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Abstract

New results of tests of the smallest HTS 2G power cable model.
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Abstract.  In Russian Scientific R&D Cable Institute we continue studies to develop as compact 
as possible 2G HTS power cables for electric power systems. Compact cables should have 
minimized diameter compared to other co-axial HTS cables developed before. Recently we 
developed the cable prototype with four HTS layers in the core and two layers in the shield. 
Numerical optimization of compact cables has been used together with manufacturing 
technology to produce small diameter cables with uniform current distribution. The first cold test 
of the compact cable demonstrated that we were able to control the homogeneous current 
distributions in a compact cable with the inner diameter of the core ~10 mm and the outer 
diameter of the shield ~20 mm. In this work we present more test results of this cable, including, 
mechanical test and high voltage tests. New test results demonstrated very high parameters of 
the compact cable developed. The compact cables perspectives for electric systems are 
discussed.   

1. Introduction 
Russian Scientific R&D Cable Institute continue to perform researches and developments aimed at the 
maximum possible reduction in the mass and dimensions of power High Temperature Superconducting 
(HTS) cables. Compact HTS cables can be used in electric aircraft, ship electric propulsion systems or 
any other applications demanded small size and mass. Earlier, we reported [1] about manufactured and 
tested the prototype of a compact cable made of 2G HTS tapes. It has three layers in the cable core and 
two layers in the shield. During development of this cable, we were faced with the problem of obtaining 
a uniform distribution of currents between layers, due to the high sensitivity of compact cables to small 
manufacturing deviations. Ensuring a uniform distribution of current between the cable core layers, as 
well as between the shield layers in a multi-layer cable, is a complicated task for small diameter cables. 
The problem arises when thickness of cable layers become even as small as ~1-5% of a cable diameter.  

In general, the main goal of our work is the justification of optimization methods, as well as the 
development of a production technology that provide a uniform distribution of current between the 
layers in a compact cable and low losses at alternating current.  

The new calculation methods and optimized design of a compact cable made of 2G HTS tapes has 
been reported in [2]. The cable consisted of four layers in a cable core and two layers in a shield. The 
current distribution between the layers and the cable shield was optimized using two numerical models. 
The first model uses an electric circuit of a cable with current sources. The second, detailed three-
dimensional (3D) model uses the finite element method (ANSYS Emag). The influence of production 
deviations was also analyzed and taken into account [2]. 

The cable has been tested at liquid nitrogen and proper current distribution among layers has been 
confirmed [2]. AC losses have been measured as well. The possibility of obtaining a uniform current 
distribution in a compact cable with an inner diameter of the conductive core of ~ 10 mm and an outer 
diameter of the shield of ~ 20 mm was demonstrated.  

In this paper we present the new experimental results of cold tests. In addition to results obtained 
before we performed mechanical and high voltage tests. During mechanical tests, the minimum bending 
diameters of the HTS cable were determined. The influence on the minimum bending diameter of the 
twist pitch of the tapes was obtained as well.  High voltage tests permitted to evaluate the dielectric 



 
 
 
 
 
 

strength of the insulation used. New test results demonstrated very high parameters of the compact cable 
developed. The compact cables perspectives for electric systems are discussed also.  
 

2. Optimization, cable design and previous test results 
In this chapter we present briefly the results previously published in [2]. We consider it necessary for 
better understanding of the compact cable behaviour. 

1.1. Optimization results and influence of deviations in production 
For the cable prototype, 2G HTS tapes manufactured by SuperOx [3] with a total thickness of ~ 
0.105 mm was used. In order to reduce the polygonality of the layers in the core we used the HTS tapes 
with the 3 mm width. Average critical current of these tapes in the self-field at 77.4K is ~80 A. For the 
shield we used the 2G HTS tapes with the 4 mm width. Their average critical current in self field at 
77.4K is ~ 120 A. 

Next, an analysis was conducted of the sensitivity of the current distribution in a compact multilayer 
cable to the deviations of the diameters of the layers and the twist pitch of the HTS tapes in the layers 
during manufacturing [2]. In figure 1 we show the cases if radius of a layer has been slightly changed 
from the optimized value by the thickness of one tape that is 0.105 mm. One can see that the 
manufacturing deviations in the diameters by the order of the thickness of the HTS tape has a large effect 
on the current distribution. Calculations show that even such a small deviation from the given values of 
the diameters of the layers can greatly disrupt the distribution of currents in the layers. Similar 
evaluations were done in [2] for deviations in twist pitches.  

We concluded in [2] that manufacturing deviations in diameters has much more influence on current 
distribution than deviations in twist pitches. We also have to note that deviations in diameters of a shield 
does not affect the distribution of current in a core. Form these evaluations we could conclude in which 
layer the mistake in a diameter or in a twist pitch has more influence on the final current distribution.  
 

 

Figure 1. Example of cost of manufacturing 
deviations - diameters. Relative currents in 
layers are shown. From [2]. 
1- exact optimized diameter of all layers; 2 -
7 - diameter of one of each layers is 
increased by the thickness of the tape (2- 
first layer, 3 – second layer, etc., 6 and 7 
inner and outer layers of the shield 
correspondingly); 8 - first and second layers 
diameters are increased by the thickness of 
the tape; 9 - third and fourth layers diameters 
are increased by the thickness of the tape; 10 
- all layers diameters of the core only are 
increased by the thickness of the tape. 

 

1.2. The cable design 
To obtain a uniform current distribution in a compact multilayer cable, the precise winding of layers 

should be provided. During cable manufacturing, after winding of each layer, its average diameter was 
measured, then the parameters of the following layers were recalculated to be optimized. This method 
allows us to obtain a uniform current distribution in the prototype cable. It is also important to have a 
sufficiently rigid former and tightly wound insulation that do not change their diameters when HTS 
tapes are applied over them. 
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The final optimized parameters of the core and the shield for our cable are listed in the Table 1. To 
provide the minimal AC loss in the cable we have to have the gaps between tapes in cables layers as 
small as possible [4]. To achieve this, two tapes were added to second and third layers of the core and 
one tape was added to outer layer of the shield.  
 

Table 1. Parameters of the model cable design [2]. 
Number of 

the 
layer 

D min, 
mm 

Twist Pitch, 
mm 

Tape width, 
mm 

Number of 
tapes 

Gap between 
tapes, 
mm 

1 10.32 - 56.2 3 9 0.15 
2 11.03 - 193.6 3 11 0.12 
3 12.03 94.3 3 11 0.21 
4 13.06 40.7 3 9 0.32 
5 18.25 349.4 4 13 0.36 
6 19.06 - 317.4 4 14 0.22 

.  
To adjust their diameters and to exclude direct current sharing between superconducting layers, all 

of them have been insulated by the Kapton™ tape with 20 mm width and 0.05 mm thickness as follows:   
1. After the first superconducting layer - two Kapton™ layers with 50 percent overlap, one layer 

without overlap. 
2. After the second superconducting layer, four Kapton™ layers with 50 percent overlap. 
3. After the third superconducting layer, four Kapton™ layers with 50 percent overlap, one layer 

without overlap. 
4. After the fourth superconducting layer, one Kapton™ layer with an overlap of 50 percent; 
For the insulation between the cable core and the shield we used 12 layers of impregnated fiberglass 

tape. Tape width - 15 mm, tape thickness 0.19 ± 0.02 mm. Each tape has been wound closely without 
overlapping, each subsequent layer with a 50 percent shift. The final insulation was made of two 
Kapton™ layers, one without overlap and the second with 50 percent overlap. The total thickness of 
insulation between the cable core and the shield was ~2.5 mm.  

The shield insulation was as follows:  
5. After the first superconducting layer, three Kapton™ layers with 50 percent overlap. 
6. After the second superconducting layer, one Kapton™ layer with 50 percent overlap. 

1.3. Current distribution and AC loss test results 
Test facility and instrumentation of the test bench in Russian Scientific R&D Cable Institute have been 
presented in our previous works [5, 6]. The standard test program for any model of HTS cable usually 
includes: 
• DC tests to determine critical currents in each layer; 
• AC tests to determine the distribution of current between layers under alternating current conditions at 
frequencies of 50-400 Hz; 
• Measurement of AC losses by electric method at frequencies of 50-400 Hz. 

1.3.1. DC Test results [2] 
The critical currents (Ic) were determined by the criterion of 1 μV/cm for each layer at the temperature 
77.4 K. In the cable core, the following Ic values were obtained: in the first (innermost) layer is Ic = 729 
A; in the second layer Ic= 891 A; in the third layer Ic = 895 A; in the fourth layer Ic  = 735 A. In total in 
the cable core critical current is 3250 A, which corresponds to the expected Ic ~ 3200A. The critical 
currents on the shield were: in the internal layer Ic =1560 A; in the outer layer Ic = 1660, in total 
Ic=3220 A, which is also very close to the expected ~ 3240 A. Thus, we can conclude that in our cable 
there is no degradation of the critical current in HTS tapes due to mechanical deformation during 
manufacturing (twisting of the tapes when they are applied on small diameter in the cable core). 



 
 
 
 
 
 

1.3.2. AC Current Distribution Between Layers and AC Loss Measurements [2] 
The results of measurements of AC current distribution versus amplitude of total current were presented 
in [2]. The results of new measurements of AC current distribution for different frequencies at total 
current 2kA are shown in figure 2. We made several measurements at different total currents, they all 
coincide very well. One can see, that as the result of optimization and manufacturing method used we 
were able to achieve practically uniform current distribution among cable layers. In the cable core 
uniformity is better than 10% and in the shield is better than 5%. Slight deviation from uniformity most 
probably could be attributed to current leads influence [2]. 

We performed AC loss measurements in the model compact cable to compare them with those 
measured in 2G HTS cable models tested before. AC loss measurements were done by the electrical 
method described in [6]. In figure 3 the AC losses per cycle and per meter are shown for the cable core 
and the cable shield for different frequencies being recalculated per one tape. For comparison, the 
measured AC losses are shown in the shield of compact 2G HTS cables we produced and tested earlier 
[1]. AC losses in the shield are practically the same as in our first compact cable described in [1], while 
in the core AC loss are slightly less in this cable due to less width of the tapes. In any cases AC losses 
in 2G HTS cables are sufficiently less than in 1G HTS cables, for example described in [5]. AC losses 
per cycle does not depend on frequency like we found in [1] for our first compact cable. 

 

 

 

 
Figure 2. Measured AC current distribution 
among layers of the cable core and the shield 
of the HTS cable at different frequency.  

 Figure 3. Comparison of AC losses per cycle 
and per tape versus relative current at different 
frequencies in layers of the compact cable model 
and in the shield of compact cables produced 
and tested in the Russian Cable Institute earlier 
(from [1]).  

3. Mechanical test 
To find out the effect of deformation on the critical current characteristics of the finished cable, we 
performed the tests whose main purpose is to determine the minimum allowable bending radius of the 
cable when laying, mounting, winding on technological and shipping drums. As a result of bending, the 
cable changes its current-carrying capacity. That is why, the value of the minimum bending diameter 
was introduced to describe the properties of HTS tapes in a cable. This is the diameter of bending at 
which the critical current drops not lower than 0.95 of the critical current in the initial state. 

Initially, the critical current and the index n of the V–I characteristics were measured for each layer 
of the straight cable section after cooling in liquid nitrogen. Then the following actions were performed: 
• warming to room temperature; 
• bending of the cable around the mandrel of the certain diameter; 
• straightening of the cable; 
• cable cooling in liquid nitrogen; 
• measurement of critical current Ic and the index n. 
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With each subsequent step, the radius of the mandrel gradually decreased, and the bending was 
carried out on a sample completely warmed up to room temperature, and always in the plane of the same 
meridional section of the cable. In this case, only the working section (measured length) was subjected 
to bending between the current leads, which were kept straight at all stages of the experiment (see 
figure 4). 
 

 
Figure 4. HTS cable during bending around 
the mandrel. 

 
After processing the results, we obtained the dependences on the cable bending radius for each of 

the layers of the relative critical currents (figure 5) and the power law index n (figure 6). 
 

  
Figure 5. Dependences of relative critical 
currents in the cable layers (compared with the 
straight sample) on the cable bending radius. 

Figure 6. Dependences of the power law index 
n of the V–I characteristic in the cable layers on 
the cable bending radius. 

 
    As a result, the influence of deformation on current characteristics of the HTS cable has been 

found. From the dependences presented one can see that the index n degradation is noticeable first 
without a visible decrease in the critical current. With further deformation, the index n continues to 
decrease and then the critical current degradation becomes noticeable. Thus, depending on the 
application of the cable, when determining the minimum bending diameter allowable, the index n 
degradation should be taken into account. The minimum bending radiuses are presented in Table 2 for 
each layer of our cable, the data are taken from figure 5 for current degradation. 
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Table 2. Minimum allowable bending radii for each layer of the compact HTS cable. 

Layer Layer diameter, mm Twist pitch, mm Minimum bending radii, mm 
Core, layer 1 10,3 56 200 
Core, layer 2 11 194 300 
Core, layer 3 12 94 300 
Core, layer 4 13,1 41 150 
Shield, layer 1 18,2 349 700 
Shield, layer 1 19 317 1100 

 
Despite the absence of an explicit dependence, there is a correlation between the values of the twist 

pitch of the HTS tapes in the layer and its diameter with the minimum bending radius of the given layer. 
The minimum bending radius is directly proportional to the twist pitch of the HTS tapes and inversely 
proportional to the diameter of the layer. One can note, that the core layer 4 has smaller bending radii 
than core layer 2, because of shorter twist pitch and in spite of its larger diameter.   
 

4. High voltage electrical test 
The cable model described has electrical insulation with thickness ~2.5 mm. We decided to perform 
high voltage (HV) test to determine the potential of the compact cable presented as a power cable in 
some electrical power system.  

At the ends of ~2200 mm long sample the HV terminations were prepared. For this, at the end of the 
sample, insulation was thickened, a metal rings have been installed on the thickening, and 
superconducting tapes were wound on it that formed HV termination. The electric field strength in the 
HV terminations becomes less than in the cable insulation, where the dielectric strength is studied (figure 
7 a).   
 

 
a 

 
b 

Figure 7. a – the HV termination prepared; b – the cable sample in liquid nitrogen bath for HV test 

 
Tests were performed in the liquid nitrogen at atmospheric pressure (figure 7 b). Voltage from a HV 

source was applied to the cable core. The cable shield has been grounded.  The voltage was smoothly 
raised by steps at multiples of 5 kV with an exposure at each step for 15 minutes. When the voltage has 
been risen above 20 kV after exposure for 15 min, the insulation has been broken. The HV test 



 
 
 
 
 
 

demonstrated that the cable successfully passed the tests up to 20 kV DC, that means allowable operation 
level at least 10 kV amplitude. 

5. Conclusions 
An optimized compact HTS power cable has been manufactured and extensively tested at Russian 
Scientific R&D Cable Institute. The cable consists of the cable core having 4 layers of 2G HTS tapes 
with 3 mm width and the shield having two layers of 2G HTS tapes with 4 mm width. The main goal of 
the work was to develop and to justify optimization methods and production technology to meet the 
requirements for a uniform distribution of current between the layers and to obtain low AC losses. Using 
the developed numerical models, optimization of the compact cable was carried out and the influence 
on the current distribution of manufacturing deviations was analyzed. It was found that to achieve 
acceptable results, it is necessary to measure the actual outer diameter of each layer after its manufacture, 
and then make adjustments of the optimization parameters of the remaining layers, such as the tape 
spacing in the layer.  It was demonstrated that with basic technologies and computing models developed, 
it is possible to control appropriately the applying the tapes into a layer to obtain a uniform current 
distribution in a compact cable with an inner core diameter of ~ 10 mm and an outer diameter of the 
shield of ~ 20 mm. Measurements of AC losses in a compact cable showed that they are close or less to 
those in previously tested 2G HTS cables. 

The influence of deformation on current characteristics has been studied. The main purpose was to 
determine the minimum allowable bending radius of the cable during laying, mounting, winding on 
technological and shipping drums. As the result of these studies, the influence of bending on the current 
characteristics of the HTS cable has been determined. 

High voltage tests performed in liquid nitrogen at atmospheric pressure demonstrated dielectric 
strength of the insulation used as much as 20 kV DC. This means allowable operation voltage ~10 kV.  
If to consider the three-phase AC power line consisted of three our cables it will have ~ 45 mm outer 
diameter and will be able to transfer at 3000 A about 50 MVA of electric power. This is very high level 
of power density transfer p ∼ 0.8·106 W/cm2 that is by the order of value close to the high power hybrid 
energy transfer systems [7].  

Our model cable is the most compact HTS power cable in the world with currents ~ 3 kA at liquid 
nitrogen temperature, produced and tested up to present time. This is the prototype for the compact and 
powerful energy transfer systems for electric aircrafts, ship electric propulsion systems or any other 
applications demanded small size and mass. 
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