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Abstract

Traditional voltage stability assessment methods do not include temporal variation of renewable power generations like wind.

This paper proposes a novel methodology for probabilistic voltage stability assessment methodology which can be used in

conjunction with any of the existing traditional voltage stability indices. Historical wind power data are used to determine

probabilistic distribution of wind power at future instant based on wind power value at current instant. Based on the probabilistic

risk of increase and decrease of wind power at future instant, two probabilistic voltage stability indices are computed. The worse

case value among the two indices are used as prediction of voltage stability index at future instant, based on current system

parameters. Effectiveness of the proposed methodology in predicting proximity of the system voltage collapse is illustrated

through case studies and time-series simulations. Results show that proposed methodology predicts more realistic proximity to

voltage collapse than traditional stability assessments.
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Abstract—Traditional voltage stability assessment methods do
not include temporal variation of renewable power generations
like wind. This paper proposes a novel methodology for prob-
abilistic voltage stability assessment methodology which can be
used in conjunction with any of the existing traditional voltage
stability indices. Historical wind power data are used to deter-
mine probabilistic distribution of wind power at future instant
based on wind power value at current instant. Based on the
probabilistic risk of increase and decrease of wind power at future
instant, two probabilistic voltage stability indices are computed.
The worse case value among the two indices are used as predic-
tion of voltage stability index at future instant, based on current
system parameters. Effectiveness of the proposed methodology in
predicting proximity of the system voltage collapse is illustrated
through case studies and time-series simulations. Results show
that proposed methodology predicts more realistic proximity to
voltage collapse than traditional stability assessments.

Index Terms—Probabilistic assessment, Reactive power sup-
port, Variability, Voltage stability, Wind power

I. INTRODUCTION

Concerns of climate change and energy security combined
with reduction of prices of renewable power plants have led
to increased penetration of converter based variable renewable
generation in power systems worldwide. However because of
inherent fluctuation and variability of the renewable energy
sources, there are additional challenges in terms of power
system security and stability. Voltage instability might be
even more pronounced in power systems with large share
of renewable generations. However, modern converter based
renewable generations can also support largely in alleviating
voltage stability problems [1].

IEEE/CIGRE Joint Task Force defines voltage stability as
the “ability of a power system to maintain steady voltages at
all buses in the system after being subjected to a disturbance
from a given initial operating condition” [2]. Voltage instability
in the system occurs in the form of progressive rise or fall
of voltages at some buses. Voltage instability can lead to
sequence of events that may trigger blackout or exceptionally
low voltages in the system, these being known as voltage

This work is done as part of Security Assessment of Renewable Power
Systems (SARP) project funded by Energinet under the Public Service
Obligation scheme (Forskel 12427).

collapse [2]. There have been several voltage instability re-
lated blackouts in history like, Denmark-Sweden black-out on
September 23 in 2003, black-out in the southern part of Greece
in 2004, voltage collapse in Poland in 2006 [3], [4]. To prevent
system voltage collapse defence plans have been developed
[5]. However, before activation of the actual defence plans,
preventive operation measures like activation of capacitors,
disconnection of shunt reactors, start up of generating units,
adapting voltage setpoints of MV/HV transformers, etc, are
employed. In case operation measures are not sufficient in
preventing degradation of voltage, defence plans are activated
as last resort measures to prevent system black-out. Defence
plans for prevention of voltage collapse includes measures like
blocking of on-load tap changers (OLTC) and undervoltage
load shedding [4], [6], [7].

Voltage stability assessment is often carried out to investi-
gate the risks or proximity to voltage instability appearance,
being thus a tool to prevent voltage collapse. Voltage stability
indices (VSI) typically quantify measure of proximity to
voltage collapse. In literature, many VSI have been developed,
as listed by Cañizares et. al. in [8]. However, it is worth
mentioning that all VSIs are proposed for systems which do
not have large penetration of renewable energy generations.
Traditionally voltage stability assessment is done considering
changes in load [9]. However, with variable renewable energy
generations like wind power plants (WPPs) in the power
systems there is also temporal variation in power generation.
Recent events like black-out in South Australia in 2016 [10]
and disturbance in UK grid on August 9, 2019 [11] have
been incited by large share of wind power in their respective
power systems. Therefore it is important to include wind
power in traditional voltage stability assessment methods.
One of the main challenges of including wind power in VSI
assessment methods is variability and fluctuation of wind
power. Several studies, such as [1], [12], have shown that VSI
of power system is improved when WPPs provide reactive
power support. However, due to the continuous increasing of
wind power penetration, probability of change in wind power
needs to taken into consideration in order to perform voltage
stability assessment in future power systems. This is even more
significant when the power system is under stressed conditions,
close to instability. In such circumstances, effect of wind
power variations may move the system operating point beyond
the stability margin. On the other hand, converter connected



wind turbine generators have capability to provide reactive
power support to alleviate voltage stress conditions. These
factors motivates to develop VSI assessment method including
wind power support and wind power fluctuations. Authors
have quantified reactive power capability of wind power plants
in [13] and studied impact of wind power fluctuations in [14].

The objective of this paper is to present a novel proposed
probabilistic voltage stability assessment methodology to in-
clude uncertainty of wind power using existing VSI. Main
contributions of this paper are: a) voltage stability assessment
including maximum available reactive power support from
wind power, and b) proposed novel probabilistic voltage
stability assessment methodology to account for variability and
fluctuation of wind power, which van be used in together with
any of the existing traditional voltage stability indices. The
proposed probabilistic voltage stability assessment methodol-
ogy is demonstrated using existing voltage stability indices
like, PV curves, minimum eigenvalue of system and load
margin. Effectiveness of the proposed probabilistic voltage
stability assessment in predicting proximity of the system
voltage collapse is illustrated through time-series simulations.

This paper is organised as follows: Section II briefly de-
scribes some of the traditional indices for voltage stability
assessment that are used in this paper. Section III presents
the proposed methodology for probabilistic voltage stability
assessment. In Section IV, the test system used in the present
investigation together with wind turbine and wind power plant
model are described. Results of the case studies are presented
and discussed in Section V. Section VI concludes the paper.

II. INDICES FOR VOLTAGE STABILITY ASSESSMENT

VSIs are used to assess proximity to voltage collapse
at any operating point. There are many VSIs proposed in
literature [15]. While some VSIs detect weakest bus or line
in the system, some other VSIs can predict voltage collapse
proximity of overall system. Objective of VSIs is to define a
scalar magnitude which can be monitored as system parameter
changes [8]. Therefore the trajectory of VSIs needs to be
predictable and smooth, such that acceptable predictions can
be made. In this paper existing traditional overall VSIs that
can predict system collapse point are used. These VSIs are
briefly described in the following subsections.

A. Eigenvalue analysis

Eigenvalue analysis for voltage instability evaluation was
proposed Gao et. al in [16]. Eigenvalue decomposition of the
Jacobian matrix can be written as in (1), if the Jacobian matrix
is diagonalizable.

JR = ξ Λ η (1)

where,
Λ = diagonal eigenvalue matrix of reduced Jacobian

matrix, JR
ξ = right eigenvector matrix of JR
η = left eigenvector matrix of JR

Each eigenvalue represents a mode of the system. Magnitude
of each eigenvalue determines weakness of the corresponding

mode. Smaller the magnitude of eigenvalue, weaker is the
mode. The system collapses when the minimum eigenvalue
of the system becomes zero.

B. PV curves

PV curves (also known as nose curves) show relation be-
tween active power transferred and the voltage at the receiving
end [9], [17]. With increasing load demand, active power
transferred increases until it reaches point of maximum power
transfer (MPT) and then starts to decrease. The maximum
power transfer value corresponds to the knee point of the
PV curve. Beyond the knee point, voltage drops rapidly with
increase in active power demand, causing voltage instability.
The voltage corresponding to knee point is known as critical
voltage.

C. Loading Margin

Loading margin of a system at a particular operating point
is defined as the amount of additional load increase that would
cause a voltage collapse [8]. Loading margin can be obtained
from the distance of the operating point from the knee point
on the PV curve. If load is assumed to have constant power
factor, loading margin can be obtained from measure of only
active load power. The system collapses when loading margin
reduces to zero.

III. PROBABILISTIC VOLTAGE STABILITY ASSESSMENT
METHODOLOGY

For voltage stability assessment of power systems with large
number of WPPs besides change in load power, it is important
to take into account variability in wind power generation.
Wind is a variable source which causes variations in the power
production from WPP. To account for uncertainty, probabilistic
voltage stability assessment is proposed in this paper.

Wind speed changes between two consecutive time periods
t and t+1, which causes change in wind power production. If
PW,t is the wind power production at t time instant, PW,t+1

can be either higher or lower than PW,t. Statistical analysis
of wind power data (measured or simulated) at t+ 1 instant,
sorted according to wind power PW,t shows the probability
distribution of possible changes in wind power at t + 1 time
instant.

p = F (PW,t+1) = Pr(PW,t+1 ≤ PW ) (2)

where, p is the probability that PW,t+1 is smaller than or equal
to some value of wind power, PW . This is illustrated in Fig. 1.
All PW,t+1 are sorted into a bin such that PW,t ∈ (a, b]. a and
b denote the edges of the bin. In Fig. 1, cumulative probability
distribution of wind power at t+1 instant is shown when initial
wind power, PW,t ∈ (0.6, 0.7] pu. The per unit value is based
on the nominal capacity of WPP.

Since wind power is continuous increasing variable, inverse
of cumulative probability distribution expressed in (2), gives
the value of PW,t+1 if probability value p is known, such that
F (PW,t+1) is greater or equal to p.

PW,t+1 = F−1(p) = inf{PW ∈ [0, 1] : F (PW,t+1) ≥ p} (3)
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Fig. 1. Illustration of cumulative distribution function of possible values of
wind power at t + 1 instant when the wind power at instant t lies with the
interval (0.6,0.7].

Since a set of PW satisfies the condition F (PW,t+1) ≥ p,
lower bound of the set is considered. From (3) it can be
observed that, PW lies within the the interval of [0,1] which
are the minimum and maximum value of possible wind power
in per unit based on nominal capacity of WPP.

Fig. 1 shows that if present wind power lies within the
interval (0.6, 0.7], there is 0.95 probability that wind power
will remain below 0.81 pu and 0.05 probability that it can fall
below 0.5 pu. In both cases VSI of the system will be affected.
Depending on the network parameters increasing of wind
power may decrease the VSI and vice-versa. To generalise
the probabilistic voltage stability assessment methodology, risk
of both increase and decrease in wind power are considered.
Considering risk of increase in wind as pu and risk of decrease
in wind as pl, probabilistic values of wind power at t+1 instant
can be derived from (3).

PW,t+1,u = inf{PW ∈ [0, 1] : F (PW,t+1) ≥ pu} (4)

and

PW,t+1,l = inf{PW ∈ [0, 1] : F (PW,t+1) ≥ pl} (5)

Considering a risk of 5%, values of pl and pu can be set to
0.05 and 0.95 respectively. pl = 0.05 implies there is 0.05
probability that PW,t+1 ≤ PW,t+1,l. To include maximum
possible deviations, of wind power risk can be set to 1%,
which implies pl = 0.01 and pu = 0.99.

Using the probabilistic values of wind power at t+1 instant,
probabilistic voltage stability index (PVSI) corresponding to
risk of increase and decrease in wind power are computed.

PV SIu = V SI : PW = PW,t+1,u (6)

and
PV SIl = V SI : PW = PW,t+1,l (7)

The probabilistic voltage stability assessment methodology
proposed in this paper follows a conservative approach. There-

fore between PV SIu and PV SIl, the one depicting closer
proximity to voltage collapse is taken as the PVSI.

PV SI = min(PV SIu, PV SIl) (8)

In other words, PVSI predicts worse case VSI at future instant.
The methodology proposed in this paper emphasises on

voltage stability assessment considering variability of wind
power. Any existing VSI (as described in Section II) can be
used in conjunction with the proposed methodology to assess
the impact of wind power variability on voltage stability of
the system. With increase in stochastic generation sources, this
methodology could be used by transmission system operators
for security assessment studies, together with traditional VSIs.
Regarding computational burden of the methodology, it can be
implemented in two phases, offline and online.

A. Offline phase

Offline phase requires pre-processing of measured or sim-
ulated wind power data at WPP location. Since wind speed
varies according to geographical location as well as meteo-
rological conditions, probability distribution of wind power
(derived from wind speed) is WPP location specific. Data for
each WPP needs to be assessed distinctly. This can be done
offline and stored in lookup tables. To illustrate, probability
distribution matrix of wind power at an offshore location in
North Sea is shown in Fig. 2. One year data at resolution of
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Fig. 2. Probability distribution matrix of wind power data at resolution of 10
minutes. Wind power data has been binned into 10 bins, each of width 0.1
pu.

10 minutes has been used to obtain the probability distribution
matrix. The complete data set is binned into 10 bins, each
of width 0.1 pu (on nominal capacity of WPP), to obtain
the probability distribution matrix. It can be observed that
the probability distribution is concentrated along the diagonal
of the matrix. This is expected since the probability of wind
power to stay in the current state is high in 10 min interval.
Depending on the time interval of study, resolution of data can
be chosen. Probability distribution of wind power will vary if
a higher or lower study time interval is chosen. To illustrate



this, probability distribution matrix of wind power at the same
location but at resolution of 30 minutes is shown in Fig. 3.
Diagonal of the probability distribution matrix in Fig. 3 is
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Fig. 3. Probability distribution matrix of wind power data at resolution of 30
minutes. Wind power data has been binned into 10 bins, each of width 0.1
pu.

spread widely as compared to Fig. 2. The reason for this is
the variability of wind power in the considered location in
30 min interval. In 30 min, the probability of changing the
current wind speed is evenly spread in all neighbouring bins.
Therefore, based on time interval study, appropriate probability
distribution needs to be chosen.

B. Online phase

Online phase involves PVSI calculation based on current
operating conditions. Based on system variables at instant t,
VSI is estimated for worse case scenario at t+ 1 instant. This
phase requires two PVSI calculations corresponding to risk of
increase of wind power and risk of decrease of wind power.
The two values are then compared to obtain the worse case
PVSI.

IV. TEST SYSTEM

A. Wind Turbine and Wind Power Plant Model

A 360 MW aggregated WPP is considered in this paper.
The WPP model as shown in Fig. 4, consists of a single
WT together with equivalent impedance of aggregated power
collection system [18]. Full rated converter based Type 4A

Fig. 4. Aggregated WPP model [13]

WT model as defined by IEC standard 61400-27-1 [19], [20]

is used in this paper. Reactive power support from WPP is ob-
tained by operating the WPP in “Q control” mode [21], which
ensures reactive power control independent of active power.
In this paper, to utilise maximum reactive power availability,
WPP is are operated at maximum reactive power capability
which is is both active power production and grid voltage
dependent. The reactive power capability model of WPP is
modelled based on work done by authors in [13]. Reactive
power capability of converter connected Type 4 WTs can be
either converter voltage limited or converter current limited.
At WPP level, converter voltage limited reactive power and
converter current limited reactive power can be defined by (9)
and (10) respectively.

QV =

√√√√(VGVC
|Zeq|

)2

−
(
PW +

V 2
GReq

|Zeq|
2

)2

− V 2
GXeq

|Zeq|
2

(9)

QI =
√

(VGImax
C )2 − P 2

W (10)

where,
VG = grid voltage at point of connection of WPP
VC = maximum allowable converter voltage

(VC = V max
C , for maximum injection capability

VC = V min
C , for maximum absorption capability)

Imax
C = maximum allowable converter current
PW = active power production from WPP
Zeq = Req + jXeq , sum of impedance of aggregated

collection system cables, individual WTs and
WT transformers

Maximum reactive power injection capability of WPP is
obtained from (11).

Qlim = min(QV , QI) +BeqV
2
G (11)

where,
Beq = equivalent shunt susceptance of collection system

cables
Fig. 5 illustrates WPP reactive power capability characteristics.
The solid lines in Fig. 5 represent reactive power injection
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capability. Dotted lines represent reactive power absorption
capability of the WPP. If the voltage at WPP connection point
is maintained constant by an OLTC transformer, reactive
power capability of WPP reduces with increase in wind
power production. In the considered test system, the WPP
is connected to the transmission grid through an OLTC
transformer such that the WPP side voltage is maintained at
1 p.u.

Stochastic wind power time series data for one year is
simulated using CorRES (Correlations in Renewable Energy
Sources) software which has been developed at Technical
University of Denmark, Department of Wind Energy [22]–
[24].

B. Power System

A simple test system, as shown in Fig. 6, is considered for
the case study. The test system comprises of a synchronous
generator representing the external power system, a load
and an aggregated wind WPP model which is connected to
the power system through an OLTC transformer. This test
system is based on typical WPP connection to transmission
grid as illustrated in [25]. Parameters of the test system are
given in Table I. Since steady-state studies are performed in

Fig. 6. Test system model

TABLE I
TEST SYSTEM PARAMETERS

Parameter Value
Synchronous Generator Rating 1000 MVA

WPP Rating 360 MW
Load Power Factor 0.9

this paper, dynamic components of synchronous generators,
like, governor, exciter and power system stabiliser are not
modelled. Parameters for OLTC transformer are given in Table
II. Probability of variation of load at t+1 instant has not been

TABLE II
OLTC TRANSFORMER PARAMETERS

Parameter Value
Maximum transformer ratio, rmax 1.1
Minimum transformer ratio, rmax 0.85

Per tap change, ∆r 0.01
Deadband ±0.01

considered in this paper.

V. RESULTS AND DISCUSSION

A. Voltage stability assessment with wind power

In the following case studies, impact of variation of wind
power without and with maximum reactive power support from
WPP is studied. Four different scenarios of combination of
active and reactive power support from WPP are considered.

Case 1: PW = 0, QW = 0
Case 2: PW = Pmax, QW = 0
Case 3: PW = Pmax, QW = Qmax

Case 4: PW = 0, QW = Qmax

Case 1 represents that no WPP is connected to the system.
Case 2 and Case 3 depict maximum wind power production
without and with reactive power support from WPP respec-
tively. Case 4 corresponds to the scenario when WPP provides
maximum reactive power support even though there is no wind
power production. This case is similar to emulating WPP as
static synchronous compensator (STATCOM).

For these case studies, load is increased to study the impact
on VSIs. Fig. 7 shows characteristic of PV curve of load
bus, minimum eigenvalue of the system and system load
margin with increased loading. It can be observed that with
increased loading, system moves closer to voltage collapse. In
this paper constant power factor load is assumed. Therefore,
increased loading is represented by increase in active load
power. It can be observed from Fig. 7a that for Case 1 MPT
is reached at 720 MW. For Case 2 when WPP is producing
maximum wind power, MPT increases to 800 MW, even
though there is no reactive power support from WPP. This
is due to the mid point location of WPP in the test system.
Wind power production reduces loading of the line connecting
bus 1 and 2 in Fig. 6, resulting in increased MPT. In Case 3
when WPP is producing maximum wind power as well as
providing maximum available reactive power to the system,
MPT increases to 880 MW. In Case 4, when WPP is behaving
as STATCOM, MPT is 830 MW which is better than Case
1 and Case 2. Similar results can be observed in Fig. 7b.
Minimum eigenvalue improves with inclusion of WPP in the
system. Further betterment is observed, with reactive power
support from WPP. Voltage collapse occurs in the system
when minimum eigenvalue reaches zero. The system is on
the verge of voltage collapse below minimum eigenvalue of
0.4. In Fig. 7c, it can be observed that for the test system,
load margin is smooth and linear. At any loading, there is a
clear improvement in load margin with reactive power support
from WPP. If maximum reactive power support from WPP
is utilised regardless of wind power production, load margin
will vary between the load margins for Case 3 and Case 4
depending on the load values.

B. Probabilistic voltage stability assessment

To calculate PVSI load power is assumed to be constant at
800 MW while wind power production is varied from 0 to
360 MW which is the nominal capacity of the WPP under
study. From Fig. 7c it can be observed that load value of
800 MW represents stressed operating point. The wind power
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Fig. 7. Voltage stability indices for four scenarios : (i) WPP disconnected
(ii) WPP producing nominal power, no reactive power support from WPP (iii)
WPP producing nominal power, maximum reactive power support from WPP
(iv) WPP producing no power, maximum reactive power support from WPP

series at resolution of 10 minutes is considered. The data is
sorted into 10 bins of width 0.1 pu (on nominal capacity of
WPP). Pre-processed probability distribution matrix shown in

Fig. 2 is used to calculate 5% risk in increase and decrease
of wind power for each bin. The WPP is controlled such that
WPP provides maximum available reactive power to the grid.
Fig. 8 shows comparison of VSI vs PVSI in case of load
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Fig. 8. Load margin vs wind power with reactive power support from WPP

margin. Since PVSI is either less than or equal to VSI, it
gives an intentional conservative estimation of proximity to
voltage collapse. For the test system used in this case study,
PVSI decreases with decrease in wind power although reactive
power capability of WPP increases (as seen in Fig. 5).

Time-series simulation of the proposed methodology to
predict PVSI is shown in Fig 9. It can be observed from
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Fig. 9. Comparison of time series simulation of voltage stability indices with
probabilistic voltage stability assessment approach

Fig. 9 that fluctuations in wind power production result in
fluctuations in VSI (minimum eigenvalue and load margin).
For both minimum eigenvalue and load margin, PVSI is able
to predict worse case change in VSI. PVSI is always less than
or equal to VSI, therefore giving conservative approximation



of proximity to voltage collapse. It can be observed that not
including uncertainty of wind power can lead to calculation
of incorrect VSI, which may not reflect actual proximity
of the system to voltage collapse. Using PVSI, threshold
for corrective measures could be set up to prevent voltage
collapse.

VI. CONCLUSION

This paper presents voltage stability assessment including
maximum reactive power support from wind power plants. To
account for temporal variations in wind power, a novel prob-
abilistic voltage stability assessment methodology is proposed
using the existing traditional VSI. The results have shown that
reactive power support from WPP improves stability index
of the system. Regardless of variability of of wind power,
maximum available reactive power support from of WPPs
helps in alleviating voltage stability margin. Probabilistic
voltage stability index shows that not considering variability of
wind power can lead to overestimation of proximity to voltage
collapse. The proposed methodology predicts realistic stability
index at future instant based on current system parameters, as
seen from the result of time-series simulations. It is worth
mentioning that the presented methodology is generic for any
variable renewable energy sources. The proposed methodology
can provide system operators new insights into the possibility
to set up corrective measures to prevent voltage collapse in
power system with high share of renewable power generations.
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