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Self-Evolutionary Neuron Model for Fast-Response
Spiking Neural Networks

Anguo Zhang, Ying Han, Jing Hu, Yuzhen Niu, Member, IEEE, Yueming Gao*, Member, IEEE,
Zhizhang (David) Chen*, Fellow, IEEE, and Kai Zhao

Abstract—We propose two simple and effective spiking neuron
models to improve the response time of the conventional spiking
neural network. The proposed neuron models adaptively tune the
presynaptic input current depending on the input received from
its presynapses and subsequent neuron firing events. We analyze
and derive the firing activity homeostatic convergence of the pro-
posed models. We experimentally verify and compare the models
on MNIST handwritten digits and FashionMNIST classification
tasks. We show that the proposed neuron models significantly
increase the response speed to the input signal. Experiment codes
are available at https://github.com/anvien/Evol-SNN.

Index Terms—Spiking Neural Network, Self-Evolutionary Neu-
ron Model, Fast Response Network, Synaptic Plasticity.

I. INTRODUCTION

W ITH the prevalence of the Internet of Things (IoT),
artificial intelligence (AI) theory and technology have

advanced rapidly. Among them, artificial-neural-networks
(ANNs) based devices and systems have attracted consider-
able attention. However, due to the limited energy storage
capability power consumption and computational efficiency
have become a critical factor in designing ANN chips and
systems. To this end, research and development efforts have
been made, for instance, a lightweight neural framework is
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proposed in [1], [2] and an on-demand usage method to avoid
unnecessary ANN computation in [3].

Compared with the traditional ANNs that perform dense
real-value computation, the spiking neural network (SNN)
is more suitable for the AI devices in the edge computing
scenarios for its event-driven and sparse-matrix computation.
For example, TrueNorth of IBM’s neuromorphic chip that
apply SNN can run one million spiking neurons at the
cost of only 63mW [4], while the traditional ANNs of the
same scale require nearly 100,000 to 300,000 times more
of the power. The Loihi [5] neuromorphic chip launched
by Intel Labs consists of 128 neuromorphic cores which
simulates 130K neurons and 130M synapses in real time. Loihi
can solve optimization problems, compared with CPU-based
solver, Loihi is over three orders of magnitude better in terms
of energy-delay-product. Braindrop [6], a 28-nm fabricated
process, integrates 4096 neurons in 0.65mm2, it uses sparse
encoding and weighted spike-rate summation to cut digital
traffic drastically. Braindrop consumes energy per equivalent
synaptic operation at 381fj for typical network configurations.
Therefore, SNNs are considered energy-friendly at the chip
level, have been widely employed in chips such as GPU,
FPGA, VLSI, etc. [7]–[11] and have also been used for low-
power tasks such as neuromorphic vision and auditory sensors
[12], [13].

Modern SNN, also referred to as the third generation
ANN, was first proposed by Maass [14]. In contrast with
the traditional ANNs, SNNs use discrete and sparse spikes to
transmit and process information. SNNs can simulate arbitrary
feed-forward sigmoidal ANNs [15] and have been proven
to be computationally more efficient than the neurons with
sigmoidal activation function. Modern SNNs have been ex-
tensively studied in structural and neuron model design [16],
[17], learning algorithms [18]–[21], information coding [22],
etc., and also have found a wide range of applications, such
as object recognition [23], [24], image classification [13], and
series data process [25]–[27].

In conventional SNNs, a spike stream of the inputs is
applied, it stimulates the neurons in the next layer to generate
new spike signals for the following neurons, and the process
moves on. On the other hand, an SNN takes time to let output
become homeostatic since it needs to get and then process the
information from the output layer. An SNN may even take an
excessively long time to respond and does not catch up with
the input, reducing significantly computational efficiency and
real-time performance.

To this end, this paper proposes two computational models
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for fast SNN responses. They are the two integrate-and-fire
(IF) neuron based models, one being evolutionary spiking neu-
ron (Evol) and the other being adaptive evolutionary spiking
neuron (Adap-Evol). The proposed model are implemented
asynchronously and locally. Here ”asynchronous” means that
the computation of the spiking neurons is event-triggered,
and ”locally” means that every neuron updates its state using
only its presynaptic input current and neuronal dynamics.
Consequently,the proposed neuronal operations can be easily
executed without the need for external injections at a low
computational cost. Experimental results on MNIST and Fash-
ionMNIST datasets confirm the effectiveness of the proposed
two models.

In summary, the main contributions of this paper are three-
fold:

1) We propose an evolutionary spiking neuron (Evol) based
on conventional LIF neuron model. A futher improved model,
i.e., adaptive evolutionary spiking neuron (Adap-Evol) is also
proposed. We prove through theoretical analysis that both
models can reach homeostatic state, stabilize the output of
the network, and maximize the transmission information rate
between input and output spikes.

2) Through experiments of classification accuracy and
matching time, it is demonstrated that the two models we
proposed can speed up the network’s response speed to the
input image signal when performing image classification tasks,
and at the same time can ensure that the classification accuracy
is not lost. Especially the response speed of Adap-Evol is
faster.

3) The experiment of neuronal firing activity proves that
the Evol and Adap-Evol models can also reduce the rate of
network firing activity, and the network can achieve faster
response to input but with fewer spike signals and computa-
tional operations triggered. This helps to realize the low-power
computation of SNN model if embedded on neuromorphic
chip.

The remainder of this paper is organized as follows. In
Section II, we briefly review some related works that deal
with the response of SNNs. Section III introduces the proposed
SNN models with Evol and Adap-Evol neurons. Section IV
presents the theoretical aspects of our proposed models, and
Section V presents experimental results. Finally, Section VI
summarizes and concludes the paper.

II. RELATED WORKS

The most straightforward and intuitive way to improve the
response speed of SNN is to increase the input firing rate and
reduce the neuronal firing threshold. However, a high input
rate leads to high power cost and memory cost [28]–[30]. A
low firing threshold can reduce latency and improve speed,
but may reduce accuracy and vice versa. Towards this end,
research has been carried out to improve the SNN response
speed while maintaining high computational accuracy and low
power consumption.

[30] proposes model- and data-based normalization to
regulate the firing rates of a spiking fully connected neural
network (SFNN) and a spiking convolutional neural network

(SCNN). The normalization boosts the convergence of the
spiking neuron firing activity, hence improving the speed and
real-time performance. [31] proposes an information transmis-
sion method with burst spikes and a layer-wise hybrid neural
coding scheme for deep SNNs. The method can improve
the speed and power efficiency while maintaining reasonable
accuracy for image classification. [32] proposes an adaptive
SNN, where the neurons encode information in spike trains
using asynchronous spiking sigma-delta coding. It is an order
of magnitude faster and uses an order of magnitude fewer
spikes than the conventional neural networks. [33] takes into
account of neural conductance with structural plasticity, and
it improves SNN inference speed. The structural plasticity
method is a straightforward ANN without additional opera-
tions such as pooling, softmax, etc.. The conductance variation
schemes are developed for excitation and inhibitory neurons.

Although the models or methods mentioned above have
shown good performances, there still exist some problems
or drawbacks. [30] requires global information about the
network layers to normalize input weights for each neuron. In
[31], the information transmission method and the layer-wise
neural coding scheme must be well-designed and carefully
implemented for the desired performance. The firing threshold
plasticity in [33] is only proposed for straightforward fully-
connected SNNs, which can not be applied to the pooling,
convolution operations of convolutional neural networks.

III. THE PROPOSED SPIKING NEURON MODELS

In this section, we will present our proposed SNN models.
First, we will briefly go through the basics of the conventional
spiking neuron models, and then our proposed models with the
associated computational algorithms.

A. The Conventional Spiking Neuron Model
As mentioned before, SNNs are considered to be the third

generation of ANNs and have shown advantages in compu-
tational cost, power consumption, and neural plasticity [14],
[15], [34]–[36]. Conventional ANNs feed input data into a
network one set at one time, and process information layer by
layer, before reaching the output layers. They first convert the
input information into spike streams of event signals, and then
neurons record these signals and create spikes to communicate
information with other connected neurons. Output layer neu-
rons collect firing evidence driven by incoming information
and make decisions over time.

Spiking neuron models mimic biological neurons: they
have the properties in analogy to physiological properties
biological neurons, such as membrane potential v, membrane
reset potential vreset, membrane firing potential threshold
vthr, capacitance Cm and refractory period tref , etc. When
v > vthr, the neuron generates a current spike and transmits
it to the dendrites of other neurons; v then immediately drops
to vreset and the neuron enters the refractory period. During
the refractory period, the neuron does not receive any external
current signal from its synapse.

A biological neuron membrane is a semi-permeable biofilm
composed of phospholipid molecules. The membrane is non-
conductive, aside from protein channels for specific ions; its
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Fig. 1: The semi-permeable biological membrane of biological
neurons which composed of phospholipid molecules, and its
equivalent capacitor module.

physical properties are similar to a parallel-plate capacitor, as
shown, where v(t) is the voltage across the capacitor, I(t) is
the current flowing to the capacitor, and C is the capacitance.
Fig.1 shows a simple diagram of a parallel-plate capacitor
in analogy to a biological neuron. The relation among the
voltage, current and capacitance can be expressed as

v(t) =

∫
1

C
I(t)dt, (1)

where v(t) is the voltage across the capacitor, I(t) is the
current flowing to the capacitor, and C is the capacitance.

The capacitor can be adaptively discharged or charged by
dynamically changing its capacitance based on the demand.
The derivative of v(t) is

v̇(t) =
1

C(t)
I(t), (2)

where C(t) is the dynamic capacitance with respect to time t.
The leaky integrate-and-fire (leaky IF) [37] neuron has the

similar expression to (2),

dv(t)

dt
= −v(t) +

∑
ωi∈Ω

ωiIi(t), (3)

where Ω is the set of presynapses for the leaky IF neuron,
v(t) is the neuron membrane potential (voltage), wi ∈ Ω is
the connection weight between the neuron and its presynapse
i, and Ii(t) is the synaptic current input from the neuron’s
presynapses.

B. Our Proposed Spiking Neuron Model

We can consider (3) as a special case of the following
systems,

dv(t)

dt
= −v(t) +

1

C(t)

Ω∑
i

ωiIi(t), (4)

with C(t) = 1.
Define

R(t) = Θ(t− t̂− tref ), (5)

0 10 20 30 40 50 60 70 80 90 100
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Fig. 2: Variation of ε(t) with respect to time t for different
time constants τ .

where Θ(·) = 1 for non-negative arguments, and Θ(·) = 0
otherwise. t̂ is the neuron’s last firing time, and tref is the
refractory period. Let E(t) = 1/C(t) and the total external
input current

I(t) =

Ω∑
i

ωiIi(t), (6)

where E(t) is greater than 0. Then we define the evolutionary
tuning law for (4) as

dE(t)

dt
= ∇E(t)

= η

(
ε

E(t)
+R(t)

I(t)

vthr − vreset
(
γ − (1 + γ)O(t)

))
, (7)

where η is the update rate, which indicates the strength of the
generated spike signal; ε is a positive proportion factor; γ is a
positive design constant; O(t) is the spike output in response
to the total presynaptic input current,

O(t) =
∑
f

δ
(
t− t(f)

)
, (8)

where t(f) is the firing time for the spike signal gener-
ated by the neuron, and δ(·) is a Dirac delta function, i.e.,
δ
(
t− t(f)

)
= 1 if t = t(f), and zero otherwise.

From (7), we can know that higher ε can effectively increase
the rate of change of E(t), and vice versa. Therefore, rather
than the conventional approach of defining ε as a fixed positive
value, we define a time-varying ε,

ε(t) = 1− 1

1 + exp(− 2t
τ + 1)

, (9)

where t is the relative time since the new signal is input to
SNN, and τ is the decay time constant. Fig. 2 shows the
variation of ε(t) with respect to t for different τ .

We now propose to use (7) to regulate the neuron model (4),
leading to one of our proposed models names as evolution
(Evol) SNN. When we use both (7) and (9) to regulate
the neuron model (4), we obtain the other proposed model
named as adaptive evolution (Adap-Evol) SNN. The associated
computing algorithms are shown in Algorithm 1 and 2.



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 8, JUNE 2020 4

Algorithm 1: Algorithm of evolutionary spiking neu-
ron model (Evol)

Input: Inference Images X = {xi}ni=1.
Output: Predicted label C = {c}ni=1 for each image.
Setting the parameters k, β and η, initialize C;
for time t in [1, 2, . . . , T ] do

for layer in layers do
for neuron in layer.neurons do

Calculate input current I(t) =
∑Ω
i ωiIi(t);

Calculate ∇v(t) by Eq.(4);
Update the membrane potential
v(t) = v(t− 1) +∇v(t);

Calculate ∇E(t) by Eq.(7);
Update E(t) = E(t− 1) +∇E(t),
C(t) = 1

E(t) ;
end

end
Collect the spike signal from the neurons of output

layer;
Obtain the classification result at time t.

end

Algorithm 2: Algorithm of adaptive evolutionary spik-
ing neuron model (Adap-Evol)

Input: Inference Images X = {xi}ni=1.
Output: Predicted label C = {c}ni=1 for each image.
Setting the parameters k, β, η and the time constant τ ,

initialize C;
for time t in [1, 2, . . . , T ] do

for layer in layers do
for neuron in layer.neurons do

Calculate input current I(t) =
∑Ω
i ωiIi(t);

Calculate ∇v(t) by Eq.(4);
Update the membrane potential
v(t) = v(t− 1) +∇v(t);

Update ε(t) by Eq.(9);
Calculate ∇E(t) by Eq.(7);
Update E(t) = E(t− 1) +∇E(t),
C(t) = 1

E(t) ;
end

end
Collect the spike signal from the neurons of output

layer;
Obtain the classification result at time t.

end

IV. THEORETICAL ASPECTS OF THE PROPOSED SNN
MODELS

In this section, we will present the theoretical aspects of
the proposed models. The results lay the foundations and
give the guidelines for their performance enhancements and
applications.

0 20 40 60 80 100 120 140 160 180 200

Time [ms]

0

0.2

0.4

0.6

0.8

1

(t)

spike event

Fig. 3: The value of the firing probability ρ in (10) at a fixed
input current corresponds to the firing events.

A. Maximizing Mutual Information between Input Current and
Output Spikes

Define an auxiliary notation of the firing probability ρ at
time t is related to v and refractory state R,

ρ(t) = 1− exp

(
− v(t)− vreset
vthr − vreset

mR(t)

)
, (10)

where vthr−vreset > 0 and m > 1 is a positive constant. The
larger the membrane potential v(t), the hihger the auxiliary
firing probability. Fig.3 shows the firing probability ρ at a fixed
input current corresponds to the firing events, we can see that
if the spike event is triggered, ρ is close to 1, otherwise ρ
approaches 0. Hence

∂ρ

∂v
=

mR(t)

vthr − vreset
(
1− ρ

)
, (11)

As stated in [38]–[41], maximizing the information trans-
mission of a single spiking neuron strictly locally is to opti-
mize the neuron’s output being Weibull distributed (or expo-
nentially distributed, as a special case of Weibull distribution).
Since the probability density function for the two-parameter
Weibull distribution can be expressed as

fWeib(y;α, k) =
k

α

( y
α

)k−1
exp

(
−(y/α)k

)
, (12)

the Kullback-Leiber divergence (KLD) for the firing prob-
ability density function fρ(ρ) and the desired Weibull-like
distribution function fWeib(ρ;α, k) can be expressed as

DKL

(
fρ||fWeib

)
=

∫
fρ(ρ) log(fρ(ρ))dρ− ln(

k

αk
)

− (k − 1)

∫
fρ(ρ) ln(ρ)dρ+

1

αk

∫
fρ(ρ)ρkdρ

=−H(ρ) +
1

αk
Ξ(ρk)− (k − 1)E

[
ln(ρ)

]
− ln(

k

αk
),

(13)

where E
[
·
]

is mathematical expectation.
From the neuronal dynamics in (4),

∂v

∂E
= I

∂v

∂t
= −v + EI

∂E

∂t
=

1

∂v/∂E
· ∂v
∂t

= −1

I
(v − EI), (14)
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and hence the derivative of ρ with respect to E is

∂ρ

∂E
=
∂ρ

∂v
· ∂v
∂t
· 1

∂E/∂t

=
R

vthr − vreset
(
1− ρ

)
(−v + EI)

−I
v − EI

=
IR

vthr − vreset
(
1− ρ

)
, (15)

Since [42]

H(y) = −
∫
fρ(ρ) log(fρ(ρ))dρ

= E
[

ln
(∂ρ
∂v

)]
− E

[
ln
(
fv(v)

)]
, (16)

the KLD derivative with respect to E is

∂DKL

∂E
= − 1

E
+ E

[(
1

1− ρ
+

k

αk
ρk−1 − k − 1

ρ

)
∂ρ

∂E

]
= − 1

E
+ E

[
mIR

vthr − vreset

(
1 + (1− ρ)

( k
αk
ρk−1 − k − 1

ρ

))]
, (17)

which can be simplified by setting k = 1 and γ = −1− 1
α ,

∂DKL

∂E
= − 1

E
+

m

vthr − vreset
E
[
IR

(
− γ + (γ + 1)ρ

)]
= − 1

E
− m

vthr − vreset
E
[
IR

(
γ − (γ + 1)ρ

)]
,

(18)

Thus, the gradient descent learning rule for adjusting E is

E ← E −∆E = E − η

(
∂DKL

∂E

)

= E + η

(
ε

E
+

mIR

vthr − vreset
(
γ − (γ + 1)ρ

))
, (19)

where ε = 1 for Evol and is time-varying for Adap-Evol. If
we set tref = 0, then R(t) = 1, and (19) can be expressed as
... Since ρ(t) is continuous on [0, 1], we can substitute it using
O(t) defined in (8),

E ← E + η

(
ε

E
+

mIR

vthr − vreset
(
γ − (γ + 1)O

))
, (20)

which is equivalent to the proposed Evol model of (7).
Combining (20) with time-varying ε(t) from (9) gives the
proposed Adap-Evol discussed above.

The self-evolutionary rules for E derived above mean that
mutual information between the spiking neuron firing event
and input current can be maximized by adjusting E for a
suitable learning rate η. Thus, mutual information between
input current and output spikes for the whole SNN is also
maximized since that all neurons are self-evolving.

B. Homeostatic State Convergence

According to the neuron model (4), it is assumed that if
the input current Ii(i ∈ Ω) of each presynapse is fixed, the
whole external input stimulus of the neuron is only related
to its state variable E(t) = 1/C(t). Therefore, if E(t) can
finally converge to a fixed value, all neurons, that is, the
entire SNN will exhibit a fixed firing activity pattern, i.e., the
network reaches homeostatic. Only when the network reaches
a homeostatic state, its output is consistent and stable, and
can be adopted as the final result. In this sub-section, we will
prove that E(t) will eventually converge with our proposed
models Evol and Adap-Evol.

From (4), v(t) decreases as absolute C(t) increases; here
we ignore presynaptic current input changes. We now consider
two extreme cases for (7) with positive initial E(t): one is
neuron output O(t) = 1, i.e., the neuron fires for each discrete
time step; the other is O(t) = 0, i.e., the neuron remains
inactive for all discrete time steps.

Case 1: O(t) = 1. Since Ii(t), i ∈ Ω is either zero or
positive, I(t) ≥ 0. Thus, (γ − (1 + γ)O(t)) I(t)R(t) ≤ 0,
and from (7),

∇E(t) > 0, ifE(t) <
ε(vthr − vreset)

(−γ + (1 + γ)O(t))mI(t)R(t) + σ

and

∇E(t) < 0, ifE(t) >
ε(vthr − vreset)

(−γ + (1 + γ)O(t))mI(t)R(t) + σ

with positive γ, and σ being small positive numbers to prevent
the denominator = 0. Therefore, E(t) will converge as (or
track)

ε(vthr − vreset)
(−γ + (1 + γ)O(t))mI(t) + σ

Fig. 4 shows E(t) with respect to time with different
constant I(t) (Fig. 4(a)) and random I(t) with different means
(4(b)). In other words, when the presynaptic input current has
fixed mean, and the neuron fires for each time step in the early
stage, it will continue to fire for subsequent time steps.

Case 2: O(t) = 0. Since
(
γ − (1 +

γ)O(t)
)
mI(t)R(t)/(vthr − vreset) ≥ 0, gradient ∇E(t)

will always be larger than 0, hence E(t), i.e., 1/C(t),
monotonically increases over [0,+∞). From (4) and (7) the
neuron membrane potential will increase more rapidly than
that in the case where C(t) is constant, generating firing
quicker, and hence responding faster to the input signal.

If a neuron does not produce a spike (i.e., O(t) = 0),
then Evol and Adap-Evol rules increase the neuron membrane
potential sensitivity to the input current. When the neuron
produces a spike, i.e., O(t) = 1, it returns to case 1. Even
when the neuron membrane potential sensitivity to input
current increase, the neuron will not necessarily fire in a short
period, because the neurons require presynaptic input currents
that are not too small.

V. EXPERIMENT RESULTS

During the SNN inference process for image classification,
spike streams are generated from the original images are
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Fig. 4: Variation of E(t) over time with different values of
the presynaptic input current I(t).

continuously input to the network input layer. Neurons in
each SNN layer then generate spike signals for neurons in
subsequent layers, and the output layer collects the spike
response to reconstruct the original image class. What needs to
be pointed out is we use the total count of spike of the output
neurons to determine the class label at the end of simulation
time. The network spike response obtained by the output layer
may differ over time, and hence SNN classification accuracy
may also change. SNN accuracy will only converge once the
neuronal state becomes homeostatic. Thus, not only classifi-
cation accuracy, but also response time (latency) and the total
number of synaptic events (spikes) should be considered when
evaluating SNN recognition performance [43]. We compare
SFNN/Evol vs SFNN/Adap-Evol-SFNN vs SCNN/Evol with
SCNN/Adap-Evol-SCNN performance metrics on MNIST and
Fashion MNIST datasets. They are elaborated as follows.

A. Datasets
We use MNIST and FashionMNIST [44] datasets for testing

our proposed models. FashionMNIST is a benchmark dataset
for machine learning algorithms, intended as a direct drop-
in replacement for the original MNSIT dataset. It comprises
60000 training and 10000 test examples, each being a 28x28
grayscale image associated with a label from 10 classes: T-
shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle boot.

We use ANN-to-SNN conversion to obtain network hy-
perparameters for final SNN, i.e., the connection weights.

Therefore, image pixel values can be directly input into the
corresponding ANN after being normalized. However, SNN
can only receive discrete spike signal inputs, hence the image
data is first converted into spike signals using Poisson dis-
tributed spike encoding [30], [45]. Fig. 5 shows the example
of Poisson sampling to generate spike streams for SNN input.

B. Specifics about Spiking Networks with Evolutionary Neuron
Model

We construct a fully-connected feed-forward (FNN) and
convolutional (CNN) neural network, as the fundamental
computing frameworks for the proposed evolutionary neuron
models. These two ANN types, particularly CNN, have been
widely used for image classification. Both FNN and CNN
models are trained on the MNIST and FashionMNIST datasets.

However, direct training of an event-based spiking network,
i.e., an SNN, can be complicated and challenging due to undif-
ferentiable discrete and asynchronous neuronal spike events.
Therefore, we use the conversion of a trained ANN into an
SNN of equivalent structure, adopting conversion methods for
network computing operations, such as convolution, average
pooling, max pooling, fully connection propagation, ReLU
activation, softmax activation, etc [28]–[30], [46], [47]. We
also use ANN-to-SNN conversion to obtain the fundamental
network weights and replace rate-based neural activation with
the proposed evolutionary and adaptive evolutionary spiking
neuron models. Thus, the steps to construct the SFNN and
SCNN are as follows.

1) Implement FNN and CNN with ReLU activation func-
tion and set no bias in each layer;

2) Train the FNN and CNN using error backpropagation
algorithm;

3) Map trained ANN weights to corresponding SNNs with
the same structure with IF neurons for the proposed
evolutionary neuron models.

We use two network architectures to verify the proposed
evolutionary neuron model and their efficiencies. We first
constructed a 784-1200-1200-10 FNN, i.e., input dimension
= 784 (28 × 28 pixel input images) and output dimension =
10 (number of image classes). The FNN included two hidden
layers with 1200 neurons per layer. For the convolutional
neural network, we construct a 28x28-12c5-2s-64c5-2s-10o
CNN. It has 12 5 × 5 convolutional kernels after the input
layer. It generates feature maps that are then convoluted with
64 5×5 convolutional kernels, followed by two 2×2 average
pooling steps. The resulting 64 feature maps are flattened and
fully linked to the final ten output neurons.

C. Results with MNIST Dataset

1) Classification Accuracy and Convergence Time: Figs. 6
and 7 show classification accuracy for comparisons among
SFNN, Evol-SFNN, Adap-Evol-SFNN and SCNN, Evol-
SCNN, Adap-Evol-SCNN, with running time step = 1 ms.
Each subgraph in Figs.6 and 7 compares SFNN or SCNN
classification accuracy, respectively, with the same input fre-
quency.



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 8, JUNE 2020 7

Fig. 5: Poisson samplinig to generate spike streams of SNN input. For SFNN, it needs two steps, ¬: Vectorize the 28*28
image pixels into 784 input neurons, image pixel is normalized to range [0, 1]. : Generate spike streams with two states of
firing or no firing by using Poisson sampling, where the firing frequency of spike stream is proportional to the image intensity.
The “white dot” in spike streams denotes a spike event at current time step, while the “black dot” denotes no spike generated.
For SCNN, it needs the step as  of SFNN, the difference is that at each time step, the method generate a 2D stream with
two states of firing or no firing.
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Fig. 6: Classification accuracy for SFNN, Evol-SFNN, and Adap-Evol-SFNN over time for different input firing rates.
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Fig. 7: Classification accuracy for SCNN, Evol-SCNN, and Adap-Evol-SCNN over time for different input firing rates.

Classification accuracy error rates u 90% initially, but
reduce rapidly after a short time to collect output signals
from the output layer, and eventually stabilize at a relatively
small error. The stable classification error rate means the
SNN neurons have converged to a homeostatic state. Faster
convergence indicates less time to reach homeostasis state and
produce stable output, which is beneficial for low latency real-
time SNNs.

The proposed Evol SNN and Adap-Evol SNN improve the
network response speed while retaining high classification
accuracy for low (50 Hz) or high (1000 Hz) input rates,
hence shortening response time to the input. Adapt-Evol
significantly improves network responsivity compared with
Evol, particularly for low input rate. Indeed, Adap-Evol-SCNN
classification accuracy is larger than 10% even for the initial
time step, indicating that Adap-Evol-SCNN achieved zero-
latency response for at least some input signals (spike signals
obtained by Poisson sampling).

2) Neuron Firing Activity: Figs. 8 and 9 show neuron firing
activity statistics for the main SFNN and SCNN network
layers while classifying an image. We only counted neuron
firing activity from initial input signal reception to when
classification accuracy begins to converge. Therefore, the
statistics may differ for different networks, e.g. SFNN and
SCNN exhibit longest, Evol-SFNN and Evol-SCNN slightly
shorter, and Adap-Evol-SFNN and Adap-Evol-SCNN shortest
time.

Firing activity depends on the number of spike events
generated during a period. Input signal spike densities should
be approximately equal for the same input rate, but input
spike count differs. As seen from Fig. 8 and Fig. 9, the
proposed Adap-Evol-SFNN and Adapt-Evol-SCNN have the
least amount of spikes, and SFNN and SCNN the most.
However, spike events of SFNN inner layer neuron are not

significantly different even though the input rates differ widely
(200 and 500 Hz, respectively); it holds for all SFNN variants
considered. Spike event sums for Layer 2 and 3 and output are
also approximately equal between the two input rates, although
Evol-SFNN is somewhat less than the other two networks.

The Adap-Evol-SFNN inhibits the previously hidden layer
(Layer 2) but enhances the next hidden layer (Layer 3) firing
activity compared with SFNN and Evol-SFNN. It has the
advantage that more spike events directly stimulate output
layer neurons; hence the output neurons can respond to input
signals faster.

The SCNN, Evol-SCNN, and Adap-Evol-SCNN firing ac-
tivities are similar to the SFNN cases (Fig. 9), i.e., less
neuronal spike events for Evol-SCNN inner layers than for
SCNN. However, Adap-Evol-SCNN appears to move spike
events from the previous layer to the next layer, increasing
output neuron response speed.

D. Results with FashionMNIST Dataset

We quantitatively evaluated SNN, the proposed Evol-SNN,
and the proposed Adap-Evol-SNN performances on the Fash-
ionMNIST dataset, including simulation time required to reach
99% of minimum classification error, i.e., matching time (MT)
[32]. Final classification accuracy (FA) is also computed,
representing the stable precision when the SNN reached home-
ostasis. The smaller MT, the faster of relatively reliable output.
The larger FA, the more accurate the output results.

Tab.I compares FA and MT among SNN, the proposed
Evol-SNN, the proposed Adap-Evol-SNN at different input
firing rates. Adap-Evol-SFNN and Adap-Evol-SCNN have
the lowest MT at all input firing rates, suggesting that the
proposed Adap-Evol mechanism accelerates SNN response
speed. In contrast, the Evol-SNN or Adap-Evol-SNN have
the highest FA at most input firing rates. Thus, Evol and
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Input Rate = 200Hz Input Rate = 500Hz
Desc Input Layer 2 Layer 3 Output Input Layer 2 Layer 3 Output

SFNN

Spikes =
306

Spikes =
525

Spikes =
592

Spikes
= 8

Spikes =
349

Spikes =
522

Spikes =
583

Spikes
= 6

Evol-
SFNN

Spikes =
237

Spikes =
466

Spikes =
528

Spikes
= 10

Spikes =
279

Spikes =
431

Spikes =
485

Spikes
= 6

Adap-
Evol-
SFNN

Spikes =
159

Spikes =
371

Spikes =
702

Spikes
= 8

Spikes =
182

Spikes =
402

Spikes =
706

Spikes
= 4

Fig. 8: Firing activities for SFNN, Evol-SFNN, and Adap-Evol-SFNN, where Layer 2 and Layer 3 refer to the 1st and 2nd
hidden layers, respectively.

particularly Adap-Evol slightly improve classification accuracy
while simultaneously improving response speed.

E. Evolution of Variables dv(t) And C(t) over Time

Based on (4), dv(t) represents IF neuron firing activity, the
larger dv(t), the higher rate or frequency of the neuronal spike
events. We use SFNN, Evol-SFNN and Adap-Evol-SFNN to
infer a handwritten digit 2 of MNIST, respectively. Fig.10
compares neuronal dv(t) variations over time for fixed input
firing rate = 200Hz, where Layer 2 and Layer 3 refer to the
1st and 2nd hidden layer respectively, and Output denotes
output layer neurons. Almost all the hidden neurons have
dv(t) u 0, although Adap-Evol-SFNN significantly increases
dv(t) difference among hidden neuron. However, this increase
is somewhat less than that for Evol-SFNN. Differences be-
tween neuron dv(t) become larger over time for both Evol-
SFNN and Adap-Evol-SFNN, with positive and negative dv(t)
occurring.

On the other hand, output neuron 3 has larger dv(t) than
the other 9 neurons for all SFNN, the proposed Evol-SFNN,
and Adap-Evol-SFNN, since neuron 3 is the expected index
for digit 2. Output layer neuron of Adapt-Evol-SFNN has
much larger dv(t) than Evol-SFNN and SFNN (approximately
5000 vs. 100 and 1, respectively). It means that Adap-Evol-

SFNN output neurons can acquire more spike stimuli, i.e.,
more synaptic currents are input to this neuron. Therefore,
its output neuron can collect sufficient information to classify
the input signal significantly earlier than those of SFNN and
Evol-SFNN.

Fig. 11 shows C(t) variations of Evol-SFNN and Adap-
Evol-SFNN while inferring a handwritten digit 2. Layer 2
and 3 results confirm that the ranges of C(t) variations differ
between Evol-SFNN and Adap-Evol-SFNN. Although both
networks exhibit downward C(t) from 0 to 100 ms, Adap-
Evol-SFNN decreases faster than Evol-SFNN. Neuron index
3 has the smallest C(t) in all cases, which is consistent with
neuron index 3 has the largest dv(t) among all output neurons
(see Fig. 10).

VI. CONCLUSION

In contrast to the conventional second-generation rate-based
ANNs, SNNs use spike event streams to process information.
As a result, they require a shorter time to collect sufficient
spike information to produce reliable output even during the
inference stage. This paper proposed the new self-evolutionary
(Evol) and subsequent adaptive self-evolutionary (Adap-Evol)
SNN models. Both models dynamically regulate neuron mem-
brane conductivity based on neuronal spiking activity and
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Input Rate = 200Hz Input Rate = 500Hz
Desc Input 1st Conv 2nd Conv Output Input Layer 2 Layer 3 Output

SCNN

Spikes
= 244

Spikes =
2284

Spikes = 1126 Spikes
= 3

Spikes
= 253

Spikes =
2333

Spikes = 1047 Spikes
= 4

Evol-
SCNN

Spikes
= 179

Spikes =
1882

Spikes = 952 Spikes
= 3

Spikes
= 204

Spikes =
2007

Spikes = 967 Spikes
= 2

Adap-
Evol-
SCNN

Spikes
= 109

Spikes =
1810

Spikes = 1647 Spikes
= 11

Spikes
= 201

Spikes =
1931

Spikes = 1502 Spikes
= 6

Fig. 9: Firing activities for SCNN, Evol-SCNN, and Adap-Evol-SCNN, where 1st Conv and 2nd Conv refer to the first and
second convolutional layers, respectively.

TABLE I: Performance comparisons among SNN, Evol-SNN and Adap-Evol-SNN at different input firing rates on Fashion-
MNIST.

Model Metric 50Hz 100Hz 200Hz 500Hz 1000Hz

SFNN FA [%] 88.5 89.4 90.5 91.2 90.6
MT [ms] 385 252 167 76 42

Evol-SFNN FA [%] 88.4 89.6 90.6 91.3 90.5
MT [ms] 247 163 116 66 38

Adap-Evol-SFNN FA [%] 89.9 89.7 91.2 91.2 91.4
MT [ms] 172 125 78 45 28

SCNN FA [%] 90.2 89.9 91.2 90.5 91.2
MT [ms] 391 288 151 66 49

Evol-SCNN FA [%] 89.4 90.6 90.4 91.1 91.0
MT [ms] 233 142 109 53 34

Adap-Evol-SCNN FA [%] 90.1 90.3 91.0 91.3 91.6
MT [ms] 184 119 82 52 26

external current input. After the input signal is input to the
SNN, the proposed models can quickly activate neuronal
homeostasis by increasing neuron responses to the input signal.
We validate the effectiveness of the proposed approaches with
MNIST and FashionMNIST datasets.

Theoretical analysis and experimental results confirm signif-
icant improvement in terms of reducing output delay to reach
accuracy convergence even without the need for increased
spike firing rate with our two proposed models.
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Fig. 10: Evolution of dv(t) from (4) for fully connected SNNs.
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