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Abstract

The use of large-scale antenna arrays grants considerable benefits in energy and spectral efficiency to wireless systems due to
spatial resolution and array gain techniques. By assuming a dominant line-of-sight environment in a massive MIMO scenario,
we derive analytical expressions for the sum-capacity.

%

Then, we show that convenient simplifications on the sum-capacity expressions are possible when working at low and high SNR
regimes.

%

Furthermore, in the case of a high SNR regime, it is demonstrated that the Gamma PDF can approximate the PDF of the

instantaneous channel sum-capacity as the number of BS antennas grows. A second important demonstration presented in this

work is that a Gamma PDF can also be used to approximate the PDF of the summation of the channel’s singular values as the

number of devices increases. Finally, it is important to highlight that the presented framework is useful for a massive number

of Internet of Things devices as we show that the transmit power of each device can be made inversely proportional to the

number of BS antennas.

1



Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Capacity Bounds for Dense Massive
MIMO in a Line-of-Sight Propagation
Environment
FELIPE A. P. DE FIGUEIREDO12, CLAUDIO F. DIAS4, EDUARDO R. DE LIMA3, AND
GUSTAVO FRAIDENRAICH4
1Instituto Nacional de Telecomunicações – INATEL Santa Rita do Sapucaí, MG, Brazil.
2Ghent University–imec, IDLab, Department of Information Technology, Ghent, Belgium. (e-mail: felipe.pereira@ugent.be)
3Eldorado Research Institute, Campinas, Brazil. (eduardo.lima@eldorado.org.br)
4DECOM/FEEC–State University of Campinas (UNICAMP), Campinas Brazil. ([aplnx, gf]@decom.fee.unicamp.br)

Corresponding author: Felipe A. P. de Figueiredo (e-mail: felipe.pereira@ugent.be).

ABSTRACT The use of large-scale antenna arrays grants considerable benefits in energy and spectral
efficiency to wireless systems due to spatial resolution and array gain techniques. By assuming a dominant
line-of-sight environment in a massive MIMO scenario, we derive analytical expressions for the sum-
capacity. Then, we show that convenient simplifications on the sum-capacity expressions are possible when
working at low and high SNR regimes. Furthermore, in the case of a high SNR regime, it is demonstrated
that the Gamma PDF can approximate the PDF of the instantaneous channel sum-capacity as the number of
BS antennas grows. A second important demonstration presented in this work is that a Gamma PDF can also
be used to approximate the PDF of the summation of the channel’s singular values as the number of devices
increases. Finally, it is important to highlight that the presented framework is useful for a massive number
of Internet of Things devices as we show that the transmit power of each device can be made inversely
proportional to the number of BS antennas.

INDEX TERMS Massive MIMO, channel capacity, dense networks, outage probability.

I. INTRODUCTION

During the past years, we have been witnessing Massive
Multiple-Input Multiple-Output (MIMO) becoming an effi-
cient and indispensable sub-6 GHz physical-layer technology
for wireless and mobile networks. The embodiment of such
technology was vital for the current 5G New Radio (NR) in-
terface [1]. The central concept behind Massive MIMO is the
use of a large antenna array deployed at base stations (BS) to
simultaneously serve a large number of devices over the same
time-frequency resources. In this way, the technique allows
exploiting differences among the propagation signatures of
the devices in order to perform spatial multiplexing [1]. Even
though the Massive MIMO technology looks quite mature,
being adopted by new standards, it does not mean an end for
research in this subject but just the beginning of unforeseen
possibilities [2].

Current requirements for next-generation networks such as
high bit rates, very low latency, high energy efficiency, and
link robustness are not wholly met even by the current 5G
solutions [3]. Thus, there are still several open challenges that

need to be addressed by researchers.

One of the approaches used to increase throughput is by
increasing the network density, that is, decreasing the size
and increasing the number of cells in the same coverage
area. As a result, the size of the cells is becoming smaller
and smaller, and consequently, it is quite probable that
wireless channels will be predominantly line-of-sight (LOS)
[4]. Furthermore, the LOS characteristic becomes even more
apparent as technology moves to millimeter-wave bands in
order to fulfill the requirements for wider bandwidths (i.e.,
micro and femtocells) [5], [6].

Densification is a natural process for wireless communi-
cation networks as the demands for connectivity increases.
Thanks to smartphones, tablets, and the internet of things,
wireless subscribers are using more network resources with
no sign of a decrease in the demand rate. Operators need to
add more capacity to their networks to continue handling all
the traffic while providing the network speeds those users
expect. An arbitrary coverage region can be expected to
follow three different degrees of BS densification [2], [7]:
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low-density, dense and ultra-dense.
Starting from low-density, the smart farming and rural

broadband services provision (i.e., distant areas with low
population density) stewards a significant gap in the research
body of Massive MIMO nowadays [8], [9]. In the sense of
wireless services, it is essential to observe that most eco-
nomically viable areas for agriculture are the plain terrains
with few obstacles [10]. Thus, since the multipath-channel
statistics of rural and distant areas are different from those
found in urban centers, the wireless channel will likely to be
predominantly LOS in such areas [11], [12].

For regions where high value goods are constantly under
surveillance, a dense networks is required to communicate
with unmanned aerial vehicles (UAVs) or also known as
drones [13]. As with the other examples, these communica-
tions will probably be LOS-based as well. Additionally, in
wireless and cellular communications, the probability that
the devices have LoS to the BS is highly probable in many
scenarios [14].

Among the approaches and opportunities cited here, the
IoT for drones, sensors, automated processes, etc. [15] pose
several unsolved research challenges. For example, in the
near future, swarms of drones, sensors and actuators will
be omnipresent adding up to billions of devices [16]–[18].
In this ultra-dense scenario, these devices will be always
moving around the cell at different speeds and positions with
a dominant LOS link to the BS. The sum-capacity achieved
by a BS serving a massive number of drones, which have
a dominant LOS link to the BS and are constantly moving
around the cell is still an open issue.

Therefore, in this work, we assume a dominant LOS
environment in a massive MIMO scenario with favorable
propagation serving a massive number of devices constantly
moving within the cell. With this aspect in mind, the objective
of this investigation is to find capacity limits concerning the
number of devices, number of base station antennas, and
SNR. More specifically, the contributions of this work are
as follows.
• Derive an analytical expression for the channel sum-

capacity.
• Show that the transmit power of each device can be

made inversely proportional to the number of BS an-
tennas.

• Find analytical expressions for the upper and lower-
bound channel sum-capacities.

• Present expressions for the channel sum-capacity in low
and high SNR regimes.

• Demonstrate that the Gamma PDF can approximate the
PDF of the instantaneous channel sum-capacity in low
and high SNR regimes.

• Demonstrate that a Gamma PDF can also approximate
the PDF of the summation of the channel’s singular
values (also known as total power gain of the channel
matrix) as the number of devices increases.

The remaining of this paper is organised as follows:
Section II discuss some related works. Section III presents

R

Rmin

dk,l

FIGURE 1. Illustration of the adopted system model.

the system model adopted in this work while Section IV
discusses aspects of favorable propagation in the current
investigated conditions. Section V reviews the concept of
favorable propagation. Section VI presents the results with
parameters from reference systems. Finally, we close our
discussion in the Section VII summarising our conclusions.

II. RELATED WORK
In [14] the authors analyse the performance of the outage
capacity for the uplink of Massive MIMO systems consid-
ering a random LoS scenario. The authors of [19] prove that
the distribution of the interference term in the expression of
the uplink signal-to-interference-plus-noise ratio (SINR) can
be approximated as a Beta-mixture when LoS channels and
element spacing of half-wavelength are considered. In [20],
the authors assess the distribution of the interference and the
probability of outage for the downlink of massive MIMO
systems adopting MRC precoding in rich multi-path scenar-
ios. In [21], the authors demonstrate that in massive MIMO
systems the LoS channels are asymptotically orthogonal as
the number of antennas increases. They also demonstrate that
when a finite number of antennas is considered, the channels
will not be orthogonal. The impact of antenna element spac-
ing on the capacity of fixed point-to-point massive MIMO
systems considering LoS channels was evaluated in [22].

III. SYSTEM MODEL
Here we present the channel model adopted in [1]. We
assume a channel model with only free-space non-fading
(i.e., pure) LOS propagation between the BS and the devices
and that the BS is equipped with an uniform linear array
(ULA) with the M antenna elements spaced of λ/2, where
λ is the signal’s wavelength. There are K single-antenna
devices deployed randomly within the cell that simultane-
ously transmit data towards the BS through the same time-
frequency resources. Additionally, we also consider that all
the K devices being served by the BS are located in the far-
field of the antenna array at the angle θk as measured relative
to the array bore-sight [1]. Therefore,

G = HBD1/2, (1)
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where the elements of the matrix H are defined as hmk =
e−j(m−1) sin(θk), m is the antenna index, k is the device
index, θk models the devices’ locations and is uniformly
distributed in the interval [−π, π], the elements of the diag-
onal matrix B are defined as bk = ejφk , φk is a uniformly
distributed random variable defined in the range [−π, π]
that models the phase shift associated with a random range
between the array and the k-th device, and the elements of
the diagonal matrix D that defined as dk = βk are the large-
scale fading coefficients [1].

The free space path-loss coefficients, βkm, is modeled as
described in [23],

βkm =
η

d2k,m
, (2)

where η is a constant equal to
(
λ
4π

)2
[24], dk,m is the

distance between them-th BS antenna and the k-th terminal’s
antenna, and the path-loss exponent is equal to 2, which is
the value used for free-space propagation. As the distance
between the k-th device and the antenna array is dk,m �
λ, then dk,m ≈ dk, and consequently βkm ≈ βk, i.e.,
βkm does not depend on the antenna index as the distance
between the k-th device and the BS is much greater than
the distance between the antennas. We consider that dk is
an uniformly distributed random variable distributed in the
interval [Rmin, R], where Rmin is the minimum distance a
device can be from the BS and R is the cell radius. The
adopted system model is depicted in Figure 1.

IV. CHANNEL SUM-CAPACITY IN LOS AND FAVORABLE
PROPAGATION CONDITIONS
The distance between the device’s antennas and the BS’s
antennas is not static as the devices are always moving within
the cell (e.g., drones, cars, etc.). Therefore, the distance has
to be treated as a random variable, resulting in a different
channel realization for every time instant. As it is known
[1], the instantaneous sum-capacity is not a meaningful per-
formance metric under such random conditions. Here, we
are interested in the capacity performance averaged over
all different positions a device might be within the cell.
Therefore, in order to assess the performance in this scenario,
we need to employ the notion of ergodic capacity, which
results in the following uplink sum link capacity [25]

C = E
[
log2|IM + ρGGH |

]
= E

[
log2|IK + ρGHG|

]
.

(3)

where ρ is the average signal-to-interference ratio (SNR),
also known as average transmitted power of each device,
and the expectation is taken over the joint distribution of
all possible positions of the devices. As the additive white
noise is assumed to have mean and variance equal to 0 and 1
respectively, therefore, ρ has, consequently, the interpretation
of normalized transmit SNR and is therefore dimensionless
[26]. It is important to highlight that the expectation in (3) is
taken in relation with devices’ channels, more specifically in
relation with their positions within the cell (i.e., distances

and angles of arrival), which are considered as random
variables. The second line of (3) is found by applying the
Sylvester’s determinant theorem. Furthermore, we assume
that the base station has perfect knowledge of the channel
matrix G. The rationale behind the assumption of perfect
knowledge of the channel matrix is that the results obtained
with this assumption are readily comprehended and they
bound the performance of massive MIMO systems.

Finding the exact ergodic capacity given by (3) is a quite
complex task that involves finding the distribution of the
eigenvalues of GHG [27]. In this work, as we will show
next, we are concerned with finding the sum-capacity con-
sidering a Massive MIMO scenario and asymptotically favor-
able propagation [1]. In asymptotically favorable propagation
scenarios, the channel vectors of different users become mu-
tually orthogonal as the number of antennas, M , increases,
i.e.,

gHi gj
M

M → ∞→ 0, ∀ i 6= j. (4)

The environment is said to offer asymptotically favorable
propagation when (4) is satisfied. The mutual orthogonality
offered by environments exhibiting the asymptotic favorable
propagation condition is the most beneficial situation from
the perspective of sum-capacity maximization. Then, the
sum-capacity in (3) can be re-expressed as

C = E
[
log2 |IK + ρGHG|

]
≤ E

[
log2

(
K∏
k=1

[
IK + ρGHG

]
k,k

)]

= E

[
K∑
k=1

log2

([
IK + ρGHG

]
k,k

)]

= E

[
K∑
k=1

log2

(
1 + ρ‖gk‖2

)]
.

(5)

The inequality in the second line of (5) is found applying
the Hadamard inequality and assuming that ‖gk‖2,∀k is
known, where gk,∀k, are the columns of the channel matrix
G. As will be shown latter, this bound will be proven to be
very tight. The equality in the second line of (5) holds if and
only if GHG is a diagonal matrix (i.e., the channel matrix
G has mutually orthogonal columns) that must satisfy [28],

gHi gj =

{
0, i, j = 1, . . . ,K, for i 6= j

‖gk‖2 = Mβk, k = 1, . . . ,K, for i = j,
(6)

which is the case when the channel exhibits favorable prop-
agation [29]. The equality ‖gk‖2 = Mβk is detailed in
Appendix A.

Given the assumption of channels exhibiting asymptoti-
cally favorable propagation, we know from [1] that the spatial
signature vectors, denoted by ejφkhk, become asymptoti-
cally mutually orthogonal and consequently, it can be shown
that

BHHHHB

M

M → ∞
≈ IK , (7)
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and therefore,

GHG

M
= D1/2B

HHHHB

M
D1/2 M → ∞

≈ D, (8)

hence, the results presented in this work hold for any type
of antenna array, i.e.., ULA and uniform rectangular array
(URA), as in the asymptotic regime (8) will always tend to
the matrix containing the large-scale fading coefficients.

Now using ‖gk‖2 = Mβk and βk = η
d2k

in the last line of
(5), the sum-capacity upper bound can be re-written as

C =

K∑
k=1

E
[
log2

(
1 +

ρMη

d2k

)]
= KE

[
log2

(
1 +

ρMη

d2k

)]
,

(9)

where the last equality is due to the fact that dk is an i.i.d.
random variable for all k.

Next, considering z = 1
d2k

as a random variable denoted by
Z with probability density function (PDF) given by

fZ(z) =
1

2(R−Rmin)z
√
z
,

1

R2
≤ z ≤ 1

R2
min

, (10)

then, (9) can be re-expressed as

C = KE
[
log2

(
1 +

ρMη

d2k

)]
= KE [log2 (1 + ρMηz)]

=
K

2(R−Rmin)

∫ 1/R2
min

1/R2

log2(1 + ρMηz)
1

z
√
z
dz,

(11)

where the proof of (10) is given in Appendix B. Next, solving
(11) with an integral solver [30], we find an exact closed-form
expression given in (12) for the capacity when the channel
offers favorable propagation.

Remark 1. After analyzing (12), we see that if we make the
transmit power of each device equal to P/Mα, where α > 1,
then the sum-capacity, C, will go to zero as M → ∞. When
α < 1 the sum-capacity grows without bound as M → ∞.
This means that 1/M (i.e., α = 1) is the fastest rate at which
we can decrease the transmit power of each device and still
have a fixed capacity as M →∞.

Remark 1 clearly shows that as M grows without bound,
the transmit power of each device can be reduced proportion-
ally to 1/M and that the spectral efficiency increases by a
factor of K, meaning that the BS can simultaneously serve
K devices over the same time-frequency resources. This
reduction of the transmit power per device is very important
to power-constrained devices such as IoT devices.

A. APPROXIMATED DISTRIBUTION OF THE TOTAL
POWER GAIN
The sum-capacity given by the first line of (5) can be ex-
pressed in terms of the singular values {λk} of the channel

matrix G and, therefore, if λ1 ≥ λ2 ≥ · · ·λK are the random
ordered singular values of G, then (5) can be re-written as [1]

C = E

[
K∑
k=1

log2

(
1 + ρλ2k

)]
. (14)

By comparing (5) and (14), it is possible to conclude that

λ2k = ‖gk‖2 = Mβk. (15)

The singular values represent the channel gains of the par-
allel channels after Singular Value Decomposition (SVD) of
the system [25]. Next we present the squared Frobenius norm
of G when the environment offers favorable propagation, and
consequently, G is full rank

‖G‖2F =

M∑
m=1

K∑
k=1

|gmk|2 = Tr(GHG) =

K∑
k=1

λ2k. (16)

The last term of (16) can be interpreted as the total power
gain of the channel matrix if one spreads the energy equally
between all the antennas [25]. Therefore, comparing (15) and
(16), we clearly see that the singular values have the same
distribution as the free space path-loss coefficients, βk,∀k.
The summation of the K free space path-loss coefficients, is
a random variable that can be approximated by the Gamma
distribution as showed in Appendix D.

B. A LOWER-BOUND FOR THE CAPACITY
First we define the following Jensen’s Inequality [31]

E [log2(1 + z)] ≥ log2

(
1 +

1

E
[
1
z

]) , (17)

where z = 1
u for z > 0. Therefore, (9) can be re-written as

C = KE
[
log2

(
1 +

ρMη

d2k

)]
≥ K log2

(
1 +

ρMη

E [d2k]

)
.

(18)

Remembering that fd(r) = 1
R−Rmin

, Rmin ≤ r ≤ R, then

E
[
d2k
]

=
R3 −R3

min

3(R−Rmin)
. (19)

For proof of (19), see Appendix C. Therefore, (18) can be
re-expressed as

C ≥ K log2

(
1 +

3ρMη(R−Rmin)

R3 −R3
min

)
. (20)

C. AN UPPER-BOUND FOR THE CAPACITY
Again, we can use the Jensen’s Inequality as

E [log2(1 + z)] ≤ log2 (1 + E [z]) , (21)

for z > 0. Therefore, (9) can be re-written as

C = KE
[
log2

(
1 +

ρMη

d2k

)]
≤ K log2

(
1 + ρMηE

[
1

d2k

])
.

(22)
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C =
K

(R−Rmin)

2
√
ρMη

(
tan−1

(√
ρMη
R2
min

)
− tan−1

(√
ρMη
R2

))
+R log

(
ρMη
R2 + 1

)
−Rmin log

(
ρMη
R2
min

+ 1
)

log(2)
.

(12)

C ≈ K

(R−Rmin)

log(ρMη)(R−Rmin) + 2 [R−Rmin −R log(R) +Rmin log(Rmin)]

log(2)
. (13)

Remembering that fd(r) = 1
R−Rmin

, Rmin ≤ r ≤ R, then

E
[

1

d2k

]
=

1

RRmin
. (23)

For proof of (23), see Appendix C. Therefore, (22) can be
re-expressed as

C ≤ K log2

(
1 +

ρMη

RRmin

)
. (24)

D. LOW SNR REGIME
For the low SNR regime, we have the following approxima-
tion: log2(1 + x) ≈ x log2(e), when x � 1, then (9) can be
expressed as

C ≈ KE
[
ρMη

d2k
log2 (e)

]
= KρMη log2 (e)E

[
1

d2k

]
=
KρMη log2 (e)

RRmin
.

(25)

In (25), we see that the sum-capacity linearly increases
with the average SNR, ρ, and/or with the number of antennas,
M .

E. HIGH SNR REGIME
For the high SNR regime, we have the following approxima-
tion: log2(1 + x) ≈ log2(x), when x � 1, then (9) can be
expressed as

C ≈ KE
[
log2

(
ρMη

d2k

)]
=

K

2(R−Rmin)

∫ 1/R2
min

1/R2

log2(ρMηz)
1

z
√
z
dz,

(26)

where z = 1
d2k

. Solving (26) with an integral solver [30], we
find an exact closed-form expression for the capacity when
the channel offers favorable propagation in the high SNR
regime. The exact closed-form expression for the approxi-
mated sum-capacity in (26) is given by (13).

In (13), differently from (25), we see that the sum-capacity
logarithmically increases with the average SNR, ρ, and/or
with the number of antennas, M . Therefore, in the high
SNR regime, an increase in the transmit power and/or in the
number of antennas, M , is much less impressive than in the
low SNR regime case.

F. INSTANTANEOUS SUM-CAPACITY PDF IN LOW SNR
REGIME AND FAVORABLE PROPAGATION CONDITION
The instantaneous sum-capacity in low SNR regime and
favorable propagation condition is given by

Cinst. =

K∑
k=1

log2

(
1 +

ρMη

d2k

)
ρMη

d2
k

� 1

≈ ρMη log2 (e)

K∑
k=1

1

d2k
,

(27)

which is a random variable that depends on the distance of
the k-th device to the BS, denoted by dk.

Lemma 1. By empirically comparing the normalised his-
togram of the random variable given by (27) against the
theoretical PDF of a Gamma random variable we notice that
asK increases thatCinst. can be approximated by the Gamma
PDF with parameters κ and θ given by

κ =
3KRRmin

(R−Rmin)2
, (28)

θ =
ρMη log2 (e) (R−Rmin)2

3R2R2
min

. (29)

This comparison is shown in section VI. The parameters
κ and θ are found following the same rationale used in
Appendix D.

G. INSTANTANEOUS SUM-CAPACITY PDF IN HIGH SNR
REGIME AND FAVORABLE PROPAGATION CONDITION
The instantaneous sum-capacity in high SNR regime and
favorable propagation condition is given by

Cinst. =

K∑
k=1

log2

(
1 +

ρMη

d2k

)
ρMη

d2
k

� 1

≈
K∑
k=1

log2

(
ρMη

d2k

)
,

(30)

which is a random variable that depends on the distance of
the k-th device to the BS, denoted by dk.

Lemma 2. By empirically comparing the normalised his-
togram of the random variable given by (30) against the
theoretical PDF of a Gamma random variable we notice
that as M increases that Cinst. can be approximated by the
Gamma PDF with parameters κ and θ given by (33) and
(34), respectively, where a = log(ρMη), b = log

(
ρMη
R2

min

)
,
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c = log
(
ρMη
R2

)
, d = log

(
1
R2

min

)
, and e = log

(
1
R2

)
. This

comparison is shown in section VI. The parameters κ and θ
are found as described in Appendix E.

H. OUTAGE PROBABILITY
Therefore, based on the knowledge of the approximated
PDFs, it is possible to use the Gamma’s CDF as a way to
analyse the outage probability, Cout, in low and high SNR
regimes. Results comparing the PDF and CDF of the actual
random variable and those of a Gamma random variable are
presented and discussed in section VI. Outage probability is
the probability that a certain sum-capacity cannot be reached
and is defined as

Pout = Pr{Cinst. < Cout} (31)
M → ∞
≈ 1

Γ(κ)
γ

(
κ,
Cout

θ

)
, (32)

where Γ(.) is the gamma function, γ(., .) is the incomplete
gamma function, and κ and θ are given by (33) and (34),
respectively.

V. AVERAGE DISTANCE FROM FAVORABLE
PROPAGATION
The favorable propagation is a important metric which is
defined as mutual orthogonality among the vector-valued
channels to the terminals [21]. The measure is one of the key
properties of the radio channel that is exploited in Massive
MIMO. From [21], we can further characterize favorable
propagation as

∆C =
KE [log2(1 + ρMβk)]− E

[
log2|IK + ρGHG|

]
E [log2|IK + ρGHG|]

.

(35)
As can be seen from (35), when ∆C = 0, the channel

offers favorable propagation. The measure defined in (35)
is an extension of the one presented in [1] for the ergodic
capacity case assumed in this work.

VI. SIMULATION RESULTS AND DISCUSSION
In this section we present the results of several simulations
that were designed to assess the findings we have reported
in this work. All results presented here have the following
simulation setup parameters R = 100 [m], Rmin = 10 [m],
and λ = 0.375 [m], which is equivalent to a carrier frequency
of 800 MHz.

Figure 2 has the following simulation setup parameters
K = 10 and ρ = 50 [dB]. As can be seen, the simulated
capacity is within the lower and upper bound ranges as
expected. It is also possible to see that the simulated and
analytical capacities in favorable propagation match each
other, showing that the derived analytical closed-form is tight
for the favorable propagation case. Moreover, the simulated
capacity asymptotically approaches the capacity in favorable
propagation as the number of antennas, M , grows, proving
that favorable propagation is asymptotically achieved as M
grows. It is also important to highlight that the analytical

capacity in favorable propagation, given by (12), provides
a good approximation for the capacity. For example, for
M = 100 the simulated capacity is equal to 23.59 bits/s/Hz
and the analytical capacity in favorable propagation is equal
to 24.44 bits/s/Hz.

Figure 2 also presents on the right x-axis the average
distance from favorable propagation as defined in (35). As
can be noticed, the average distance asymptotically decreases
as the number of antennas grows, starting at 0.14 forM = 10
and decreasing to 0.0049 for M = 1000. This result is an-
other indication that favorable propagation is asymptotically
achieved as M grows.

Figure 3 compares the sum-capacity over the variation
of the average SNR, ρ, for the same simulation parameters
used for the results in Figure 2 and M constant and equal to
300 antennas. As expected, the sum-capacity, simulated and
analytical, stay within the lower and upper capacity bounds.
For low SNR values the sum-capacity is closer to the upper
bound and as the SNR increases, we see that both lower and
upper bounds converge to the sum-capacity.

In Figure 4 we present the results of the sum-capacity
for low and high SNR regimes in favorable propagation
condition versus the average signal-to-interference ratio, ρ,
with M constant and equal to 300 antennas. As can be seen,
(25) and (13) represent the sum-capacity fairly well for the
low and high SNR regimes, respectively. In the upper part of
the figure, we show the sum-capacity for the low SNR regime
and it is possible to see that the approximated expression
given by (25) closely follows the sum-capacity until around
30 [dB]. In the lower part of the figure, we show the sum-
capacity for the high SNR regime and we also see that
the approximated expression given by (13) closely follows
the sum-capacity for SNR values greater than 40 [dB]. The
figure also shows that the sum-capacity grows linearly and
logarithmically with the average SNR for the low and high
SNR regimes, respectively, confirming what was discussed
in subsections IV-D and IV-E

Figure 5 shows how the spectral efficiency behaves as
ρ = P/Mα, where α = 1/2, 1 and 3/2, respectively. The
following simulation setup parameters were used: K = 10
and P = 50 [dB]. As expected and stated in Remark 1, when
α = 1 and M increases, the capacity becomes constant no
matter the number of antennas. However, when α = 1/2 the
capacity grows logarithmically fast with M when M → ∞
and tends to zero when α = 3/2 and M →∞. These results
attest that the transmit power of each device can be reduced
proportionally to M .

In Figure 6 we show the required transmit power per device
that is needed to achieve fixed capacities of 1 and 2 bits/s/Hz
respectively. As expected and predicted by Remark 1, the
transmit power can be reduced by approximately 3 [dB] by
doubling the number of antennas, M , for both cases, i.e., 1
and 2 bits/s/Hz.

Figure 7 shows the comparison between the normalized
histogram of the random variable Z, where Z is defined in
Lemma 3, and the Gamma PDF for number of devices equal
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κ =

K
(R−Rmin)

(
b+2
R −

c+2
Rmin

)2
1

RRmin

(
2e(a+2)+e2+a(a+4)+8

Rmin
− 2d(a+2)+d2+a(a+4)+8

R

)
− 1

(R−Rmin)

(
b+2
R −

c+2
Rmin

)2 . (33)

θ =

RRmin
(R−Rmin)

(
b+2
R −

c+2
Rmin

)2
− 2e(a+2)+e2+a(a+4)+8

Rmin
+ 2d(a+2)+d2+a(a+4)+8

R

log(2)
(
b+2
R −

c+2
Rmin

) . (34)
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FIGURE 2. Simulation considering K = 10, ρ = 50 [dB], R = 100 [m],
Rmin = 10 [m], and λ = 0.375 [m].

to K = 10, 20, and 50 respectively. These results were
also obtained with the following simulation setup parameters
M = 100 and ρ = 50 [dB]. The histogram, showed in blue,
is the histogram of the random variable Z =

∑K
k=1Mβk. As

can be seen, the histogram approaches the Gamma PDF as
the number of devices increases.

Figure 8 comparison of the instantaneous sum-capacity in
high SNR regime and favorable propagation condition and its
approximation with the Gamma PDF. This comparison was
obtained with the following parameters K = 10 and ρ = 60
[dB]. As can be seen, for high SNR, the Gamma PDF fits the
PDF of the instantaneous sum-capacity random variable as
the number of antennas grows.

Figure 9 presents the comparison between the approxi-
mated and simulated outage probabilities in the high SNR
regime and favorable propagation condition. The simulation
parameters are the same used for generating the results in
Figure 8. As can be also seen, for high SNR, the Gamma CDF
fits the simulated outage probability of the instantaneous
sum-capacity random variable as the number of antennas
grows.

Figure 10 comparison of the instantaneous sum-capacity in
low SNR regime and favorable propagation condition and its
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FIGURE 3. Simulated and analytical sum-capacity considering M = 300.
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FIGURE 4. Sum-capacity for low and high SNR regimes versus average
signal-to-interference ratio, ρ.
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FIGURE 5. Demonstration of the power scaling law for different α values.
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FIGURE 6. Required transmit power to achieve 1 and 2 bits/s/Hz as a function
of the number of antennas.

approximation with the Gamma PDF. This comparison was
obtained with the following parameters M = 100 and ρ =
0 [dB]. As can be seen, for low SNR, the Gamma PDF fits
the PDF of the instantaneous sum-capacity random variable
as the number of devices simultaneously served through the
same time-frequency resources grows.

Figure 11 presents the comparison between the approxi-
mated and simulated outage probabilities in the low SNR
regime and favorable propagation condition. This compari-
son was obtained with the following parameters M = 300
and ρ = 0 [dB]. As can be also seen, for low SNR, the
Gamma CDF fits the simulated outage probability of the
instantaneous sum-capacity random variable as the number
of served devices grows.
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FIGURE 7. Gamma PDF for number of devices equal to K = 10, 20, and 50
respectively.
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FIGURE 8. Comparison of the approximated PDF for the instantaneous
sum-capacity in high SNR regime and favorable propagation condition.

VII. CONCLUSIONS
In this work, we investigated ways to find capacity limits
concerning the number of users, number of BS antennas,
and SNR. By assuming a dominant LOS environment in a
massive MIMO scenario, it was possible to derive analytical
expressions for the channel capacity. Convenient simplifi-
cations on expressions were possible working at low and
high SNR regimes. Furthermore, it is demonstrated that the
Gamma PDF can approximate the PDF of the instantaneous
channel sum-capacity as the number of antennas grows for
both cases of low and high SNR regimes. A second important
demonstration is that a Gamma PDF can also approximate
the PDF of the summation of the channel’s singular values as
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FIGURE 9. Comparison between the approximated and simulated outage
probabilities in high SNR regime and favorable propagation condition.
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FIGURE 10. Comparison of the approximated PDF for the instantaneous
sum-capacity in low SNR regime and favorable propagation condition.

the number of devices increases. Finally, the utility of such a
framework is useful for a massive number of IoT devices as
we show that the transmit power of each device can be made
inversely proportional to the number of BS antennas.

.

APPENDIX A DERIVATION OF ‖gK‖2 =MβK

From (1), we can write each element gk,m of gk as

gk,m =
√
βke

jφke−j(m−1) sin(θk). (36)
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FIGURE 11. Comparison between the approximated and simulated outage
probabilities in low SNR regime and favorable propagation condition.

Therefore, using the very definition of the product of two
matrices [32], we have

‖gk‖2 =

M∑
m=1

∣∣∣√βkejφke−j(m−1) sin(θk)∣∣∣2
=

M∑
m=1

∣∣∣√βk∣∣∣2 ∣∣ejφk ∣∣2 ∣∣∣e−j(m−1) sin(θk)∣∣∣2 ,
(37)

where
∣∣ejφk ∣∣2 =

∣∣e−j(m−1) sin(θk)∣∣2 = 1 and
∣∣√βk∣∣2 = βk,

therefore

‖gk‖2 =

M∑
m=1

βk = Mβk. (38)

APPENDIX B DERIVATION OF THE PDF OF THE
DISTANCE RANDOM VARIABLE
Given that the PDF of Y is defined as

fY (y) =
1

R−Rmin
, Rmin ≤ y ≤ R, (39)

and the strictly monotonic differentiable function Z =
g(Y ) = 1/Y 2, then the PDF of Z is given by

fZ(z) =
fY (g−1(Z))

|g′(Y )|
, (40)

where g′(Y ) = −2/Y 3 and g−1(Z) = 1/
√
Z. Therefore,

fZ(z) =
fY (g−1(Z))

|g′(Y )|
=

1
R−Rmin
|−2y3 |

=
1

2(R−Rmin)z
√
z
,

(41)

where in the last equality we used the fact that y = 1/
√
z.
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APPENDIX C USEFUL RESULTS
A. CALCULATION OF E

[
d2k
]

E
[
d2k
]

=

∫ R

Rmin

r2fd(r)dr =

∫ R

Rmin

r2

R−Rmin
dr =

R3 −R3
min

3(R−Rmin)
.

(42)

B. CALCULATION OF E
[

1
d2
k

]
E
[

1

d2k

]
=

∫ R

Rmin

1

r2
fd(r)dr =

∫ R

Rmin

1

r2(R−Rmin)
dr =

1

RRmin
.

(43)

C. CALCULATION OF E
[

1
d4
k

]
E
[

1

d4k

]
=

∫ R

Rmin

1

r4
fd(r)dr =

∫ R

Rmin

1

r4(R−Rmin)
dr =

R2 +RRmin +R2
min

3R3R3
min

.

(44)

D. CALCULATION OF E
[
log2

(
c
d2
k

)]
E
[
log2

(
c

d2k

)]
=

∫ R

Rmin

log2

( c
r2

) 1

R−Rmin
dr

=
log(c) + 2(R−Rmin−R log(R)+Rmin log(Rmin))

R−Rmin
log(2)

(45)

APPENDIX D APPROXIMATED DISTRIBUTION OF THE
TOTAL POWER GAIN OF THE CHANNEL MATRIX
Lemma 3. Let βk = η/d2k, where dk,∀k are i.i.d. random
variables following the uniform distribution with PDF given
by 1/(R−Rmin), therefore, as the number of served devices
increases, the PDF of Z =

∑K
k=1Mβk can be approximated

by the Gamma distribution with parameters κ = 3KRRmin
(R−Rmin)2

and θ = Mη(R−Rmin)2
3R2R2

min
, i.e., Γ(κ, θ).

Proof. This is empirically proved by comparing the nor-
malised histogram of Z against the theoretical PDF of a
Gamma random variable with the parameters defined earlier.

The parameters κ and θ are found by using the mean and
variance statistics of Z, where κ =

µ2
Z

σ2
Z

and θ =
σ2
Z

µZ
. These

relations are derived based on the definitions of mean and
variance of a Gamma random variable. The mean of Z is
given by

µZ = Mη

K∑
k=1

E
[

1

d2k

]
= MKηE

[
1

d2k

]
=

MKη

RRmin
,

(46)

where we used the assumption that dk,∀k are i.i.d. random
variables and the results in Appendix C. Next, the variance of
Z is given by

σ2
Z = E[Z2]− µ2

Z , (47)

where

E[Z2] = M2K{E[β2] + (K − 1)E[βk]2}

= M2η2K

{
E
[

1

d4k

]
+ (K − 1)E

[
1

d2k

]2}
= M2η2K

[
R2 +RRmin +R2

min

3R3R3
min

− (K − 1)

R2R2
min

]
,

(48)

where E
[

1
d4k

]
is calculated in Appendix C. Therefore, plug-

ging (48) into (47) we have

σ2
Z =

Kη2M2(R−Rmin)2

3R3R3
min

. (49)

The proof is concluded by replacing (46) and (49) into the
definitions of κ and θ.

APPENDIX E APPROXIMATED DISTRIBUTION OF THE
INSTANTANEOUS SUM-CAPACITY IN HIGH SNR REGIME
AND FAVORABLE PROPAGATION
In this appendix we demonstrate how the parameters κ and θ
are derived. These parameters, which are used to approximate
the instantaneous sum-capacity PDF in high SNR regime
and favorable propagation, are found by using the mean
and variance statistics of the random variable given by (30),

where κ =
µ2
Cinst.
σ2
Cinst.

and θ =
σ2
Cinst.
µCinst.

. These relations are derived
based on the definitions of mean and variance of a Gamma
random variable. The mean of (30) is given by

µCinst. = E[Cinst.]

= E

[
K∑
k=1

log2

(
ρMη

d2k

)]

=

K∑
k=1

E
[
log2

(
ρMη

d2k

)]
= KE

[
log2

(
ρMη

d2k

)]
= K

log(ρMη) + 2(R−Rmin−R log(R)+Rmin log(Rmin))
R−Rmin

log(2)
,

(50)

where we used the assumption that dk,∀k are i.i.d. random
variables and the result in Appendix C-D. Next, the variance
of (30) is given by

σ2
Cinst.

= E[C2
inst.]− E[Cinst.]

2, (51)

where E[C2
inst.] is given by (52) with E

[
log2

2

(
ρMη
d2k

)]
being

defined by (53) with a = log(ρMη), b = R − Rmin, c =
log(R), d = log(Rmin). Therefore, plugging (50) and (52)
into (51) we have (54). The proof is concluded by replacing
(50) and (54) into the definitions of κ and θ.
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E[C2
inst.] = K

{
E
[
log2

2

(
ρMη

d2k

)]
+ (K − 1)E

[
log2

(
ρMη

d2k

)]2}

= K

{
E
[
log2

2

(
ρMη

d2k

)]
− E

[
log2

(
ρMη

d2k

)]2}

=

K

(
a2b+4a(R−cR−Rmin+dRmin)+8b+4cR(c−2)−4d(d−2)Rmin

b −K2
(
a+ 2(R−cR−Rmin+dRmin)

b

)2)
log2(2)

.

(52)

E
[
log2

2

(
ρMη

d2k

)]
=

∫ R

Rmin

log2
2

(
ρMη

d2k

)
1

R−Rmin
dr

=
a2b+ 4a(R− cR−Rmin + dRmin) + 8b+ 4cR(c− 2)− 4d(d− 2)Rmin

b log2(2)
.

(53)

σ2
Cinst.

=

K

(
b log2(c)+4a(R−cR−Rmin+dRmin)+8b+4c(c−2)R−4d(d−2)Rmin

b −K(K + 1)
(
a+ 2(R−cR−Rmin+dRmin)

b

)2)
log2(2)

(54)
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