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Abstract

In this letter, we present a study on linear channel estimators and their respective mean square error (MSE) expressions

acknowledging spatially correlated channels and pilot contamination. We also investigate the impact of imperfect channel

covariance matrix knowledge.
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Massive MIMO Channel Estimation
Considering Pilot Contamination and
Spatially Correlated Channels

Felipe A. P. de Figueiredo, Dimas A. M. Lemes, Claudio F.
Dias, and Gustavo Fraidenraich

In this letter, we present a study on linear channel estimators and
their respective mean square error (MSE) expressions acknowledging
spatially correlated channels and pilot contamination. We also
investigate the impact of imperfect channel covariance matrix
knowledge.

Introduction: In real propagation environments, channels are spatially
correlated [1], which means that the elements of the channel are, to some
extent, correlated. Generally, the channel covariance matrices exhibit
spatial correlation substantiating in the different diagonal elements
and non-zero off-diagonal elements. This letter studies linear channel
estimators for multi-cell multi-user massive MIMO systems with
spatially correlated channels and pilot contamination.

System Model: In this work, we consider a multi-cell multi-user system
with L cells where each one of the cells has a BS at its center with M
co-located antennas and K single antenna users. We consider correlated
Rayleigh fading channels, and therefore, the M × 1 channel vector
from the kth user in the lth cell to the M antennas at the ith BS
is defined by gilk = [gilk1, gilk2, . . . , gilkM ]T ∼CN (0M ,Rilk), where
Rilk ∈ CM×M is the positive semi-definite channel covariance matrix. It
is important to notice that in our case, Rilk is not a scaled identity matrix,
but describes the spatial propagation environment and array geometry
(i.e., it describes macroscopic effects, which include the average path-
loss in different spatial directions and the spatial channel correlation).

We assume that users in different cells transmit at the same time-
frequency resources (a typical scenario in massive MIMO) and that
the pilot reuse factor is one, the worst possible use case scenario. The
N -length pilot sequence sent by the kth user, φk ∈ CN , exhibits the
following property, φHk φk = 1, ∀k. Extending it to the N ×K matrix
containing all the K pilots, Φ = [φ1, φ2, . . . , φK ], it becomes ΦHΦ =

IM . The received uplink training sequences at the ith BS can be
represented as a M ×N matrix, which is defined as

Yi =
√
p

L∑
l=1

GilΦH + Ni, (1)

where p is the pilot power or average pilot signal to noise ratio (SNR) and
Ni is a M ×N noise matrix with independent and identically distributed
elements following CN (0, 1).

LS Channel Estimation: A sufficient statistic for estimating the channel
vector, giik, at the ith BS is given by

ĝLS
iik = zik =

1
√
p

Yiφk =

L∑
l=1

gilk + wik, (2)

where wik = 1√
p

Niφk ∼CN (0M , 1p IM ) and ĝLS
iik ∼CN (0M ,Qik),

with Qik =
∑L
l=1 Rilk + 1

p
IM . The estimation error vector, g̃LS

iik =

giik − ĝLS
iik, is distributed as g̃LS

iik ∼CN (0M ,Qik − Riik) and is
not independent of ĝLS

iik, having a covariance matrix defined as
cov
(
ĝLS
iik, g̃

LS
iik

)
= Qik − Riik. The MSE per antenna of the LS estimator

is given by

ηLS
ik =

1

M
E{‖ĝLS

iik − giik‖
2}=

1

M
Tr [Qik − Riik] , (3)

where Tr[.] is the Trace operator. As can be seen, the LS estimator does
not rely on any prior information on the channel statistics, such as the
large-scale fading coefficients. Additionally, this estimator is known to
have inferior performance than the MMSE estimator [2].

Remark 1: If the elements of giik are i.i.d. circularly-symmetric
complex normal variables for all i, l, and, k, then Qik = ζikIM =(∑L

l=1 βilk + 1
p

)
IM , and Riik = βiikIM , and therefore, ηLS

ik = ζik −

βiik, where βiik = 1
M

Tr[Riik] is the normalized trace that defines the
average large-scale fading between the kth user in the ith cell and the ith
BS.

Remark 2: Due to pilot contamination, ηLS
ik →

1
M

Tr
[∑L

l=1,l 6=i Rilk
]

as p→∞. And if giik is a i.i.d. complex Gaussian vector, then ηLS
ik →∑L

l=1,l 6=i βilk as p→∞.

Remark 3: From (2) we see that ĝLS
ilk = ĝLS

iik,∀l, which means that the
channel estimates are parallel vectors and therefore, the BS is unable to
separate these users that transmitted the same pilot sequence.

MMSE Channel Estimation: The MMSE channel estimator of giik, ∀k,
based on the observation Yi at the ith BS is defined by

ĝMMSE
iik =

Riik
Qik

zik = RiikQ−1
ik zik. (4)

Due to the MMSE properties under the Gaussian model, the
channel estimate ĝMMSE

iik and the estimation error, g̃MMSE
iik = giik −

ĝMMSE
iik , are independent random vectors distributed as ĝMMSE

iik ∼
CN (0M ,RiikQ−1

ik Riik) and g̃MMSE
iik ∼CN (0M ,Riik(IM −Q−1

ik Riik).
The estimator ĝMMSE

iik is uncorrelated with the de-spread received vector,
zik, and is consequently independent of it as both are jointly complex
Gaussian distributed. The MSE per antenna of the MMSE estimator is
given by

ηMMSE
ik =

1

M
E{‖ĝMMSE

iik − giik‖
2}=

1

M
Tr
[
Riik − RiikQ−1

ik Riik
]
.

(5)

Remark 4: If the elements of giik are i.i.d. circularly-symmetric
complex normal variables for all i, l, and, k, then Qik = ζikIM =(∑L

l=1 βilk + 1
p

)
IM , and Riik = βiikIM , and therefore, ηMMSE

ik =

βiik −
β2
iik
ζik

.

Remark 5: Due to pilot contamination, ηMMSE
ik →

1
M

Tr

[
Riik −

R2
iik∑L

l=1
Rilk

]
as p→∞. And if giik is a i.i.d. complex

Gaussian vector, then ηMMSE
ik → βiik

(
1− βiik∑L

l=1
βilk

)
as p→∞.

Remark 6: If Riik is invertible, then from (4) we see that ĝMMSE
ilk =

RilkR−1
iikĝMMSE

iik , ∀l. In [3], the authors show that if Rilk, ∀l are mutually
asymptotically linearly independent, then the channels are not parallel
vectors and consequently, the BS is able to separate users transmitting
the same pilot sequence.

Remark 7: If giik is an i.i.d. complex Gaussian vector, then, again
from (4), we see that ĝMMSE

ilk = βilk
βiik

ĝMMSE
iik , ∀l, meaning that the channel

estimates are parallel vectors that only differ by the scaling factor, βilk
βiik

,
and therefore, the BS is also unable to separate users transmitting the
same pilot sequence.

Approximate MMSE Estimation: In general, the acquisition of the
covariance matrices, Rilk, ∀i, l, k, is a daunting task as it involves the
estimation of LK matrices. However, a simple but yet effective solution
to this problem comes from the observation of (4) and the finding that
the sum of all covariance matrices plus the inverse of the pilot power,
i.e., Qik, can be estimated. Therefore, we estimate Qik and replace it
back into (4). The classical approach to this estimation problem is to
approximate the covariance matrix with the sample covariance matrix.
The estimation of Qik is based on the fact that E

[
zikzHik

]
= Qik, which

can be approximated by the sample covariance matrix,

Q̂ik =
1

NQ

NQ∑
n=1

zik(n)zHik(n), (6)

where zik(n), n= 1, . . . , NQ are the NQ different observations of (2).
Additionally we see that E[Q̂ik] = Qik. Note that this estimate is
obtained from the several observations of the de-spread pilot signals, zik,
used for channel estimation, and thus, no extra pilots are necessary. The
sample covariance matrix almost surely converges to the true covariance
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matrix as NQ→∞

lim
NQ→∞

Q̂ik = lim
NQ→∞

1

NQ

NQ∑
n=1

zik(n)zHik(n)→Qik, (7)

which follows directly from the law of large numbers and the fact that the
channels are assumed ergodic. Considering [Q̂ik]j and [Qik]j as the jth
columns of the Q̂ik and Qik matrices respectively, then

cov
([

Q̂ik
]
j

)
=

1

NQ
[Qik]j [Qik]Tj . (8)

Remark 8: If gilk is an i.i.d. complex Gaussian vector, then [Qik]j =

[ζik 0]T , and therefore, cov([Q̂ik]j) = 1
NQ

ζ2ikIM .

The errors in all the M2 elements of Q̂ik harm its eigenstructure,
making its eigenvalues and eigenvectors unaligned with those of Qik [5].
Hence, it has a great impact on the system performance, as the MMSE
channel estimator takes advantage of the eigenstructure of Qik to acquire
better channel estimates. Therefore, in order to overcome such issues,
we estimate the covariance matrix as the following convex combination
scheme, as suggested in [5],

Q̂ik(η) = ηQ̂ik + (1− η)Q̂diag.
ik , (9)

between (6) and its diagonalized version, Q̂diag.
ik . This kind of

regularization turns Q̂ik into a full-rank matrix for any value of η < 1,
even for the case where NQ <M , and it underestimates the values of the
unreliable off-diagonal elements.

In this work, we focus on the performance assessment when we
estimate Qik and do not consider the estimation of the individual
Rilk,∀i, l, k. In [4] the authors propose a specific training phase for
estimating Rilk. By replacing (6) into (4) and treating Q̂ik(η) as the true
covariance matrix, we can then approximate the MMSE estimate of giik
as

ĝapprox. MMSE
iik =

Riik
Q̂ik(η)

zik = RiikQ̂−1
ik (η)zik. (10)

Assuming that zik is independent of Q̂ik(η), i.e., zik is not used to
estimate the covariance matrices, Q̂ik(η), and that NQ is large enough
to produce good estimates of Qik, then the MSE per antenna of this
estimator is given by

η
approx. MMSE
ik =

1

M
E{‖ĝapprox. MMSE

iik − giik‖
2}

=
1

M
Tr
[
Riik − RiikQ̂−1

ik (η)Riik
]
, (11)

which tends to that of the actual MMSE estimator as NQ→∞. The
regularization factor η can be selected so that the MSE per antenna is
minimized.

After all the previous derived MSE equations, we can define the
following Lemma.

Lemma 1: Considering the channel estimator ĝiik = Aikzik, then the
MSE per antenna of the estimation is given by

1

M
E{‖giik − Aikzik‖2}=

1

M
Tr
[
(IM − Aik − AHik)Riik

]
+

1

M
Tr
[
AikQikAHik

]
, (12)

where Aik is a deterministic matrix defined as

Aik =


IM , LS estimator
RiikQ−1

ik , MMSE estimator

RiikQ̂
−1

ik (η), Approx. MMSE estimator

(13)

Proof: The proof of (12) is obtained through the direct calculation of the
MSE as calculated earlier.

Simulation Results: For our simulations, an adequate correlation model
is the one in which the channels are spatially correlated, and all
eigenvalues of the correlation matrix are non-zero. Thus, we adopt the
Exponential correlation model described in [3] with correlation factor,
r= 0.5, and large-scale fading variations along the array with σ= 4. We
assume the same challenging symmetric setup of Fig. 3 in [3] withK = 2
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Fig. 1. Normalized MSE per antenna versus the variation of η.

UEs per cell, L= 4 cells, coherence block, τc, of 200 channel uses, and
that each device transmits with a power of 100 mW. For all results, except
the one in Fig. 3, we consider M = 100 antennas. Except for the results
shown in Fig. 1, η= 0.5. As described in [3], the pilot contamination is
very high in that setup. All figures presented next plot the normalized
MSE (NMSE) per antenna, E{‖giik − Aikzik‖2}/MTr [Riik].

Fig. 1 depicts the NMSE per antenna versus the regularization factor,
η. As expected, the LS estimator results in a constant and the highest
MSE value. Although exhibiting the highest MSE value, it is important
to highlight that the LS estimator does not account for the large-scale
fading coefficients knowledge. As the same in LS estimator, the MMSE
estimator also presents constant MSE along all considered η values.
However, differently from the LS estimator, it has the lowest MSE among
the studied estimators. Both estimators, LS and MMSE, present constant
MSE as they do not depend on η. On the other hand, the approximated
MMSE estimator performance depends on the considered η value. From
η values ranging from 0 up to 0.4, the approximated MMSE estimator
has MSE values quite similar to the MMSE estimator. The resulting
performance is due to the correlation elements between the channels (i.e.,
off-diagonal elements) that has smaller weights when compared to the
diagonal elements. In η ranging from 0.5 up to 0.9, the performance
is worse than that of the MMSE estimator but, on the other hand, is
still better than the LS. For η values greater than 0.9, the MSE of the
approximated MMSE estimator presents inferior performance, becoming
worse than the other estimators. This is due to the fact that the covariance
matrix is not a full-rank matrix anymore. Another important conclusion
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Fig. 2. Normalized MSE per antenna versus the variation of NQ.
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Fig. 3. Normalized MSE per antenna versus the number of antennas, M .

that can be drawn from the figure is that for the correlation model adopted
here, the estimation of only the diagonal elements of the covariance
matrix would suffice to have a good channel estimator.

Fig. 2 depicts the performance of the channel estimators in terms of
the NMSE per antenna versus the variation of the number of channel
observations, NQ. As expected, both the MMSE and the approximated
MMSE estimators have better performance than the LS for all considered
NQ values. A critical remark is that LS estimator does not need any
prior channel information, and the MMSE estimator assumes perfect
knowledge of the channel statistics. As a result, the MSE is constant
over all NQ values for the LS and MMSE. On the other hand, the
approximated MMSE estimator depends on the number of observations
used to estimate the covariance matrix and, consequently, presents
performance dependable on NQ. As can be noticed, the performance
of the approximated MMSE asymptotically tends to that of the MMSE
estimator as NQ increases.

Fig. 3 presents the performance of the channel estimators in terms
of the NMSE per antenna versus the number of antennas. As can be
seen, the MMSE and the approximated MMSE estimators have better
performance than the LS estimator for all considered number of antennas.
The NMSE of all three estimators decreases as the number of antennas
also increases. It is also essential to highlight the fact that, as expected,
while NQ increases, the approximated MMSE performance tends to that
of the MMSE estimator.

Fig. 4 presents the performance of the channel estimators in terms
of the NMSE per antenna versus the uplink transmit power, p. Again,
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Fig. 4. Normalized MSE per antenna versus the variation of the pilot power.
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Fig. 5. Normalized MSE per antenna versus the correlation factor.

the LS estimator is the worst one among the studied estimators. The
result shows that the MMSE estimator is the best one for all values of
p. The performance of the approximated MMSE becomes better as NQ
increases, providing as consistent estimates of the covariance matrices
as the MMSE estimator. While p increases, the MMSE performs better,
although the same behavior cannot be observed with the approximated
MMSE estimator if NQ is insufficient.

Figure 5 depicts the NMSE for the LS, MMSE and the approximated
MMSE estimators as a function of the correlation factor. The covariance
matrix is estimated averaging NQ = 1000 channel observations. For
the LS estimator, the NMSE is constant for all range of correlation
factor. For the MMSE and approximated MMSE, the NMSE decreases
as the correlation factor, r, increases. Note that since NQ is large, it
produces a good estimation and consequently the approximated MMSE
performs closely to the MMSE estimator. However, when the correlation
between the channels becomes higher, the MMSE estimator is better
than the approximated MMSE since the MMSE has the knowledge
of the channel statistics. Moreover, if we analyse (5), it is possible
to conclude that both terms become similar as the correlation factor
increases, which consequently causes the NMSE to decrease. The same
analysis is applicable to (11).

Conclusion: We derived analytical MSE expressions for perfect and
imperfect channel covariance matrices. These expressions are useful
in the design and performance evaluation of systems. We have also
discussed and shown how a BS can estimate the channel covariance
matrix necessary for the approximated MMSE estimation.
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