test datasets with additional noises, while
the original ANNs to be converted are trained on pure training
sets without noises. To more thoroughly test the effects of noise,
five different types of noise including Gaussian noise, Rayleigh
noise, Uniform noise, Gamma noise as well as Salt&Pepper395

noise are considered, further, the mixture of these five types of
noise are also tested. Fig. 5 shows the examples of pure training
dataset and noisy test dataset of MNIST. Fig. 6 and Fig.7

Figure 5

5.4. Spiking Activity
Fig.8 shows the spiking activities of six representative maps400

of the two convolutional layers in SCNNs of different neuron
updating strategies within the initial 200ms at input firing rate
of 200Hz, the spiking activities of the two average pool layers
are omitted due to that their spiking activities are directly pro-
portional to those of convolutional layers. In Fig.8, the spiking405

activities from 0 to 200ms are depicted once every 10ms period.
The spiking activities of the first convolutional layer of these

strategies are similar, because their previous layer is the input
layer, and the firing rate of their presynaptic neurons of the in-
put layer is set to be the same, that is, 200 Hz. So only the410

difference in the update strategy of individual neurons has not
caused a particularly significant difference in spiking activity.
However, in the second convolutional layer, the spiking activity
of the neurons in this layer shows a more significant difference
due to the combination of the accumulative difference of spik-415

ing activity of the previous network layers and update strategy
difference of membrane potential of this neural layer. Besides,
the second average pooling layer which determined by the sec-
ond convolutional layer directly affects the final classification
result of the fully-connected layer. It means that the spiking ac-420

tivity of the second convolutional layer has a greater impact on
the network output.

5.5. Input Firing Rate
The input firing rate has been proven to have an important im-

pact on the spiking activity of SNN [8, 27, 28]. In this part, we425

study the detailed impact of the input firing rate, typically, we
present the spiking activities within the initial 100ms of SCNN
as shown in Fig.9.

It can be easily obtained that a higher input rate leads higher
intensity of spiking activities, which is also consistent with430

the results in most other reports. Further, too low input rate
will cause too low input stimulation to SNN, and results in the
under-firing phenomenon of SNN due to the lack of sufficient
input stimulation. On the other hand, because of the saturation
of the input stimulation, there exists a marginal effect of the435

highest firing rate of SNN, an excessive input firing rate does
not trigger infinitely high spiking activity of the network.

From the perspective of energy consumption and computa-
tional effectiveness, too low input rate leads few spiking events
of neurons, thus SNN needs more time to reach a homeostatic440

firing state to get a high and stable output accuracy, which re-
sults in poor real-time performance. However, a lower input

6



Table 1: Parameter settings in our experiment

Strategy Parameter Value Parameter Value Parameter Value Parameter Value
Global time step 1ms Vthreshold 2 Vrest 0 refractory

period
0ms

(SFNN/SCNN)-MemDec λ 0.5 τs 0.001 9
(SFNN/SCNN)-SynAcc τr 0.004
(SFNN/SCNN)-SynSup τp 0.004 τq 0.002

Table 2: Performance comparison of SNN, SNN-MemDec, SNN-SynAcc and SNN-SynSup models on FA and MT indicators

Model Metric MNIST
50Hz 200Hz 500Hz 1000Hz

SFNN FA [%] 98.52 98.50 98.65 98.62
MT [ms] 385 79 34 17

SFNN-MemDec FA [%] 97.95 98.46 98.57 98.59
MT [ms] 549 94 45 23

SFNN-SynAcc FA [%] 98.52 98.59 98.68 98.65
MT [ms] 147 62 29 16

SFNN-SynSup FA [%] 98.59 98.61 98.71 98.66
MT [ms] 95 47 23 13

SCNN FA [%] 98.82 98.42 98.45 98.84
MT [ms] 391 101 32 25

SCNN-MemDec FA [%] 98.76 99.08 98.97 98.76
MT [ms] 653 189 47 39

SCNN-SynAcc FA [%] 98.86 99.10 99.03 98.34
MT [ms] 249 83 27 17

SCNN-SynSup FA [%] 98.62 99.05 99.06 98.65
MT [ms] 195 66 25 12

Model Metric Fashion-MNIST
50Hz 200Hz 500Hz 1000Hz

SFNN FA [%] 90.12 89.81 90.21 90.22
MT [ms] 368 134 67 43

SFNN-MemDec FA [%] 89.87 89.93 90.19 90.19
MT [ms] 533 204 82 50

SFNN-SynAcc FA [%] 90.24 89.96 90.13 89.94
MT [ms] 219 120 59 37

SFNN-SynSup FA [%] 90.21 90.03 90.18 90.13
MT [ms] 193 76 46 29

SCNN FA [%] 92.13 91.48 92.03 91.90
MT [ms] 434 138 45 28

SCNN-MemDec FA [%] 91.91 91.82 92.20 91.80
MT [ms] 670 209 75 42

SCNN-SynAcc FA [%] 92.00 92.06 92.12 91.96
MT [ms] 298 95 31 19

SCNN-SynSup FA [%] 91.95 92.06 92.00 91.91
MT [ms] 226 76 24 12
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Figure 6: Comparison of accuracy and learning speed (convergence time) between spiking neuron models with other synaptic plasticity mechanisms of SFNN under
different types of noisy MNIST test set.
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Figure 7: Comparison of accuracy and learning speed (convergence time) between spiking neuron models with other synaptic plasticity mechanisms of SFNN under
different types of noisy Fashion-MNIST test set.
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Strategy Layer 1-50ms 51-100ms 101-150ms 151-200ms

SCNN

1th
Conv

2nd
Conv

SCNN-MemDec

1th
Conv

2nd
Conv

SCNN-SynAcc

1th
Conv

2nd
Conv

SCNN-SynSup

1th
Conv

2nd
Conv

Figure 8: Spiking activities of different spiking neuron models at the input firing rate of 200Hz. From the beginning to 40ms, we divide the time into 4 segments,
each segment has a period of 10ms, this table shows the spiking activities of six resulting maps of each convolutional layer.
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(a)

(b)

(c)

(d)

Figure 9: Spiking activities of the convolutional layers of SCNN under different
input rates, the left part of each subfigure represents the 1st convolutional layer,
and the right part represents the 2nd convolutional layer. (a) Input rate = 50Hz.
(b) Input rate = 200Hz. (c) Input rate=1000Hz. (d) Input rate=5000Hz.

rate also makes less updating operations of neuron state trig-
gered by software or hardware, which saves more computa-
tional energy during a certain period. The consequence of the445

high input firing rate is the opposite of the above.
Thus, we have to choose a suitable input firing rate to strike a

trade-off between real-time performance and energy consump-
tion, it is also meaningful to work on more effective methods
that improve the real-time performance by reducing the time450

delay of reliable output under a low input firing rate.

6. Conclusion

In this paper, we mathematically model several different neu-
ron membrane potential response mechanisms and construct
them on conventional I&F neuron model. We built spiking455

feed-forward neural networks (SFNNs) and spiking convolu-
tional neural networks (SCNNs) with different neuron mod-
els, respectively. It is found from the experiment results that
whether it is on noise-free test data sets or on test data sets con-
taining multiple types of additional noises, Synaptic Input Cur-460

rent Superposition at Spiking Time (SynSup) could greatly lift

the learning speed as well as classification accuracy, especially
under low input firing rate. The experimental results show that,
unlike the network structure and connection weights adjustment
methods proposed by other research works, our neuron mem-465

brane potential response mechanism provides a new perspective
for improving the inference speed of the network.
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