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Abstract

Designing and implementing algorithms for medium and large scale quantum computers is not easy. In previous work we have

suggested, and developed, the idea of using machine learning techniques to train a quantum system such that the desired

process is “learned,” thus obviating the algorithm design difficulty. This works quite well for small systems. But the goal is

macroscopic physical computation. Here, we implement our learned pairwise entanglement witness on Microsoft’s Q\#, one of

the commercially available gate model quantum computer simulators; we perform statistical analysis to determine reliability

and reproducibility; and we show that after training the system in stages for an incrementing number of qubits (2, 3, 4, \ldots)

we can infer the pattern for mesoscopic $N$ from simulation results for three-, four-, five-, six-, and seven-qubit systems.

Our results suggest a fruitful pathway for general quantum computer algorithm design and for practical computation on noisy

intermediate scale quantum devices.
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Abstract Designing and implementing algorithms for medium and large scale
quantum computers is not easy. In previous work we have suggested, and de-
veloped, the idea of using machine learning techniques to train a quantum
system such that the desired process is “learned,” thus obviating the algo-
rithm design difficulty. This works quite well for small systems. But the goal is
macroscopic physical computation. Here, we implement our learned pairwise
entanglement witness on Microsoft’s Q#, one of the commercially available
gate model quantum computer simulators; we perform statistical analysis to
determine reliability and reproducibility; and we show that after training the
system in stages for an incrementing number of qubits (2, 3, 4, . . . ) we can
infer the pattern for mesoscopic N from simulation results for three-, four-,
five-, six-, and seven-qubit systems. Our results suggest a fruitful pathway for
general quantum computer algorithm design and for practical computation on
noisy intermediate scale quantum devices.
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1 Introduction

For several decades now the prospect of macroscopic quantum computers, able
to solve large classes of difficult problems, has been “ten years away.” We do
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have thousand-qubit size “quantum annealing” machines [1], to solve optimiza-
tion problems through adiabatic evolution to the ground state of a designed
Hamiltonian, but programmable quantum computers remain small and their
applicability limited. One major obstacle is the construction of algorithms that
take advantage of the fundamental quantum nature of reality. There are still
only a very few. Most fall into one of three categories: those using a quantum
Fourier transform, like Shor’s algorithm [2]; those using amplitude amplifica-
tion, like Grover’s algorithm [3]; and those using quantum walks [4]. Speedup
varies: Shor’s, and some quantum walk algorithms, provide an exponential ad-
vantage over the best known classical algorithm in each case, but the speedup
with Grover is only quadratic. We do not yet know whether there exists any
quantum advantage for broad classes of problems [5,6], much less, what it
will be in each case. Nor do we have a general process to factor an arbitrary
N -qubit unitary efficiently to generate the quantum machine language neces-
sary, in the case of the gate model; or to design a Hamiltonian whose ground
state will be the answer to an optimization problem, in the case of quantum
annealing.

For some time now our research group has been investigating the advan-
tages of a marriage of machine learning and quantum computing to answer
this need [7,8,9]. The basic idea is that a quantum system can itself act as
a neural network: The state of the system at the initial time is the “input”;
a measurement on the system at the final time is the “output”. If we know
enough about the computation desired to be able to construct a comprehensive
set of input-output pairs from which the net can generalize, then, we can use
techniques of machine learning to bypass the algorithm-construction problem.
Moreover, this approach is scalable [10] as we are able to train iteratively in
larger and larger stages and use knowledge of a smaller system to make sys-
tematic inferences about a larger one. In addition, our method promises to be
generally robust to both noise and to decoherence [11,12]. Machine learning
may also be helpful in the factorization problem [13], and in the Hamiltonian
design problem [14].

Entanglement estimation is a good example of an intrinsically quantum
calculation for which we have no general algorithm. Indeed, it has been shown
that the quantum separability problem (determination of entanglement) is
NP-hard [15]. In previous work we succeeded in mapping a function of a mea-
surement at the final time to a witness of the entanglement of a two-qubit
system in its initial state [9]. The “output” (result of the measurement of the
witness at the final time) will change depending on the time evolution of the
system, which is of course controlled by the Hamiltonian: by the tunneling
amplitudes {K}, the qubit biases {ε}, and the qubit-qubit coupling ζ. Thus
we can consider these functions {KA, KB , εA, εB , ζ} to be the “weights” to
be trained. We then use a quantum version [9] of backpropagation [16] to find
optimal functions such that our desired mapping is achieved. Full details are
provided in [8,9]. From a training set of only four pure states, our quantum
neural network successfully generalized the witness to large classes of states,
mixed as well as pure [10]. Qualitatively, what we are doing is using machine
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learning techniques to find a “best” hyperplane to divide separable states from
entangled ones, in the Hilbert space.

Now, this method finds a time dependent Hamiltonian that solves the given
problem, a procedure more reminiscent of a quantum annealing approach [1]
than the gate approach. But of course the unitary operator of time develop-
ment can be represented as a product of simple gates; indeed, it is a theorem
[17] that any quantum computation can be performed as a succession of simple
operators belonging to any universal set. Thus, a universal quantum computer
need only be able to execute each of the members of that set [18]. There is
now a large number of quantum simulators available online [19], including Mi-
crosoft Quantum Development Kit [20] and IBM’s Quantum Experience [21],
which implement a universal set of quantum operators (gates) plus many more
that are useful in encoding quantum computations, such as the Pauli spin ma-
trices, the Hadamard gate, the CNOT gate, and others. The difficulty arises in
determining exactly how to represent a particular calculation: first, in terms
of finding the unitary for that problem; and second, in terms of these gates so
that algorithms may be eventually implemented on real quantum hardware.

Once we do have a unitary, there are several approaches [22,23] available
for decomposing an arbitrary 2N×2N unitary matrix, representing a quantum
computation on an N -qubit system, into “simple” gates: single qubit and the
two-qubit CNOT operations implemented in the languages associated with
one of the online systems. However, none of these techniques is straightfor-
ward, and often the result is a large sequence of gates to represent the desired
unitary. This inherent difficulty is another reason machine learning techniques
are enticing [24]: If we can determine methods where the machines themselves
develop and refine the algorithms they are using, we circumvent part of this
intrinsic challenge of quantum computing. In this paper, because we want
to demonstrate the advantages of our stage training paradigm, we will solve
the two-qubit problem by hand, then use these results to generalize to larger
systems.

2 Two-qubit Quantum Neural Network

We begin with a simple two-qubit system.

2.1 Reverse Engineering of Entanglement Witness

The system evolves in time according to the Hamiltonian

H = KAXA +KBXB + εAZA + εBZB + ζZAZB (1)

where X and Z are the Pauli operators corresponding to qubits A and B, KA

and KB are the tunneling amplitudes, εA and εB are the biases, and ζ is the
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qubit-qubit coupling. The state of the system as a function of time can then
be written, for a pure state, as

|ψ(t)〉 = exp

(
−ı̇Ht
h̄

)
|ψ(0)〉 . (2)

It is convenient to consider the Hamiltonian H as a sum of single qubit and
two-qubit operations

H = KAXA + εAZA︸ ︷︷ ︸
HA

+KBXB + εBZB︸ ︷︷ ︸
HB

+ ζZAZB︸ ︷︷ ︸
HAB

. (3)

We now consider the evolution to be broken into several “time chunks” where
the parameters {KA, KB , εA, εB , ζ} are held constant on each interval. For
most of the paper, we will use four time chunks or intervals. We can approxi-
mate the operator as the product of several operators as follows:

exp

(
−ı̇Ht
h̄

)
=

3∏
k=0

exp

(
−ı̇Hkt

4h̄

)
, (4)

where on each time chunk k the operator is approximated using the first-order
Trotter-Suzuki formula [25]

exp

(
−ı̇Hkt

4h̄

)
= exp

(
−ı̇(HA +HB +HAB)kt

4h̄

)
(5)

≈ exp

(
−ı̇HA,kt

4h̄

)
exp

(
−ı̇HB,kt

4h̄

)
exp

(
−ı̇HAB,kt

4h̄

)
. (6)

This last equation is only approximate, because while HA and HB commute,
neither commutes with HAB . The Trotter-Suzuki formula introduces an error
of the type

exp (d(P +Q)) = exp (dP ) exp (dQ) +O(d2) (7)

for a scalar parameter d and non-commuting ([P,Q] 6= 0) operators P and Q.
In our application, this d corresponds to the time evolution variable, which is
measured on the order of nanoseconds and should not introduce much error.
During each interval or time chunk the functions {KA, KB , εA, εB , ζ} are
constant, so, we may, for a given time interval ∆t = t/4, rewrite the operator
given by (6) as a product of physically realizable quantum gates, such as those
implemented in the Q# or Qiskit languages. Comparisons between the final
density matrices made in the training process and the full gate based decom-
position as well the effect of a finer discretization are discussed in Sections 2.2
and 4.2, respectively.

We start with the single qubit part of the operator for a single time interval,
exp(−ı̇HA∆t/h̄), and use the well-known identity for the exponential of Pauli
matrices

e−ı̇α(n̂·σ) = I cos(α)− ı̇(n̂ · σ) sin(α) (8)
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where I is the 2 × 2 identity matrix, α is an angle of rotation about axis n̂
(a unit vector) on the Bloch sphere, and σ is a vector of the Pauli matrices
{X,Y, Z}. Looking at the definition of HA (or HB) in equation (3), we see
that it is easy to express the exponent in the form of representation (8):

∆t

h̄
HA =

∆t

h̄
(KAXA + 0YA + εAZA)

=
∆t

h̄

√
KA

2 + εA2︸ ︷︷ ︸
α

(
KA√

KA
2 + εA2

XA + 0YA +
εA√

KA
2 + εA2

ZA

)
︸ ︷︷ ︸

n̂·σ

.

(9)

Interpreting the operator as a rotation on the Bloch sphere, we have a
formula for a rotation α about an axis n̂ [17]

Rn̂(α) = Rz(γ)Ry(β)Rz(α)Ry(−β)Rz(−γ), (10)

where the rotations Rx(θ), Ry(θ), and Rz(θ) are defined as

Rx(θ) = e−ı̇
θ
2X =

[
cos θ2 −ı̇ sin θ

2

−ı̇ sin θ
2 cos θ2

]
Ry(θ) = e−ı̇

θ
2Y =

[
cos θ2 − sin θ

2

− sin θ
2 cos θ2

]
Rz(θ) = e−ı̇

θ
2Z =

[
e−ı̇

θ
2 0

0 eı̇
θ
2

]

The Q# and Qiskit environments [20,21] have access to a function which
computes the rotation of a state about the x, y, or z axis of the Bloch sphere
by a specified angle, so this expression will suffice supposing that we can find
the appropriate values for α, β, and γ in (10). To do this, we use some analogues
to this expression in terms of Pauli matrices and spherical coordinates:

Rn̂(α) = I cos
(α

2

)
− ı̇ (n̂ · σ) sin

(α
2

)
= I cos

(α
2

)
− ı̇ (sinβ cos γ X + sinβ sin γ Y + cosβ Z) sin

(α
2

)
. (11)

Our expression (9) matches (11) perfectly, and now we need only solve the
following system of three equations with three unknowns:

sinβ cos γ =
KA√

KA
2 + εA2

, sinβ sin γ = 0, cosβ =
εA√

KA
2 + εA2

. (12)

We notice immediately that sin γ = 0 (since sinβ cannot be zero due the first
equation), and so γ = cπ for some integer c. This forces cos γ to be ±1. Last,
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β = sin−1
(
±KA/

√
KA

2 + εA2
)

. We see that the relative sizes of KA and εA

are constrained by the sine and cosine relationship between

sinβ = ± KA√
KA

2 + εA2
cosβ =

εA√
KA

2 + εA2
.

A change of indices gives us the operator HB in a similar way. The only
remaining step is to write HAB of (3) in a form using practical quantum
gates.

The two-qubit part of the Hamiltonian is HAB = ζZAZB . The matrix form
of this operator is generated by taking the Kronecker product, ZAZB = Z⊗Z.
After setting w0 = ζ∆t/h̄ and taking the exponential of the operator, we have

exp

(
−ı̇HAB∆t

h̄

)
=


e−ı̇w0 0 0 0

0 eı̇w0 0 0
0 0 eı̇w0 0
0 0 0 e−ı̇w0

 . (13)

Since this is a two-qubit operator, it is necessary to represent it using a two-
qubit gate. The primary tool for this is the CNOT (controlled NOT) gate,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (14)

In general the CNOT operator in addition to single-qubit phase gates forms
a universal set with which to build an arbitrary (N -qubit) operator. For our
purposes, we may represent matrix (13) using the following expression:

exp

(
−ı̇HAB∆t

h̄

)
= CNOT


e−ı̇w0 0 0 0

0 eı̇w0 0 0
0 0 e−ı̇w0 0
0 0 0 eı̇w0

CNOT. (15)

The interior matrix is I ⊗ Rz(2w0), which is a rotation on only the B qubit.
With the above decompositions for HA, HB , and HAB , we can now express
each time chunk of our quantum operator in terms of a quantum circuit

|A〉

|B〉 Rz(2w5k)

Ry(−w5k+1)

Ry(−w5k+2)

Rz(w5k+3)

Rz(w5k+4)

Ry(w5k+1)

Ry(w5k+2)

where we have relabeled variables as w5k =
ζk∆t

h̄
,

w5k+1 = sin−1

 KA,k√
K2
A,k + ε2A,k

, w5k+2 = sin−1

 KB,k√
K2
B,k + ε2B,k

,

w5k+3 =
∆t

h̄

√
K2
A,k + ε2A,k, and w5k+4 =

∆t

h̄

√
K2
B,k + ε2B,k.
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Collected formulaically, the gate decomposition of operator (4) is

exp

(
−ı̇Ht
h̄

)
=

3∏
k=0

UA,k UB,k UAB,k (16)

where

UA,k = [Ry(w5k+1)Rz(w5k+3)Ry(−w5k+1)]⊗ I (17)

UB,k = I ⊗ [Ry(w5k+2)Rz(w5k+4)Ry(−w5k+2)] (18)

UAB,k = CNOT [I ⊗Rz(2w5k)] CNOT. (19)

2.2 Numerical computation

In our original work [8,9,10] on the entanglement witness, we used piecewise
constant functions for {KA, KB , εA, εB , ζ}; in subsequent work [26] we used
continuum functions, for which we found training was much more rapid and
complete. Because current technology does not allow for continuous-time con-
trol of gate functions, we return to our original piecewise formulation; however,
we have retrained using our more recent codes to improve our earlier results.

Physically, we imagine that the system would be allowed to evolve for a
specified time under a Hamiltonian whose parameter functions we could con-
trol. At the end of that time we perform a measurement whose average value
would represent the entanglement witness. The training of the net is a process
whereby we find an optimal mapping of the desired physical property (here,
the entanglement) to that chosen measurement. We chose, as that measure-
ment, the (square of the) qubit-qubit correlation function at that final time,
〈ZA(tf )ZB(tf )〉2.

To perform the retraining, we used our (newer) continuum codes imple-
mented in MATLAB [27], following the general approach of [9] with some
modifications. Each parameter {KA, KB , εA, εB , ζ} is represented as a Fourier
series and allowed to evolve for a specified time under the prescribed Hamilto-
nian. After each epoch (single pass through the whole training set) of training,
the parameter functions are then approximated as piecewise constant functions
obtained by averaging over each of the four time chunks. Next, these piecewise
constant functions are used as the initial parameters for the following training
epoch. Each time, the parameters functions are allowed to evolve as Fourier
series, but are “chunked” and averaged back into a piecewise constant form.
After a sufficient amount of training, we use the piecewise constant parameters
for time evolution to calculate the expectation value of the final time correla-
tion function, and, therefore, the error. Training data are shown in Table 1.
The “Desired” column is the goal of the training for the final time correlation
function, showing that we seek a value of one for a fully entangled state and
zero for a product state. Because we are trying to optimize our entanglement
witness, we find a value intermediate between zero and one for the target
value for the partially entangled state |P〉; this (optimized) value is 0.443.
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The column labelled “Trained” shows the asymptotic value for that final time
correlation function after the training of the network. Training was of course
less efficient than with the greater flexibility offered by the continuous-time
functions; nonetheless, RMS error for the training set was only 0.05% after
200 epochs. The piecewise constant values found for the parameter functions
are shown in Table 2.

Table 1 QNN entanglement witness trained for 200 epochs using piecewise constant param-
eter functions, and compared with calculated results using first chunked time propagators,
then with the sequence of gates, and finally on the Q# simulator [20]. The training set of
four [9] includes one completely entangled state |Bell〉 = 1√

2
[|00〉 + |11〉], one unentangled

state |Flat〉 = 1
2

[|00〉 + |01〉 + |10〉 + |11〉], one classically correlated but unentangled state

|C〉 = 1√
5

[2|00〉+ |01〉], and one partially entangled state |P〉 = 1√
3

[|01〉+ |10〉+ |11〉]. Errors

for each method are shown in the final line.

Input state Desired Trained Chunked Gates Q#
|Bell〉 1.0 0.999 0.999 0.999 0.999
|Flat〉 0.0 7.99× 10−5 5.99× 10−7 5.99× 10−7 6.14× 10−5

|C〉 0.0 1.08× 10−4 1.87× 10−5 1.87× 10−5 8.17× 10−5

|P〉 0.443 0.440 0.446 0.446 0.446
Total RMS error 5.0× 10−4 1.4× 10−3 1.4× 10−3 1.7× 10−3

Table 2 Trained parameter functions for the entanglement witness for the two-qubit sys-
tem, in MHz. Total time of evolution for the two time propagation methods was 1.58 ns.

Parameter Interval 1 Interval 2 Interval 3 Interval 4
KA = KB 2.49 2.47 2.48 2.49
ζ 0.0382 0.128 0.117 0.0382
εA = εB 0.0930 0.116 0.0954 0.0833

We now use these trained values for the piecewise constant parameter func-
tions in the equations derived for the sequence of operators in the previous
section. Note that there are two separate sources for the error: the approxi-
mation in Equation (6), which assumes that the matrices commute; and the
approximation of the substitution of the products of the gate operators for
the time-propagation operator. We can separate these two sources by calcu-
lating the density matrix for the final time, using “chunked time.” That is,
instead of calculating the time propagation correctly as in the QNN training,
we separate the Hamiltonian into HA, HB , and HAB for each of the four time
intervals. This assumes that the pieces commute, which of course is an approx-
imation. The column in Table 1 labelled “Chunked,” shows the calculation of
the entanglement witness using this approximation. The “Gates” column re-
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peats these calculations using the matrix decomposition outlined in Section
2.1. The final column, labelled “Q#”, shows the entanglement witness values
of the sequence of gates as measured on Microsoft’s quantum simulator [20].
(Calculations performed using IBM’s Quantum Experience simulator [21] pro-
duced almost identical results [28].) Note that the calculated numbers for the
entanglement witness in the two last columns are extremely close, as are, of
course, the RMS errors for each method. The Frobenius norm of the differ-
ence between the density matrix as trained by the QNN technique and the
(non-commuting) chunked time propagation matrices is in each case 1 to 2%;
while the norm of the difference between the density matrix calculated by the
chunked time propagator and by the sequence of applied gates in each case
is on the order of 10−15, i.e., within round-off error. Clearly all of the error
comes from the non-commutation. This validates our replacement of the time
evolution operator by the product of gates.

3 Statistical Evaluation of Entanglement Witness in Q#

With the entanglement witness properly reverse engineered to run on the hard-
ware simulators, we now need to understand how to utilize it in applied situa-
tions. Both the Q# and Qiskit systems implement measurements of the qubit
along a standard axis x, y, or z in the Bloch sphere. Each individual measure-
ment only returns an eigenvalue of ±1. To generate a useable expected value,
several thousand measurements must be done to average these eigenvalues to
get a valid approximation of the expectation value 〈ZA(tf )ZB(tf )〉2. Using the
Q# built-in simulator, we did 100 iterations at several different “shot counts”
(number of individual experiments and measurements) to gauge how many
times a particular experiment must be run to generate a high confidence value
for the entanglement witness. Our code is available at [29].
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Fig. 1 Variance in entanglement witness for 100 iterations of each state measured at shot
counts ranging from 50 to 20,000 in 50 shot increments. As the shot count increases, we see
that the measurement variance quickly goes to zero.
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Figure 1 shows the variance of the expectation value 〈ZA(tf )ZB(tf )〉2 as
a function of numbers of shot counts. We can see plainly that the law of
large numbers is in effect for determining the entanglement witness. High
confidence values for the witness are achieved near 15,000 iterations of the
experiment. This is easier to see in Figure 2, which shows a 95% confidence
interval surrounding the computed square of the qubit-qubit correlation for the
witness on the |Bell〉 and |P〉 states, where the width of the interval shrinks
to 0.0015. Results for the |Flat〉 and |C〉 states are similar.
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Fig. 2 Q# entanglement witness values for the |Bell〉 and |P〉 states with a 95% confidence
interval as a function of the shot count. The confidence interval (CI) width reaches its
minimum of ∼0.0015 after approximately 15,000 shots.

4 Iterative Staging

We have constructed a sequence of hardware gates that mimics our trained
two-qubit entanglement witness quite well. While this is interesting it is per-
haps of somewhat limited use, as it pertains only to a two-qubit system. We
now extend our results to an N -qubit system.

4.1 Searching for an Asymptotic Limit

As demonstrated in our previous work [8,9,10,26], it is both possible and
very beneficial to use knowledge of smaller scale systems to make systematic
inferences about larger ones. Hence, we train our network in iterative stages,
using the trained parameter functions for the two-qubit system {KA = KB ,
εA = εB , ζ} as an initial guess for those parameters in the three-qubit case. We
then train the three-qubit system from that point to minimize the error. Once
the three-qubit trained functions are found, we start from those to train the
four-qubit system, and so on. The benefit is that while there are large changes
in the tunneling, bias, and coupling parameters as the system size increases
initially, those percentage changes diminish as the system size N increases,
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due to the increased connectivity. Hence, training five-, six-, and seven-qubit
systems require fewer and fewer additional epochs. Because of the symmetry
of the problem, all the parameter functions can be taken to be the same (that
is, KA(t) = KB(t) = KC(t), εA(t) = εB(t) = εC(t), and so on); imposing this
as a constraint also reduces the training time. We now look for an asymptotic
limit as N increases. Figures 3 and 4 show the results of the training.
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Fig. 3 Trained values for the tunneling amplitude K and for the bias ε, for each time chunk,
as the number of qubits in the system is increased. Both demonstrate clear asymptotic
behavior.
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Fig. 4 Trained values for the qubit-qubit coupling ζ, for each time chunk, as the number
of qubits in the system is increased. The values show a clear trend, but do not become
asymptotic as quickly as with the other parameters.

All parameters show an asymptotic trend, with the tunneling amplitudes
K and biases ε showing swift convergence to a limiting value. The qubit-qubit
coupling ζ also has a trend emerging at the number of qubits increases, in-
dicating that an N -qubit limit is likely. We infer that the parameters for the
seven-qubit system are a reasonable approximation for the entanglement wit-
ness of an N -qubit system based on the limiting behavior observed in K and
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ε. This is important, because once quantum computers become only a very
little larger we will no longer be able to simulate them on classical comput-
ers (the point of so-called “quantum supremacy” [30].) Table 3 contains the
parameters for the fully symmetric seven-qubit system.

Table 3 Trained parameter values at each time interval, for the pairwise entanglement
witness for the seven-qubit system, in MHz. By symmetry, each of the tunneling functions
K, each of the biases ε, and each of the pairwise couplings ζ is the same. We take these
values to be an approximation to the asymptotic limit of the parameters for an N -qubit
quantum system.

Parameter Interval 1 Interval 2 Interval 3 Interval 4
K 2.49 2.47 2.48 2.51
ζ 0.0188 0.0440 0.0805 0.00132
ε -0.0164 0.299 0.0636 -0.0693

Training for these parameters was relatively efficient for anN -qubit system,
taking only 100 additional epochs past the previously trained (N − 1)−qubit
system to train the pairwise entanglement witness. While the number of train-
ing pairs, 4

(
N
2

)
, does increase with the number of qubits, the increased connec-

tivity meant that the system needed less additional training each time. The
total RMS value for the training of the two-qubit parameters is 6.0×10−4, and
only increased slightly as qubits were added, with six-qubits having an RMS
of 1.6 × 10−3 (at 60 training pairs) and seven-qubits 1.8 × 10−3 (84 training
pairs). Mesoscopic systems will still require some training to decrease initial
errors, but this amount should be very small or negligible since we already see
the parameters nearing asymptotic values, and we anticipate that this (small)
additional training can be done online and need not be simulated.

4.2 Comparing the Discrete and Continuum Cases

Having established the scalability of our results in terms of growing system
size, we now show how the results for the chunked system compare to our more
sophisticated model for the entanglement witness studied in [26]. In that work,
the tunneling, bias, and coupling parameters were all modeled using contin-
uous functions of time. Allowing continuous parameters added a great deal
more flexibility and assisted training immensely. This approach to quantum
machine learning resulted in smaller errors and faster training than the piece-
wise constant “chunked” model. However, with the current gate based model
of quantum computing, we have no expectation of being able to implement
or train a continuum parameter solution on developing or proposed hardware.
Therefore, we examine the relationship between entanglement witnesses built
and trained using the chunked and continuous versions of the K, ε, and ζ
parameters.
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Fig. 5 Trained bias, for 4 and 8 time chunks, as functions of time, for systems of increasing
numbers of qubits N .
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Fig. 6 Trained bias functions for the continuum model of the entanglement witness, for
systems of increasing numbers of qubits N . Note how the graphs in Figure 5 are close
approximations of the shapes and values of the function for each number of qubits.

Figure 5 shows the bias as a function of time in the 4 chunk model, for
two- through seven-qubit systems, compared with a similar 8 chunk model,
where the time chunks or intervals were halved. In each case we see that as
the number of qubits increases a similar curve takes shape as the bias function
seems to reach asymptotic values. Figure 6 is the continuum case [26], for
the same two- through seven-qubit systems. Each system was trained using
the techniques outlined in [10,26] with the imposed symmetry constraints as
discussed in the previous section. We observe that the 4 and 8 chunk cases show
strong qualitative resemblance to the shape of the parameter function in the
continuum case. Quantitatively, the exact values of the discretized functions
and the continuum model do not match, but the disagreement is small and the
overshooting can be attributed to fitting error. In previous work we have shown
[11,12] both that the calculation is relatively insensitive to the exact values of
the time dependent functions and that as the system size N is increased that
robustness increases; thus the disagreement is probably irrelevant and in any
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case becomes more irrelevant with increasing N . Total RMS error for each of
these simulations is shown in Table 4.

RMS error
Qubits 4 Chunk 8 Chunk Continuous

2 6.0× 10−4 6.4× 10−4 5.2× 10−4

3 6.0× 10−4 8.8× 10−4 1.2× 10−3

4 4.2× 10−4 1.2× 10−3 4.3× 10−4

5 3.6× 10−4 1.0× 10−3 4.1× 10−4

6 1.6× 10−3 1.2× 10−3 6.4× 10−4

7 1.8× 10−3 1.4× 10−3 6.6× 10−4

Table 4 Total RMS error for the training set in the 4, 8, and continuum models of the
entanglement witness for system sizes ranging from two- to seven-qubits. Training followed
the methods of [10,26] with the additional condition that all parameters are fully symmetric.
The continuum model shows the best accuracy, but the discretized versions also trained
well and are viable approximations of the continuum model (not realizable in the current
hardware.)

5 Conclusions

As an example of using machine learning techniques to train quantum
systems to do computations for which no algorithm is known, we have trained
a system of qubits to return a witness to its initial pairwise entanglement,
by manipulating parameters in a time-dependent Hamiltonian. The training
process utilized classical computation performed in MATLAB which were later
verified using the Q# simulator to determine that the computation was in fact
implementable in the gate model decomposition, returned results consistent
with error bounds projected by our training, and generated usable results
without requiring an extremely large number of experiments (shots) within
the hardware simulation.

This procedure is reminiscent of a physical setup like the quantum an-
nealing processors [1], which have a time-dependent Hamiltonian (though the
parameter flexibility is still severely limited.) But the approach outlined in this
paper is a kind of bridge between the annealing and gate approaches to quan-
tum computing: with systematic Hamiltonian design, QA computers could be
used as programmable machines as well [14]. The entanglement witness was
well approximated by a series of implementable gates. A thorough statistical
analysis was done, and a good confidence interval of about 0.0015 is reached
after 15,000 shots. The discretized parameter setup models the entanglement
witness accurately with respect to two kinds of scaling: increasing the number
of qubits and increasing the number of time chunks in the piecewise-constant
parameter functions. Agreement was excellent, and the calculation generalizes
well and easily as the number of qubits N increases to seven.

Two of the parameter functions so learned seem already to have reached an
asymptote, which would mean that the witness could probably be implemented
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with only small error for much larger values of N , or, at minimum, could be
trained online with little effort [31]. The qubit-qubit coupling could not defini-
tively be said to have reached its asymptote, but it is at least plausible that
a large fraction of the training necessary has already been accomplished, and,
again, has reduced the amount of further training necessary. This potential
training reduction is significant because in the near term we can expect that
quantum computers will both be noisy and have to operate with a severely
limited number of ancillary qubits. Both noise and decoherence continue to be
problematic, and with only between 50 to a few hundred qubits total, practi-
cal computations cannot afford even the minimum five ancilla per correction
[35]. Our research suggests another approach for these noisy, intermediate-
scale quantum (NISQ) [32] devices: To perform offline (simulation) training
followed by online (physical device) training using reinforcement learning [31]
or automatic differentiation [33] to fine tune the system parameters. Our work
here strongly suggests that the amount of online training necessary should not
be large; moreover, that our quantum machine learning technique should be
robust to both noise and to decoherence [11,12], which will be a great advan-
tage. We are currently working on determining the most promising approach
[34]. And, while we have done this work using the calculation of a pairwise
entanglement witness as exemplar, there is no reason to think that our re-
sults are unique to that particular calculation: in all probability the technique
presented here could be used for a general scaleup paradigm.

Physical implementation still poses some problems. There are major lim-
itations in both connectivity and decoherence with the target hardware. For
viable hardware implementation, the main consideration is the computational
fidelity. Fidelity is lost to both time and inefficient computations. On the
available IBM hardware, coherence times are approximately 60 µs for both
depolarization and spin dephasing [36]. The time required to apply a single-
qubit gate is about 0.130 µs and two-qubit gates are between 0.250 µs and
0.450 µs. Any state preparation and quantum circuit operations must be com-
pleted within the 60 µs interval. Our implementation of the chunked pairwise
entanglement witness uses 28 single-qubit and 8 two-qubit gates, which yields
a smaller than 8 µs total time (plus up to 2 µs to prepare a state); despite
this, reproducibility on IBM hardware was not good [28]. Gate fidelity also
affects computations. Single qubit readouts are accurate 96% of the time, and
single- and two-qubits maintain fidelity at a rate of 99.7% and 96.5%, respec-
tively [36]. Available hardware and circuit implementation techniques will of
course improve. Developers are working on two important avenues to combat
decoherence: higher fidelity physical implementation of quantum gates [37,
38], and the reduction of the so-called T -depth for circuits [23,39]. The value
of fidelity increases are obvious, and reducing the physical time required to
perform the operations of a circuit will improve computational accuracy. It
should be noted that as the coherence times of the hardware improve, our
training paradigm increases in value as we can give better models with finer
discretizations of the continuum training for our entanglement witness, and, of
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course, other desired calculations. Moreover, machine learning solutions may
also have robustness advantages [11,12].

Optimization of the discretization of universal circuits for operators in-
volving very small numbers of qubits at a time is a major advance towards
universal quantum computation. But it is not the whole answer. For one thing,
many times we do not know the unitary operator that will perform the com-
putation, since we do not have an algorithm. For another, we still do not have
optimal ways of reducing an N qubit unitary to building blocks involving only
one or two qubits. Machine learning holds a great deal of promise for both
tasks. Our work here seems to show that with iterative staging we can fairly
easily extend small simulational results to larger systems. And, even when a
unitary is known that performs the desired calculation, a clever neural network
approach may find one with more efficiency or better speedup [40].

Acknowledgements We thank Patrick Coles (LANL) and William Ingle (WSU), for help-
ful discussions, and Henry Elliott (WSU) for the comparative Qiskit [21] calculations and
hardware implementation.
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