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Self-Evolutionary Neuron Model for Fast-Response
Spiking Neural Networks

Anguo Zhang, Yuzhen Niu, Yueming Gao*, Ying Han, Qing Chen, Wei Zhu

Abstract—In this paper, we proposed simple but effective
spiking neuron models for improving the fast-response ability of
spiking neural networks (SNNs). The proposed neuron models
can adaptively tune the presynaptic input current according to
the input received from its presynapses and the firing events of
itself. Experimental results of spiking feedforward neural net-
work (SFNN) and spiking convolutional neural network (SCNN)
on both MNIST handwritten digits and Fashion-MNIST classi-
fication tasks showed that compared with the plain SNNs, the
proposed neuron models based networks significantly accelerate
the response speed to input signal. Besides the experiments,
theoretical analysis about homeostatic state convergence ability
of firing activity has been presented to illustrate the reliability
of our proposed methods. Experiment codes are available on
https://github.com/anvien/Evol-SNN.

Index Terms—Spiking Neural Network, Synaptic Plasticity,
Fast Response Speed, Information Maximization.

I. INTRODUCTION

ARTIFICIAL intelligence, especially artificial neural net-
works (ANNs), have been an attractive topic in recent

years. Conventional ANNs, also namely rate-based neural
networks, has a significant disadvantage in terms of huge
energy consumption even though they have been extensively
applied in various fields, and it limits the use of ANNs
for embedded devices due to the limited energy storage. In
many ways that try to solve this problem, spiking neural
networks (SNNs) are considered to be energy-friendly at the
chip hardware level, and plenty of works have been done
on embedding the SNNs on chips like GPU, FPGA, VLSI,
etc [1]–[6]. SNNs, the third generation of neural networks,
are firstly proposed by W. Maass [7]. Unlike the rate-based
neural networks, the spiking neuron will continuously change
its membrane potential according to the external input or
its own neuronal state. And when the membrane potential
exceeds a certain threshold, a spike signal will be generated
to transmit to the post-synaptic neuron through the axon,
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thus complete the information transfer. [8] has proven that
networks of spiking neurons can simulate arbitrary feed-
forward sigmoidal neural networks and can thus approximate
any smooth nonlinear function. Further, in [9], it has been
demonstrated that spiking neurons which encode information
by individual spike times are computationally more powerful
than neurons with sigmoidal activation function.

Nowadays, SNNs are regarded as an effective computing
toolkit which has been used widely, such as object recognition
[10], [11], image classification [12], series data process [13]–
[15], and so on.

High input firing rate is beneficial to the rapid response abil-
ity of SNNs due to that more synaptic current may be input to
SNNs at a single time step. However, high input rate also leads
to high computation power cost and memory access [16]–[18].
On the other hand, firing threshold is another important factor
that directly influences the network response speed to the input
signal. If high firing threshold, neuron need to collect much
excitatory current to boost its membrane potential to generate
a spike signal, thus, the neuron takes more time to respond to
the input. Further, as demonstrated in [18], there is a trade-
off between the response speed and classification accuracy by
tuning the value of firing threshold. High firing threshold helps
to improve the accuracy but decreases the response speed,
while low firing threshold ensures low latency after spike
signal input to the network but may lead to a relatively low
accuracy. So, we find that simply tuning the input firing rate or
neuronal firing threshold may be no longer a viable or effective
way to optimize an SNN with respect to both computational
accuracy and response speed.

Some contributions have been taken to solve this problem.
[18] proposed a weight normalization method named “model-
based normalization” and “data-based normalization” to help
regulate the firing rates of spiking feed-forward networks and
spiking convolutional networks, and their pattern recognition
experiments showed that the normalization technique boosts
the convergence speed of the firing activity of spiking neurons,
which improves the real-time performance. In [19] the au-
thors proposed an information transmission method with burst
spikes and a layer-wise hybrid neural coding scheme for deep
SNNs, and their experiment results of image classification
tasks proved that the proposed method substantially improves
the inference efficiency in terms of speed and energy, while
also maintains reasonable accuracy. In [20], Zambrano et
al. presented an adaptive spiking neurons based network,
where the neurons encode information in spike-trains using
a form of Asynchronous Pulsed Sigma-Delta coding, and the
authors demonstrated that the proposed neuron models based
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network responds an order of magnitude faster and uses an
order of magnitude fewer spikes. In the structural plasticity
mechanism which proposed in [21] that demonstrated this
plasticity improves the learning speed of SNNs, the authors
also took the neural conductance into account, and designed
the conductance variation models for excitatory neurons and
inhibitory neurons, respectively. In [21], the conductance vari-
ation models are defined as negative exponential relationships
with time only, and the models are nonlinearly fused the
spiking neuron model (leaky integrate-and-fire model, LIF
model).

However, both the “model-based normalization” and “data-
based normalization” methods proposed by [18] have to use
global information of network layers to normalize the input
weights of each neuron. The information transmission method
and layer-wise neural coding scheme proposed in [19] need
to be well designed and carefully implemented for a relative
desired performance. In [20], the authors consider the firing
threshold plasticity based adaptive spiking neuron model, but
as the paper demonstrated, the presented networks are specific
in straightforward neural networks without additional opera-
tions like pooling, softmax, etc., specific SNN variations need
to be further developed. On the other hand, the structural plas-
ticity proposed in [21] is to consider the network performance
optimization problem from the aspect of connection creation
or elimination between neurons, rather than the plasticity of
some factors or variables of the neurons themselves.

In this paper, we proposed effective but very simple op-
timization methods for fast-response SNNs, two integrate-
and fire (IF) neuron based novel models, namely evolution-
ary spiking neuron (Evol) and adaptive evolutionary spiking
neuron (Adap-Evol), are used in our optimization methods.
The methods can be implemented asynchronously and locally
in computational, where the “asynchronously” denotes event-
triggered computation mechanism of spiking neurons, and the
“locally” means every neuron updates its state by only using its
own presynaptic input current and its own neuronal dynamics.
Based on these advantages, the proposed neuron optimization
methods can be easily applied to engineering without any
external complex implementation, and can also be distributed
deployed with low computation cost. Series of experiment
results on both MNIST and Fashion-MNIST datasets prove
the effectiveness of our proposed methods.

The rest of this paper is structured as follows. Sec. II
introduces our proposed spiking neuron models with Evol
and Adap-Evol mechanisms. Sec. IV and Sec. V describe the
test benchmarks and network model construction procedure,
as well as the experimental results, respectively. Finally, we
draw a conclusion in Sec. VI to end this paper.

II. ADAPTIVE PRESYNAPTIC INPUT CURRENT

A. Spiking Neuron Model

Spiking neural networks are considered to be the third
generation of artificial neural networks, have shown their
outstanding advantages in terms of low computational cost,
high computational power, and rich neural plasticity [7]–[9],
[22], [23]. In the conventional ANNs, input data is fed into

Fig. 1: The membrane of biological neuron is mainly a
semi-permeable biofilm composed of phospholipid molecules.
Except the protein channels of specific ions, the neuronal
membrane is non-conductive and its physical properties are
similar to parallel-plate capacitor. A simple schematic diagram
of parallel-plate capacitor, where u(t) represents the voltage
across the capacitor, I(t) denotes the current flowing to the
capacitor, and C is the capacitance of the capacitor.

the network at one time, then processed layer by layer, and
finally, the network produces the results from the output layer.
However, in the computing framework of SNNs, the raw input
data is first converted into spike streams of event signals,
neurons record these signals and create spikes to communicate
information with other connected neurons, ultimately, the
output layer neurons collect the firing evidence driven by the
incoming information and make decisions over time.

Spiking neuron models mimic some important physiological
properties of biological neurons, such as membrane potential
v, membrane resting potential vrest, membrane firing potential
threshold vthr, membrane resistance Rm and capacitance Cm,
refractory period tref , etc.. When the membrane potential v
exceeds the membrane firing potential threshold, the neuron
generates a current spike and transmit it to the dendrites of
other neurons, meanwhile, the membrane potential immedi-
ately drops to the membrane resting potential and the neuron
enters the refractory period. During the refractory period, the
neuron does not receive any external current signal from its
synapse.

B. Proposed Method

Fig.1 shows a simple schematic diagram of a parallel-plate
capacitor, its physical model can be written by

U(t) =
1

C

∫
I(t)dt (1)

where C denotes the capacity. A well-known physical fact is
that when the distance between the two plates of a parallel-
plate capacitor increases or decreases, the capacitance of the
capacitor is changed, therefore, the capacitor can be adaptively
discharged or charged by dynamically changing its capacitance
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value according to a certain demand. Considering this case, a
the derivative of U(t) is derived as

U̇(t) =
1

C(t)
I(t) (2)

where C(t) turns to be a dynamically changing capacitance
value over time t.

Among different kinds of spiking neuron models, the leaky
integrate-and-fire (LIF) neuron may have a similar mathemat-
ical formulation to Eq.(2), which is simply given by

dv(t)

dt
= −v(t) +

Ω∑
i

ωiIi(t) (3)

where Ω denotes the set of presynapses of the I&F neuron,
v(t) denotes the membrane potential (voltage) of the neuron,
wi, i ∈ Ω is the connection weight between the neuron and its
presynapse i, Ii(t) is the synaptic current that input from its
presynapses. It should be noted that Eq.(3) can be regarded as
a special case of

dv(t)

dt
= −v(t) +

1

C(t)

Ω∑
i

ωiIi(t) (4)

if C(t) is set fixedly to be 1.
In this paper, we use the extended I&F model that presented

by Eq.(4) as the basic neurons of SNNs.
Define

R(t) = Θ(t− t̂− tref ) (5)

where Θ(·) denotes a Heaviside function that takes a value of
one for positive arguments and vanishes otherwise. t̂ is the last
firing time of the neuron, and tref is the refractory period.

Let the membrane conductance E(t) = 1
C(t) , and the

total external input current I(t) =
∑Ω
i ωiIi(t), where E(t)

is constrained to be greater than 0, we design the following
evolutionary tuning law for neuron Eq.(4):

dE(t)

dt
= ∇E(t)

= η

(
ε

E(t)
+

I(t)R(t)

vthr − vrest
(
γ − (1 + γ)O(t)

))
(6)

where η is the update rate, ε represents a positive proportion
factor, γ is a positive design constant, and O(t) is the spike
output in response to the total presynaptic input current which
denoted by an impulsive function as

O(t) =
∑
f

δ
(
t− t(f)

)
(7)

where t(f) denotes the firing time that spike signal generated
by the neuron, δ(·) is a Dirac-Delta function meaning that
δ
(
t− t(f)

)
= 1 if t = t(f), otherwise δ

(
t− t(f)

)
= 0. η

indicates the strength of the generated spike signal.
In Eq.(6), the scale factor ε is set to be a fixed positive value,

however, we can observe that a higher ε value can effectively
increase the rate of change of E(t), and vice versa. Therefore,
we try to design a time-varying ε by

ε(t) = 1− 1

1 + exp(− 2t
τ + 1)

(8)

0 10 20 30 40 50 60 70 80 90 100

Time [ms]

0

0.2

0.4
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Fig. 2: The variation of ε(t) with time under different time
constants τ .

where t is the relative time since the new signal is inputing
to SNN, τ denotes the time constant. Under different time
constants of τ , the variation of ε(t) with time is shown in Fig.
2.

The method by which we use Eq.(6) to regulate the neuron
model Eq.(4) independently is named “Evol”, while the neuron
regulation method using both Eq.(6) and Eq.(8) is named
“Adap-Evol”. The description of the “Evol” and “Adap-Evol”
methods have been presented in Algorithm 1 and Algorithm
2.

Algorithm 1: Algorithm of evolutionary spiking neu-
ron model (Evol)
Input: Inference Images X = {xi}ni=1.
Output: Predicted label C = {c}ni=1 for each image.
Setting the parameters k, β and η, initialize C;
for time t in [1, 2, . . . , T ] do

for layer in layers do
for neuron in layer.neurons do

Calculate input current I(t) =
∑Ω
i ωiIi(t);

Calculate ∇v(t) by Eq.(4);
Update the membrane potential
v(t) = v(t− 1) +∇v(t);

Calculate ∇E(t) by Eq.(6);
Update E(t) = E(t− 1) +∇E(t),
C(t) = 1

E(t) ;
end

end
Collect the spike signal from the neurons of output
layer;

Obtain the classification result at time t.
end

III. THEORETICAL ANALYSIS

A. Mutual Information Maximum between Input Current and
Output Spike

The firing probability ρ at time t is a function related to the
membrane potential v and refractory state R,

ρ(t) = 1− exp

(
− v(t)− vrest
vthr − vrest

R(t)

)
(9)
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Algorithm 2: Algorithm of adaptive evolutionary spik-
ing neuron model (Adap-Evol)

Input: Inference Images X = {xi}ni=1.
Output: Predicted label C = {c}ni=1 for each image.
Setting the parameters k, β, η and the time constant τ ,

initialize C;
for time t in [1, 2, . . . , T ] do

for layer in layers do
for neuron in layer.neurons do

Calculate input current I(t) =
∑Ω
i ωiIi(t);

Calculate ∇v(t) by Eq.(4);
Update the membrane potential
v(t) = v(t− 1) +∇v(t);

Update ε(t) by Eq.(8);
Calculate ∇E(t) by Eq.(6);
Update E(t) = E(t− 1) +∇E(t),
C(t) = 1

E(t) ;
end

end
Collect the spike signal from the neurons of output

layer;
Obtain the classification result at time t.

end

where vthr − vrest > 0.
Thus, we have the following derivative of ρ with respect to

v,

∂ρ

∂v
=

R(t)

vthr − vrest
(
1− ρ

)
(10)

The probability density function of the two-parameter
Weibull distribution is

fWeib(y;α, k) =
k

α

( y
α

)k−1
exp

(
−(y/α)k

)
(11)

The Kullback-Leiber divergence (KLD) of the firing prob-
ability density functions fρ(ρ) and the desired Weibull-like
distribution function fWeib(ρ;α, k) can be calculated by

D = dKL(fρ||fWeib)

=

∫
fρ(ρ) log(fρ(ρ))dρ− ln(

k

αk
)

−(k − 1)

∫
fρ(ρ) ln(ρ)dρ+

1

αk

∫
fρ(ρ)ρkdρ

= −H(ρ) +
1

αk
Ξ(ρk)− (k − 1)Ξ(ln(ρ))

− ln(
k

αk
) (12)

where Ξ(·) denotes the mathematical expectation.
According to the neuronal dynamics of Eq.(4), we have

∂v

∂E
= I

∂v

∂t
= −v + EI

∂E

∂t
=

1

∂v/∂E
· ∂v
∂t

= −1

I
(v − EI) (13)

So the derivative of ρ respect to the membrane conductanceE
is

∂ρ

∂E
=

∂ρ

∂v
· ∂v
∂t
· 1

∂E/∂t

=
R

vthr − vrest
(
1− ρ

)
(−v + EI)

−I
v − EI

=
IR

vthr − vrest
(
1− ρ

)
(14)

Considering that [24]

H(y) = −
∫
fρ(ρ) log(fρ(ρ))dρ

= Ξ

(
ln
(∂ρ
∂v

))
− Ξ

(
ln
(
fv(v)

))
(15)

We calculate the derivative of the KLD with respect to the
variable of E,

∂D

∂E
= − 1

E
+ Ξ

[(
1

1− ρ
+

k

αk
ρk−1 − k − 1

ρ

)
∂ρ

∂E

]
= − 1

E
+ Ξ

[
IR

vthr − vrest

(
1 + (1− ρ)

( k
αk
ρk−1 − k − 1

ρ

))]
(16)

By setting k = 1 and defining γ = −1− 1
α , Eq.(16) can be

simplified by

∂D

∂E
= − 1

E
+

1

vthr − vrest
Ξ

[
IR

(
− γ + (γ + 1)ρ

)]
= − 1

E
− 1

vthr − vrest
Ξ

[
IR

(
γ − (γ + 1)ρ

)]
(17)

Finally, gradient descent learning rule for adjusting E is
given by

E ← E −∆E = E − η

(
∂D

∂E

)

= E + η

(
ε

E
+

IR

vthr − vrest
(
γ − (γ + 1)ρ

))
(18)

where η is the learning rate, the parameter ε can be set as 1
or other positive values for regulation, in this paper, ε is set to
1 for ‘’Evol” mechanism, and set to a time-varying value for
“Adap-Evol” mechanism. Noting that if the refractory period
tref is set to be 0, R(t) will be fixed as 1, thus Eq.(18) can
be rewritten by

E ← E + η

(
ε

E
+

I

vthr − vrest
(
γ − (γ + 1)ρ

))
(19)

On the other hand, the firing probability ρ(t) is a continuous
variable which takes a value between 0 and 1, we simply
substitute it by using the firing output O(t) that defined in
Eq.(7), thus we have

E ← E + η

(
ε

E
+

IR

vthr − vrest
(
γ − (γ + 1)O

))
(20)

which presented the proposed “Evol” mechanism proposed by
Eq.(6).
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Combining Eq.(20) with time-varying ε(t) of Eq.(8), we get
the proposed “Adap-Evol” mechanism that mentioned before.

Through the self-evolutionary rules of the membrane con-
ductance E derived above, we find that the mutual information
entropy between the firing event of the spiking neuron and the
input current can be maximized by adjusting E at a suitable
learning rate η. So the mutual information entropy between the
input current and output spikes of the whole spiking neural
networks is also maximized since that all neurons are self-
evolving.

B. Convergence of Homeostatic State

According to Eq.(4), we can know that ignoring the change
of the presynaptic current input, the larger the absolute value
of C(t), the smaller the change of Vmem(t). In Eq.(6), under
the setting of a positive initial value of E(t), two extreme
cases are considered. One is the neuron output O(t) = 1,
which means that the neuron fires at each discrete time step.
The other one is O(t) = 0, which means that the neuron stay
inactive at all discrete time steps.

Case 1: In this case, O(t) = 1, due to the fact that the
presynaptic input current Ii(t), i ∈ Ω is either zero or positive,
we have I(t) ≥ 0, thus (γ − (1 + γ)O(t)) I(t)R(t) ≤ 0. By
Eq.(6), it derives

∇E(t) > 0, if E(t) <
ε(vthr − vrest)

(−γ + (1 + γ)O(t)) I(t)R(t) + σ

∇E(t) < 0, if E(t) >
ε(vthr − vrest)

(−γ + (1 + γ)O(t)) I(t)R(t) + σ

with the positive value of parameter γ, and the σ in the
denominator is a sufficiently small positive number to prevent
the denominator from being 0. So, in this case, E(t) will
converge to (or track) the value of term ε(vthr−vrest)

(−γ+(1+γ)O(t))I(t)+σ .
Fig. 3 shows the variation of E(t) over time with different
values of the presynaptic input current I(t), where Fig.3(a)
presents the E(t) curves under constant values of I(t), and
where Fig. 3(b) presents the curves under random I(t) whose
average values of 0.5, 1 and 2, respectively.

Thus, we can know that if the presynaptic input current of
a neuron has a fixed mean, and the neuron keeps firing at each
time step of the early stage, it will continue to fire during the
subsequent time steps.

Case 2: In this case, O(t) = 0, we have
(γ − (1 + γ)O(t)) I(t)R(t)/(vthr − vrest) ≥ 0, so the
gradient ∇E(t) will be always greater than 0, which indicates
that E(t), i.e., 1

C(t) is monotonically increases over [0,+∞).
Based on Eq.(4), compared to setting C(t) to a fixed value,
the rule of Eq.(6) will increase the membrane potential of
neuron more rapidly, causing it to generate firing behavior
more quickly, thereby responding to the input signal earlier.

In summary, if a neuron does not produce a spike (i.e,
O(t) = 0), then the Evol and Adapt-Evol rules increase the
sensitivity of the neuron’s membrane potential to the input
current. When the neuron produces a spike (i.e, O(t) = 1),
it returns to the discussion of case 1. It should be noted that
even if the sensitivity of the neuron membrane potential to the
input current increases, it does not mean that the neuron will
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time [s]

0

0.5

1

1.5

2

2.5

R
c

I = 0.5

I = 1

I = 2

0 10 20 30 40 50
time [s]

0

0.5

1

1.5

2

2.5

R
c

Fig. 3: Variation of E(t) over time with different values of
the presynaptic input current I(t).

Fig. 4: Information transmission through an SNN network.

fire in a short period of time, it is because neuron requires
presynaptic input currents that is not zero or too small.

C. Convergence of Computational Accuracy

As shown in Fig. 4, one can obtain the output Y under a
given input X , if there is no information loss during the phases
of X → S and S̃ → Y . The biggest challenge is how to design
a low error rate and high noise tolerance channel S → S̃.
When information transmits from S to S̃, it should be encoded
to flow through the channel. In the information communication
systems the channel may be physical things like fiber optic or
wireless radio, while in the SNNs, the channel is consisted to
be the hidden layers of neural networks. So it is feasible to
use the information theory to analyze the properties of SNNs.

The mutual information between the variable X and Y is

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(21)
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Fig. 5: GIB information curve obtained in [25].

Since T is a compressed representation of X , its distribution
completely determined given X alone, that is, q(T |X, y) =
q(T |X), or

q(X,Y, T ) = p(X,Y )q(T |X) (22)

Tishby et.al [25] formulated the optimization problem as
the minimization of the following IB functional,

J(q(T |X)) = I(T ;X)− βI(T ;Y ) (23)

where β is a positive Lagrange multiplier of the trade-off
between the compression (minimal representation) and pre-
dictability (information preservation).

For the Gaussian framework problem, Tishby plotted the
curve of the mutual information I(T ;X) and I(T ;Y ) under
different parameter β, as shown in Fig.5 [25], it can be found
that the curve is concave everywhere. At each value of the
mutual information I(T ;X), the curve is bounded by a tangent
with a slope defined by the function β−1(I(T ;X)). At the
original point, I(T ;X) = 0, the slope β−1(0) = 1 − λ1,
where λ1 is the first eigenvalue of the canonical correlation
analysis of the original random vector X and its compressed
version Y . It also should be noted that the asymptotic slope
of the information curve is zero, which means β → ∞. And
it simply reflects that the addition of more bits of information
to the description of the original random vector X does not
provide increased accuracy for the bottleneck vector T .

In SNNs, it takes a certain time period to achieve a relatively
reliable output, and at every time step, the source signal is
imposed on the input. By the description above, it can be
analogized that the addition of more time steps does not
increase the network computational accuracy, thus it will
converge to the upper bound.

Even there exists a large volume of results demonstrate
that SNNs are promising next generation of artificial neural
networks, it is still a lack of sufficient theoretical analysis
to prove the computational effectiveness of SNNs. Unlike
the rate-based neural networks in which the output can be
calculated immediately within one-time step if the input signal
is given, SNNs take a period of time to get the converged
output. Therefore, a very serious question is whether the
computation result will converge to a certain value.

D. Speed Acceleration of Inference Learning

Mutual information is a measure of the amount of informa-
tion that one random variable constants about another random
variable. It is the reduction in the uncertainty of one random
variable due to the knowledge of the other.

It has been demonstrated that the proposed “Evol” and
“Adap-Evol” rules are beneficial to mutual information maxi-
mization between S and S̃, on the other hand,

I(S; S̃) =
∑
x,y

p(s, s̃) log
p(s, s̃)

p(s)p(s̃)

=
∑
x,y

p(s, s̃) log
p(s̃|s)
p(s̃)

= −
∑
x,y

p(s, s̃) log p(s̃) +
∑
x,y

p(s, s̃) log p(s̃|s)

= H(S̃)−H(S̃|S) (24)

Thus, it can be obtained that the mutual information I(S; S̃)
is the reduction in the uncertainty of S̃ due to the knowledge
of S. Therefore, the maximization of I(S; S̃) means the
uncertainty of S̃ is reduced. In SNNs, if we want to achieve a
relatively stable and high computational result when a source
signal is input, it should be guaranteed that the network has
sufficiently learned enough feature information from the spik-
ing signals passing through the channel. Maximizing mutual
information minimizes the impact of uncertainty on feature
information, thus, fewer time steps are required to wash out
the uncertainty that the inputs bring to the network, which
means less time is cost to learn from the source signals for
SNNs.

IV. MATERIAL AND METHODS

A. Test Datasets

We tested the effects of our proposed evolutionary spiking
neuron models on the classification performance of SFNN and
SCNN on both the MNIST and Fashion-MNIST datasets.

Fashion-MNIST [26] is a benchmarking dataset for machine
learning algorithms, which is intended to serve as a direct
drop-in replacement for the original MNSIT dataset, and it
is also consisting of 60000 training examples and 10000 test
examples, where each example is a 28x28 grayscale image
associated with a label from 10 classes. The 10 classes contain
the label “T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag” and “ Ankle boot”. Some example images of
Fashion-MNIST dataset are shown in Fig. 6.

It should be noted that we use the ANN-SNN conversion
method to obtain the network hyperparameter of the expected
final SNN, that is, the connection weights. Therefore, the
pixel values of the image can be directly input into the
corresponding ANN after being normalized. However, SNN
can only receive discrete spike signals as network inputs, thus
the image data needs to be first converted into spike signals by
certain rules. In this paper, Poisson-distributed spike encoding
[18], [27] is used to produce spikes for SNN input.
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Fig. 6: Example images of fashion mnist dataset.

B. Spiking Networks with Evolutionary Neuron Model

We constructed two typical neural networks, namely feed-
forward neural networks (FNNs) and convolutional neural
networks (CNNs), as the fundamental computing frameworks
for our proposed evolutionary neuron models. The two types
of networks, especially convolutional neural networks, have
been widely used in image classification tasks, so not only the
conventional rate-based FNNs and CNNs, but also the spike
event-based FNNs and CNNs, have attracted lots of research
interest over the world.

However, direct training a spike event-based network (spik-
ing neural network) can be complex and difficult due to
the undifferentiable nature of the discrete and asynchronous
neuronal spike events. Therefore, [16]–[18], [28], [29] stud-
ied the probability of converting the trained ANN to the
SNN counterpart, and proposed some conversion methods for
network computing operations such as convolution, average
pooling, max pooling, fully-connection propagation, ReLU
activation function, softmax activation function, etc..

In this paper, we also use the ANN-to-SNN conversion
method to get the fundamental network weights, then replace
the rate-based neural activation function by the proposed
evolutionary and adaptive evolutionary spiking neuron models.
Similar to [18], the detail steps of constructing the SFNN and
SCNN are:

1) Implement FNN and CNN with the activation function
of ReLU, and set no bias;

2) Train with error backpropagation algorithm;
3) Directly map the trained ANN weights to the correspond-

ing SNNs with the same structure, and set the SNN neurons to
the integrate-and-fire (IF) or our proposed evolutionary neuron
models.

To prove the efficacy of our evolutionary neuron models,
we used two main network architectures. For the feed-forward

neural network, we construct a 784-1200-1200-10 network, it
means that the network is with the input dimension of 784
(28x28, same with the pixel number of input image data) and
the output dimension of 10 (same with the number of image
classes), further, the network has two hidden layers with 1200
neurons per layer. For the convolutional neural network, we
construct a 28x28-12c5-2s-64c5-2s-10o network, it means that
12 5x5 convolutional kernels follow the input layer, and the
generated feature maps continue to be convoluted by 64 5x5
convolutional kernels after 2x2 average pooling, and then again
by the 2x2 average pooling. The resulting 64 feature maps
are flattened and fully linked to the final 10 output neurons.
We performed simple training on FNN and CNN models on
the MNIST and Fashion MNIST datasets respectively. FNN
achieved 98.84% and 90.75% test accuracy, respectively, and
CNN achieved 99.14% and 91.87% test accuracy. In addition,
what we are required to point out is that whether these test
accuracies are state-of-the-art does not affect our experimental
conclusions.

V. EXPERIMENT RESULTS

During the inference process of SNN to perform image
classification tasks, the spike streams generated by original
image are continuously input to the network input layer, and
then the neurons in each layer of SNN may generate spike
signal to the neurons in the subsequent layer, output layer
collects the spike response to determine the class of the
original image, after that, the classification task is complete.
It is worth noting that the network spike response collected
by the output layer may be different at different time steps,
the classification accuracy presented by SNN may change
with time. Only when the neuronal state of SNN achieves
homeostatic, the accuracy will eventually converge. Thus, as
demonstrated in [30], not only the classification accuracy,
but also the response time (latency) and the total number
of synaptic events (spikes) are the main concerns when
evaluating the recognition performance of an SNN. In this
paper, we tested these performance indexes of SFNN/Evol-
SFNN/Adap-Evol-SFNN and SCNN/Evol-SCNN/Adap-Evol-
SCNN on both MNIST and Fashion MNIST datasets.

A. Results on MNIST dataset

1) Classification Accuracy and Convergence Time: Fig.7
and Fig.8 show the classification accuracy of SFNN/Evol-
SFNN/Adap-Evol-SFNN and SCNN/Evol-SCNN/Adap-Evol-
SCNN over time, respectively. The running time step is set
as 1 ms, we can see that the error rates of classification
accuracy are approximately 90% at the initial state, after a
short time to collect the output signal of spikes from the output
layer, the error rates drop rapidly, and eventually stabilizes at
a relatively small value. The stable classification error rate
means the neurons of SNN converge to a homeostatic state.
The faster convergence speed indicates that the network takes
less time to reaching the homeostatic state and produces a
stable output. It is beneficial to the low-latency performance
of spiking networks for real-time tasks.
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Fig. 7: Classification accuracy comparison among SFNN, Evol-SFNN and Adap-Evol-SFNN over time. Performance curves
of networks are tested under different input firing rates, include 50Hz, 100Hz, 200Hz, 500Hz and 1000Hz, respectively.
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Fig. 8: Classification accuracy comparison among SCNN, Evol-SCNN and Adap-Evol-SCNN over time. Performance curves
of networks are tested under different input firing rates, include 50Hz, 100Hz, 200Hz, 500Hz and 1000Hz, respectively.

Each of the subgraphs in Fig.7 and Fig.8 compares the
classification accuracy of the SFNN or SCNN with the same
input frequency. It can be easily seen that both Evol and Adap-
Evol mechanisms can effectively improve the response speed
of the network while ensuring the classification accuracy is not
reduced, whether it is low input rate (50 Hz) or high input rate
(1000 Hz). , shorten the response time to the input. Compared
with Evol, Adapt-Evol is able to significantly improve the
network’s response ability, especially at low input rate. In
addition, it should be noted that in the spiking convolutional
neural networks, even at the initial time step, the classification

accuracy of the Adap-Evol-SCNN has exceeded 10%, which
indicates that for some input signals (spike signals obtained by
Poisson sampling), Adap-Evol-SCNN has been able to achieve
zero-latency response.

2) Firing Activity of Neurons: Fig.9 and Fig.10 show the
statistics of the firing activity of neurons in the main network
layers of SFNN and SCNN during the process of recognizing
an image. It should be noted that for each network, we only
count the firing activity of the network from the initial recep-
tion of the input signals to the time when the classification
accuracy begins to converge. Therefore, the statistical time
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Input Rate = 200Hz Input Rate = 500Hz
Desc Input Layer 2 Layer 3 Output Input Layer 2 Layer 3 Output

SFNN

Spikes =
306

Spikes =
525

Spikes =
592

Spikes
= 8

Spikes =
349

Spikes =
522

Spikes =
583

Spikes
= 6

Evol-
SFNN

Spikes =
237

Spikes =
466

Spikes =
528

Spikes
= 10

Spikes =
279

Spikes =
431

Spikes =
485

Spikes
= 6

Adap-
Evol-
SFNN

Spikes =
159

Spikes =
371

Spikes =
702

Spikes
= 8

Spikes =
182

Spikes =
402

Spikes =
706

Spikes
= 4

Fig. 9: Firing activities of SFNN, Evol-SFNN and Adap-Evol-SFNN, where the “Layer 2” and “Layer 3” note the 1st and 2nd
hidden layer, respectively.

may be different for different networks, for example, SFNN
and SCNN have the longest statistical time, Evol-SFNN and
Evol-SCNN are slightly shorter, and Adap-Evol-SFNN and
Adap-Evol-SCNN are with the shortest statistical time.

The firing activity means how many spike events generated
during a certain period of time. At the same input rate, the
spike densities of input signal are set to be approximately the
same, however, the input spikes amount in the “Input” column
of Fig.9 and Fig.10 is different because of the different sta-
tistical time length, Apap-Evol-SFNN and Adapt-Evol-SCNN
having the least amount of spikes, while SFNN and SCNN are
the most.

However, in Fig.9, the spike events of inner-layer neurons
of spiking feed-forward networks do not show a significant
difference. We can see that for the input rate of both 200Hz
and 500Hz, no matter SFNN, or Evol-SFNN and Adap-Evol-
SFNN, the summed numbers of spike events of “Layer 2”,
“Layer 3” and “Output” are approximative, where those of
Evol-SFNN may be a few lower than the other two, compara-
tively. Further, an interesting result is that compared to SFNN
and Evol-SFNN, Adap-Evol-SFNN inhibits the firing activity
of the previous hidden layer (Layer 2), but enhances the firing
activity of the latter hidden layer (Layer 3). This phenomenon
brings an advantage that more spike events directly stimulate

the neurons of output layer, thus, the output neurons can
respond faster to the input signals.

As showed in Fig.10, in spiking convolutional networks, the
firing activities of SCNN, Evol-SCNN and Adap-Evol-SCNN
are similar to the spiking feed-forward networks mentioned
above, i.e., the number of neuronal spike events in the inner
layers of Evol-SCNN is smaller than in the SCNN. On the
other hand, Adap-Evol-SCNN seems to “move” the spike
events of the previous layer to the next layer, in order to speed
up the input response of the output neurons.

B. Results on Fashion-MNIST dataset

We quantitatively evaluate the performance of SNN, Evol-
SNN and Adap-Evol-SNN on the Fashion-MNIST dataset, and
similar with [20], we note the simulation time to which 101%
of the minimum classification error is reached (Matching
Time, MT). Further, the final classification accuracy (final
accuracy, FA) is also computed, where FA represents the stable
precision when an SNN reaches homeostatic state. The lower
value of MT means that the SNN produces a relatively reliable
output faster, which is beneficial to the real-time performance
of SNN. While the higher value of FA means that the SNN
produces a more accurate output, which is beneficial to the
accuracy performance of SNN.
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Input Rate = 200Hz Input Rate = 500Hz
Desc Input 1st Conv 2nd Conv Output Input Layer 2 Layer 3 Output

SCNN

Spikes
= 244

Spikes =
2284

Spikes = 1126 Spikes
= 3

Spikes
= 253

Spikes =
2333

Spikes = 1047 Spikes
= 4

Evol-
SCNN

Spikes
= 179

Spikes =
1882

Spikes = 952 Spikes
= 3

Spikes
= 204

Spikes =
2007

Spikes = 967 Spikes
= 2

Adap-
Evol-
SCNN

Spikes
= 109

Spikes =
1810

Spikes = 1647 Spikes
= 11

Spikes
= 201

Spikes =
1931

Spikes = 1502 Spikes
= 6

Fig. 10: Firing activities of SCNN, Evol-SCNN, and Adap-Evol-SCNN, where the “1st Conv” and “2nd Conv” denote the 1st
and 2nd convolutional layers of SCNN, respectively.

In TAB.I, we present the performance (FA, MT) comparison
between SNN, Evol-SNN and Adap-Evol-SNN under different
input firing rates. Both the two network models, spiking
feed-forward neural network and spiking convolutional neural
networks, are taken into account for experiment test.

From TAB.I, we can see that for all values of input firing
rate, Adap-Evol-SNN, i.e., Adap-Evol-SFNN and Adap-Evol-
SCNN have the significantly minimal MT, it suggests that
the proposed Adap-Evol mechanism accelerates the response
speed of SNN. Further, compared to SFNN and SCNN, the
values of MT of both Evol-SFNN and Evol-SCNN are still
smaller.

On the other hand, under the majority of the values of input
firing rates, Evol-SNN or Adap-Evol-SNN achieve the highest
FA scores, which mean that while gaining the response speed,
Evol and Adap-Evol, especially Adap-Evol mechanism can
also slightly improve the classification accuracy.

C. Evolution of Variables dv(t) And C(t) over Time

According to Eq.(4), we know that the variable dv(t)
determines the firing activity of an IF neuron, and the larger
the dv(t), the more frequent the neuronal spike events. We
use SFNN, Evol-SFNN and Adap-Evol-SFNN to infer a

handwritten digit 2 of MNIST, respectively, Fig.11 compares
the difference of the variation of neuronal dv(t) over time,
the input firing rate is set as 200Hz. The table column titles
“Layer 2” and “Layer 3” denote the 1st and 2nd hidden layer
respectively, and “Output” denotes the neurons of output layer.
From the column “Layer 2” and “Layer 3” of Fig.11, we can
see that the dv(t) values of almost all the hidden neurons
of SFNN are approximately 0, Adap-Evol-SFNN significantly
increases the difference of dv(t) among hidden neurons, while
the increase of Evol-SFNN is less obvious. What should be
noted is that both in Evol-SFNN and Adap-Evol-SFNN, the
difference between the dv(t) of neurons aB56re more and
more obvious over time, and there are not only positive values
of dv(t), but also negative values of dv(t).

On the other hand, from the column “Output” of Fig.11, we
can find that for all the SFNN, Evol-SFNN and Adap-Evol-
SFNN, the dv(t) values of neuron index 3 are greater than
that of other 9 neurons, which due to the neuron index 3 is the
expected index of digit 2. Further, as time goes by, the dv(t)
of the output layer neurons of Adapt-Evol-SFNN is much
larger than that of Evol-SFNN and SFNN (approximately 5000
vs. 100 and 1), which also means that in Adap-Evol-SFNN,
the expected output neuron is able to acquire more spike
stimuli, i.e., more synaptic currents are input into this neuron.
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Model Metric 50Hz 100Hz 200Hz 500Hz 1000Hz

SFNN FA [%] 88.5 89.4 90.5 91.2 90.6
MT [ms] 385 252 167 76 42

Evol-SFNN FA [%] 88.4 89.6 90.6 91.3 90.5
MT [ms] 247 163 116 66 38

Adap-Evol-SFNN FA [%] 89.9 89.7 91.2 91.2 91.4
MT [ms] 172 125 78 45 28

SCNN FA [%] 90.2 89.9 91.2 90.5 91.2
MT [ms] 391 288 151 66 49

Evol-SCNN FA [%] 89.4 90.6 90.4 91.1 91.0
MT [ms] 233 142 109 53 34

Adap-Evol-SCNN FA [%] 90.1 90.3 91.0 91.3 91.6
MT [ms] 184 119 82 52 26

TABLE I: Performance comparison between SNN, Evol-SNN and Adap-Evol-SNN, under different input firing rates.
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Fig. 11: Comparison of the dv(t) of Eq.(4) in SFNN, Evol-SFNN, and Adap-Evol-SFNN.
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Fig. 12: Comparison of the C(t) of Eq.(4) in SFNN, Evol-SFNN, and Adap-Evol-SFNN.

Therefore, compared to SFNN and Evol-SFNN, the expected
output neuron will collect enough information evidence to

classify the input signal significantly earlier.
For deeply understanding the effect of the proposed “Evol”
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and “Adap-Evol” mechanisms, in Fig.12, we present the vari-
ation of C(t) values of Evol-SFNN as well as Adap-Evol-
SFNN while inferring a handwritten digit 2. From column
“Layer 2” and “Layer 3”, we can see that the change range
of C(t) vales of Evol-SFNN and Adap-Evol-SFNN is not the
same, and the C(t) of both shows a downward trend from 0
to 100ms, however in contrast, the C(t) of Adap-Evol-SFNN
drops faster than that of Evol-SFNN. In the column “Output”
of Fig.12, the C(t) value of the neuron index 3 corresponding
to the handwritten digit 2 is the smallest of all, which supports
the fact showed in the column “Output” of Fig.11 that the
membrane potential change dv(t) of neuron index 3 is the
largest of all output neurons.

VI. CONCLUSION

Different with the traditional second generation of artificial
neural networks (rate-based ANNs), spiking neural networks
use the streams of spike events to process information, and
even during the inference stage, SNNs also take time to collect
enough evidence of spike information to produce reliable
output, which results in the output delay of network. In
this paper, we firstly proposed a self-evolutionary spiking
neuron model (Evol), and further proposed an adaptive self-
evolutionary model (Adap-Evol) for SNNs. Both Evol and
Adap-Evol focus on regulating the conductivity of neuron
membrane dynamically according to the spiking activity of the
neuron and its external current input. Once an input signal is
first input into an SNN, our proposed methods can activate the
neuronal state rapidly by increasing the response of neurons
to the input signal. When the output of the network tends to
be stable, the spiking activity of each neuron also tends to
be stable and regular, during this stage, the proposed method
keeps the conductivity relatively unchanged. Finally, two
different neural network frameworks, namely spiking multi-
layer perceptron and spiking convolutional neural network, are
utilized to validate the effectiveness of MNIST and Fashion-
MNIST datasets. Theoretical analysis and experiment results
show the improvement in terms of reducing the output delay,
while the number of spike events at the time of accuracy
convergence does not increase, and even by Evol method, the
number of spike events decreases.
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