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Abstract

Relay node placement in wireless sensor networks for constrained environment is a critical task due to various unavoidable

constraints. One of the most important constraints is unpredictable obstacles. Handling obstacles during relay node placement

is complicated because of complexity involved to estimate the shape and size of obstacles. This paper presents an Obstacle-

resistant relay node placement strategy (ORRNP). The proposed solution not only handles the obstacles but also estimates

best locations for relay node placement in the network. It also does not involve any additional hardware (mobile robots) to

estimate node locations thus can significantly reduce the deployment costs. Simulation results show the effectiveness of our

proposed approach.
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Abstract—Relay node placement in wireless sensor networks 
for constrained environment is a critical task due to various 
unavoidable constraints. One of the most important constraints is 
unpredictable obstacles. Handling obstacles during relay node 
placement is complicated because of complexity involved to 
estimate the shape and size of obstacles. This paper presents an 
Obstacle-resistant relay node placement strategy (ORRNP). The 
proposed solution not only handles the obstacles but also estimates 
best locations for relay node placement in the network. It also does 
not involve any additional hardware (mobile robots) to estimate 
node locations thus can significantly reduce the deployment costs. 
Simulation results show the effectiveness of our proposed 
approach. 
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I.  INTRODUCTION. 
In the recent years, there has been a rise in the applications of 
wireless sensor networks (WSNs) [1]. In applications such as 
space exploration, forest fire detection, combat field 
reconnaissance, and machine health monitoring, to collectively 
monitor the area and on look after certain activities, some 
sensor nodes need to be placed in the network. By using these 
sensors to control unattended in astute surroundings, it might 
be attainable to avoid the danger to human life and reduce the 
value of the appliance. These applications use sensor nodes 
(SNs) which are battery driven and have limited processing and 
communication capabilities. After deployment, the sensor 
nodes set up a network with the target of sharing the data and 
synchronizing the actions performed. To facilitate such 
collaboration, nodes must be reachable to each other. Long 
distance transmission for sensor nodes would be expensive and 
will exhaust them very rapidly (as energy transmission is 
proportional to the distance). Thus, relay nodes (RNs) are 
introduced, which aim to transfer the sensed data through RNs 
– relay nodes’ links from SNs to a base station (BS). The
problem of placing minimum relay nodes in the environment so 
that the entire network is interconnected is shown to be an NP-
hard problem [2] and is called relay node placement (RNP) 
problem. This RNP problem considers two different 

architectures, one and two tiers WSNs. In one tiered WSNs, 
both SN (Sensor node) and RN (Relay node) participate in the 
routing. While in two tiered WSNs, only RNs are used in 
routing procedure. The shortcoming of a vast network is that 
the wireless devices may fail, leaving the WSN disconnected. 
Thus, it is necessary to introduce fault tolerance in the networks 
for successful functioning. One approach is to introduce 
redundant disjoint paths, i.e. there are more than one path 
between every pair of wireless devices. This ensures that if one 
path is destroyed, other can keep the ends connected. The RNP 
is performed in two kinds of environment i.e. constrained or 
unconstrained. In unconstrained RNP, the RN can be deployed 
anywhere in the network, while in constrained RNP, there are 
physical constraints [3] on where RN are to be deployed. This 
is done to consider the physical limitations of a geographical 
area, for example, a volcano is present, a huge rock or even 
mountains or water bodies. These practical assumptions are 
nearer to the real world problem in idealistic situations.  

This paper presents a solution for RNP problem in constrained 
environment (obstacles).  We also discuss about the state of the 
present research and review a mixture of already published 
techniques in this area stating their features and limitations. In 
the section II, we discuss various RNP techniques and obstacle 
handling techniques present in the literature. Section III, deals 
with assumptions and system model considered in our 
approach, in section IV ORRNP strategy is presented. Lastly, 
In Section V simulations results have been shown. 

II. RELATED WORK.
As far as RNP problem is concerned Steiner minimum tree 
(SMT) [13] network topology is considered as the most 
efficient approach. There are many research papers present in 
literature for the solution to RNP problem. RNP techniques are 
classified in Fig 1. 
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Fig 1.Relay Node Placement techniques 

Yu et al. [4] proposed an approach named RNIndoor which 
targets to provide at least one path among deployed SNs by 
deploying few additional RNs.  This work considers deployment 
area as floor which contains various obstacles like walls and 
restricted areas. Approach handles obstacles using structural 
information of floor and path loss generated from propagation 
models. The complexity involved in this approach limits it to 
simple obstacle handling only. In [5] Wang et al. presented a 
scheme for efficiently deploying SNs. Sensing field of SNs is 
subdivided into smaller sub-regions based on the shape of field. 
Further deployment of SNs in these sub-regions is performed. 
Sensing field is assumed to be an arbitrary shaped region. This 
work considered obstacles while deploying sensors.  The work 
is limited to a special case which is sensing range is same as 
transmission range. This problem is limited to a special case and 
hence cannot be applied to complex obstacles. Verma et al. [6] 
present a survey for various heuristics and metaheuristics based 
RNP approaches. Algorithmic and approximation based RNP 
approaches are surveyed by Sharma et al. [7]. In [8] Ranga et al. 
proposed an efficient approach to heal partitioned WSNs using 
RNP. Ranga et al. [9] proposed an optimal nodes selection 
approach for wireless sensor and actor networks. Prioritized 
mutual exclusion is used for selecting nodes optimally. Chang 
et al. [10] presented an obstacle-resistant robot-deployment 
(ORDD) algorithm. ORDD out performs various other simple 
robot deployment methods. To govern the movement of robot 
while the node deployment process some policies are defined 
which are node placement policy, serpentine movement policy. 
For handling obstacles, obstacle handling rules and boundary 
rules are defined. This approach is capable of handling 
unpredictable obstacles of various complex shapes and sizes. In 
addition to node placement techniques we review some shape 
approximation techniques present in literature which we have 
referred for obstacle estimation and detection. In [11] Urs Ramer 
proposed an algorithm which iteratively approximated the two-
dimensional arbitrary curves to polygons. The ideology behind 
this work is use small number of vertices lying on plane curve 
to produce polygons. Fit criterion is chosen as the maximum 
distance between any curve and approximating polygon.  
Eddsbrunner et al. [12] presented a computational geometry 
based scheme that generalizes straight line graphs named 
“alpha-shapes”. These shapes show much better notion of real 
complex shapes. Using point set data these shapes are produced. 
This scheme is capable of approximating any shape in � ��� � 

running time complexity. Obstacle estimation and detection 
problem is well mapped with this approach.  

III. ASSUMPTIONS AND SYSTEM  MODEL

A two-dimensional sensing field has been considered for the 
ORRNP approach. Sensor and relay nodes are assumed to be 
static in nature after they have been deployed in the constrained 
environment. Absolute location of SNs is its last known GPS 
(Global Positioning System) location. A GPS locater is assumed 
to be equipped with each SN and RN. Sensing range (SR_s) and 
transmission range (TR_s) of each SN is in ratio (SR_s:SR_s√3) 
respectively. Transmission range (TR_r) of RN is larger than 
transmission range of SN (TR_s). Sensors whose sensing range 
overlaps with each other can communicate directly. SNs are 
assumed to be more in number as compared to RNs, thus a SN 
to SN connectivity is assumed to work well even if few sensors 
fail. This assumption minimizes the cost of RNP in WSN. RN 
can communicate with each node (SN or RN) which falls in its 
transmission range. In our system we assume sensor to sensor, 
sensor to relay (vice-versa) and relay to relay connectivity for 
minimizing the RN count and network deployment cost. 
Obstacles of arbitrary complex polygonal shapes are assumed to 
completely block the signal when they fall in transmission path. 
Proposed approach primarily considers connectivity of nodes.   

A. Mathematical formulation  
We consider WSNs having SNs and RNs.  Transmission range 
or communication range of SN is assumed to be �> 0 and for 
RN is � ≥ �. � and � are constant parameters for a particular 
WSN. This work aims to place least number of RN’s in 
constrained environment (Obstacles) WSNs. We use �(	, 
) to 
denote the distance between a pair of points (nodes) in the 
plane, where 	, 
  are two points. Distance can be Euclidean or 
Rectilinear. Two nodes 	
 and can interconnect with each other 
directly if and only if  �(	, 
) is less than or equal to the smaller 
of communication ranges of two nodes. An SN 	 can 
communicate directly with other node 
 (SN or RN) if and only 
if �(	, 
) ≤ �. An RN 	 can interconnect directly with another 
node 
 (RN) if and only if �(	, 
) ≤ �.  The above rules result 
into a communication graph. This graph represents all possible 
pair of connections between pair of nodes. Fig 2. represents 
communication graph. 

Fig 2. Communication graph 



Definition 1: Let P be a set of SNs, Q be a set of RNs, and R ≥ 
r >0 be the corresponding communication ranges of RNs and 
SNs. The communication graph ComG(r,R,P,Q) resulted by 
the 4-tuple (r,R,P,Q) is an undirected graph with vertex set V = 
P∪ Q and edge set E defined as follows. For any two RNs 
i, 

j ∈ Q, E contains the undirected edge (
i, 
j) = (
j, 
i) if and 
only if �(
i, 
j) ≤ R. For an SN 	∈ P and a node t ∈ P∪ Q 
which is either an SN or an RN, E contains the undirected edge 
(	, t) = (�, 	) if and only if �(	, �) ≤ �.  
Given a set of SNs and a set of candidate locations where RNs 
can be placed, our aim is to deploy the least number of RNs so 
that the resulted communication graph by the SNs and RNs is 
connected.  
Definition 2: Let R ≥ r >0 be the communication ranges for 
RNs and SNs respectively. Let P be a set of SNs, and CL be a 
set of candidate locations where RNs can be placed. A set of 
RNs Q ⊆ CL is said to be a possible connected relay node 
placement (denoted by P-RNPc) for (r,R,P,CL) if the graph 
ComG(r,R,P,Q) is connected. The size of the resultant P-RNPc 
is |Q|. An P-RNPc is said to be a minimum connected relay 
node placement for (r,R,P,Q) (denoted by M-RNPc) if it has the 
minimum size among all P-RNPc for (r,R,P,Q). 
Definition 3: Let R ≥ r >0 be the communication ranges for 
RNs and SNs respectively. Let P be a set of SNs, and CL be a 
set of candidate locations where RNs can be placed. The 
connected relay node placement problem for (r,R,P,CL), 
denoted by RNPc(r,R,P,CL), seeks an M-RNPc for (r,R,P,CL). 
Theorem 1: If a set of restricted RN candidate locations is 
estimated then an obstacle resistant RNP strategy will result 
into a minimum connected relay node placement with obstacle 
avoidance. 
Proof: Let R ≥ r >0 be the respective communication ranges 
for RNs and SNs. Let P be a set of SNs and Q be the set of RNs, 
and CL be a set of candidate locations where RNs can be placed 
without considering obstacles. Given a set F of failed SN’s 
which are used to estimate the locations where RN’s are not to 
be placed in case of obstacles in the deployment area. Let EL 
be the set of such estimated locations. So the final candidate 
locations for relay node placement will be the set FL i.e. (FL= 
CL - EL).In this work our aim is to perform relay node 
placement over surviving SNs in order to maintain connectivity 
among nodes and increase lifetime of network. Formally, the 
surviving SNs � ∈ � where, � = � − � will be connected with 
RNs. As per the Definition 2 and 3, ORRNP problem can be 
formulated as connected relay node placement problem for 
(r,R,S,FL), denoted by ORRNPc(r,R,S,FL) which seeks an M-
ORRNPc for (r,R,S,FL). 
Theorem 2: The worst case time complexity to estimate an 
obstacle is (� log �) , where n is the number of failed sensor 
nodes in the network. 
Proof: Obstacle estimation procedure Delaunay Triangulation 
is constructed in  �(� log �) time. Further selection of d-
simplexes, cascaded union of selected d-simplexes, and output 

of boundary points is performed in �(�) time. Hence the total 
time complexity of shape estimation is �(� log �). 
Theorem 3: The worst case time complexity of ORRNP 
approach is �(�� log � ) for Rectilinear SMT and �(�� log � ) 
for Euclidean SMT. 
Proof: When no obstacle is considered in deployment area then 
for �SNs Rectilinear SMT can be computed in �(�� log � ) and 
Euclidean SMT in �(�� log � ).  Suppose we have �′ points 
(failed SNs) lying in obstacle covered area. Then the candidate 
locations for Steiner points are reduced to (� − ��). This 
reduces the time of Rectilinear SMT generation to �((� −
�′)� log(� − ��)) and Euclidean SMT generation to �((� −
�′)� log(� − ��)). If the number of points (failed SNs) in 
obstacle covered area are too less as compared to working SNs 
(�� ≪ �), then candidate locations will be almost �  as � −
�� = � (�		����������), �! �� ≪ � . Hence, the worst case 
complexity of Rectilinear SMT generation will be �(�� log � ) 
and Euclidean SMT generation will be �(�� log � ). 

IV. PROPOSED APPROACH

Our proposed approach is divided into two steps: 

1. Obstacle shape estimation: This part is further divided into 
two parts. In first part concept behind obstacle estimation is
explained in brief. Second part covers mechanism behind
the obstacle shape estimation approach.

A. Concept: 
Based on the idea of Eddsbrunner et al. [12] shape of any 

obstacle is approximated. We use the location of the failed SNs 
to approximate the obstacle shape. The coordinates of the failed 
SNs is its last known GPS location. These coordinates are the 
input to obstacle estimator procedure which approximates shape 
and size of obstacles in present given deployment area. 

B. Mechanism: 
Any shape can be generalized by Alpha-shapes [12]. These 

shapes are a family of straight Line graphs. Alpha shapes can be 
defined as a polytypic generated over a point set P, which 
depends on set p and a parameter α. This parameter restricts the 
detail level of corresponding alpha shape. Radius 1/α is assumed 
as the sensing range of any SN in case of WSNs. Fig 3. illustrates 
the methodology used in obstacle estimation. 



Fig 3. Obstacle estimation procedure. 

The underlying space of α-complex is the area which obstacle is 
present. Placement of RNs must be avoided in this underlying 
space. As mentioned above, the parameter plays an important 
role in estimation of obstacle shape thus a proper input of its 
value is required for efficient computation and better 
approximation of obstacle shape. α value 0 outputs convex hull 
and 1 outputs Delaunay triangulation of coordinate set. Fig. 4. 
depicts few examples of estimated obstacles. Obstacle 
estimation procedure estimates the obstacle shape and area over 
which relay node placement is to be avoided. The output 
boundary coordinates of this procedure are used in ORRNP 
procedure. 

Fig 4(a, b). Examples of Obstacle types. 

2. Relay Node deployment mechanism: This part presents the 
ORRNP strategy for estimation of RN locations when
obstacles are present in deployment area.

In this work we have solved the RNP problem in constrained 
environment using SMT [13] approach for both rectilinear and 
Euclidean case. Every Steiner point has degree three and these 

points are the locations representing relay nodes. SMT are 
further classified in two types. First is rectilinear Steiner 
minimum tree (RSMT) [14] in which edges are restricted to be 
only in horizontal or vertical direction and distance between 
two terminals is computed by rectilinear distance method. The 
second is Euclidean Steiner minimum tree (ESMT) [15]. In 
ESMT three is no restriction on edge direction and distance 
between two terminals is computed by Euclidean distance 
method. In Fig. 5 the pseudo code for computing RSMT and 
ESMT is formulated. Various other procedure are given which 
are being used during computation of trees. We have used 
simple heuristics to reduce the candidate locations set for 
Steiner points. Unnecessary computation is avoided by the 
applied heuristics and hence running time complexity of 
proposed approach is improved. Candidate set of locations is 
reduced by avoiding useless locations while computing SMT. 
The procedure is divided into parts which include COMPUT-
RSMT which computes rectilinear SMT similarly COMPUTE-
ESMT which computes Euclidean SMT, MODIFIED-
KRUSKAL part computes Minimum spanning tree with 
obstacle avoidance, DELTA-MST computes cost of tree when 
any new node is added, HANAN-GRID-SET generates a set of 
Hanan points which are used while computing RSMT. Pseudo 
code for our proposed approach has been presented in Fig 5. 
C_SET represent the candidate set of locations where RNs can 
be placed. DeltaCost variable is used to store the total cost of 
tree (sum of edge length) if a particular steiner point is added to 
it. 

Initialization:  

I1: Obstacles: Boundary points of α-complex shape (i.e. boundary co-
ordinates of obstacles) 
I2: Co-ordinates of working sensor nodes (i.e. nodes outside the 
obstacles covered area) 

/* Computes Euclidean Minimum Steiner tree with Obstacle(s) */ 
COMPUTE-ESMT(I1, I2) 

C_SET  ← COMPUTE-C-SET(I1, I2) 
Initialize MAX_PT to a positive number 
while MAX_PT ≥ 0 

    COST = 0 
     Assign MAX_PT a negative value 

for each point p ∈C_SET 
DeltaCost  ← DELTA-MST(I2+ SteinerPts, p) 
if DeltaCost> COST 

COST ← DeltaCost
if MAX_PT ≥ 0

SteinerPts = SteinerPts∪ {MAX_PT} 
for each point p ∈SteinerPts 

if Degree ≤ 2  
SteinerPts = SteinerPts  - 

{p} 
FINAL_ESMT ← KRUSKAL(I2 + SteinerPts) 
DISTANCE_ESMT ← Σ Edges.distance of FINAL_ESMT 
return FINAL_ESMT 



 
 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 

Fig. 5. Pseudo code of our proposed Obstacle-resistant Relay Node Placement 
algorithm. 

V. SIMULATION RESULTS 

This section presents the details of simulation environment 
used for investigating the performance of proposed approach 
ORRNP. All procedures have been coded in Python 
programming language using Wing IDE 101 version 5.1. The 
computational experiments have been executed on computer 
with Intel i5 II gen 64 × 2, 2.5 GHz and 4 GB RAM. The 
parameters α is changed according to the sensor node range 
while computing obstacles. Fig. 6(a) and Figure 6(b) show a 
case of RSMT and ESMT respectively when single obstacle is 
considered in deployment area. Figure 6(c) and 6(d) show a 
case of RSMT and ESMT respectively when multiple obstacles 
are considered in deployment area. In first step obstacle is 
estimated over a set of failed SNs. In second step ORRNP finds 
SMT (Rectilinear or Euclidean) over set of working SNs. White 
points (○) represent SN and Black points (●) represent RN. 
Obstacles are highlighted for better understanding.     

Fig. 6. a) RSMT for single obstacle b)ESMT for single obstacle c) RSMT for 
multiple obstacles d) ESMT for Multiple obstacles. 

/* Computes Candidate set of points which can be used as Steiner Points 
required for COMPUTE-ESMT */ 
COMPUTE-C-SET(I1, I2) 

C_SET  ← {}  
ConvexHull = Convex_Hull(I2)  
for each point p ∈ Points inside ConvexHull 

if point p ∉ Points within Obstacles 
C_SET = C_SET∪ {p} 

return C_SET 

/* Computes difference between costs of two MST’s  one before and one 
after adding SteinerPoint */ 
DELTA-MST(SetOfPoints, TestPoint) 

MST_ONE ← KRUSKAL-MODIFIED(SetofPoints, 
Obstacles)  

MST_TWO ← KRUSKAL-MODIFIED(SetOfPoints + 
TestPoints, Obstacles) 

COST1  ←Σ Edges.distance of MST_ONE  
COST2  ←Σ Edges.distance of MST_TWO 
return COST1 – COST2 

/*Computes cost of MST; if edge intersects Obstacle(s) then distance is 
set to infinity */ 
KRUSKAL-MODIFIED(SetOfPoints, Obstacles) 

Edges  ← {} 
for each point p ∈SetOfPoints 

  for each point p’ ∈SetOfPoints 
if edge(p, p’) intersects Obstacles 
Distance  ← ∞
else
Distance ← CALCULATE-DISTANCE (p, p’) 

Edges.add(p, p’, Distance)
Sort(Edges, key = Distance)   
MST  ← {} 
while MST does not contains (SetOfPoints – 1) edges and 
MST does not connect all SetOfPoints 

   for each edge ∈ Edges 
 if edge(p, p’) does not create cycle 

MST = MST ∪ {edge(p, p’)} 
return MST 

/* Computes Rectilinear Minimum Steiner Tree with Obstacle(s) */ 
COMPUTE-RSMT(I1, I2) 

C_SET  ← HANAN-GRID-SET(I1, I2) 
Initialize MAX_PT to a positive number 
while MAX_PT ≥ 0 

COST = 0 
Assign MAX_PT a negative value 
for each point p ∈C_SET 
DeltaCost  ← DELTA-MST(I1+ SteinerPts, p) 
if DeltaCost> COST 

COST  ← DeltaCost 
If MAX_PT ≥ 0

SteinerPts = SteinerPts∪ {MAX_PT} 
for each point p ∈SteinerPts 

if Degree ≤ 2  
SteinerPts = SteinerPts – 

{p} 
  FINAL_RSMT  ← KRUSKAL(I2 + SteinerPts)  

DISTANCE_RSMT ← Σ Edges.distance of FINAL_RSMT 
return FINAL_RSMT 

/*Computes set of Hanan Points excluding points in Obstacle(s); which 
can be used as Steiner Points in COMPUTE-RSMT */ 
HANAN-GRID-SET(I1, I2) 

C_SET  ← {} 
HananPoints ← HANAN-GRID(I2) 
for each point p∈HananPoints 

if point p ∉ Points within Obstacles 
C_SET = C_SET∪ {p} 

return C_SET 



VI. CONCLUSION AND FUTURE SCOPE.

In this paper, the RNP in constrained environment is examined 
and possible solution has been formulated. The objective of this 
work is to perform the RNP in WSNs when the obstacles are 
present in deployment area. Since RNP in constrained 
environment is an NP-hard problem, a strategy to find a good 
solution in a reasonable amount of time is formulated. In future 
we will try to minimize the running time of ORRNP, integrate 
coverage factor and fault tolerance.   
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