
P
os
te
d
on

11
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
14
92
62
2.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Malicious URL Detection using Deep Learning

vinayakumar R 1, Sriram S 2, Soman KP 2, and Mamoun Alazab 2

1Amrita Vishwa Vidyapeetham
2Affiliation not available

October 30, 2023

1



1

Malicious URL Detection using Deep Learning
Vinayakumar R, Sriram S, Soman KP, and Mamoun Alazab, Senior Fellow, IEEE

Abstract—Malicious Uniform Resource Locator (URL), a.k.a.
malicious website is a primary mechanism to host unsolicited con-
tent, such as spam, malicious advertisements, phishing, drive-by
exploits, to name few. There is imperative to detect the malicious
URLs in a timely manner. Previous studies have used blacklisting,
regular expression and signature matching approaches. These
approaches are completely ineffective at detecting variants of
existing malicious URL or entirely newly found URL. This
issue can be mitigated by proposing the machine learning based
solution. This type of solution requires an extensive research in
feature engineering and feature representation of security artifact
type e.g. URLs. Moreover, feature engineering and feature rep-
resentation resources must be continuously reformed to handle
the variants of existing URL or entirely new URL. In recent
times, with the help of deep learning, artificial intelligent (AI)
systems achieved human-level performance in several domains
and even outperformed human vision in several computer vision
applications. They have the capability to extract optimal feature
representation by itself by taking the raw inputs. To leverage
and transform the performance improvement of them towards
the cyber security domain, we propose DeepURLDetect (DUD) in
which raw URLs are encoded using characters level embedding.
Character level embedding is a state of the art method in NLP
for representing character in numeric format. Hidden layers in
deep learning architectures extract features from character level
embedding and then feed forward network with a non-linear
activation function estimates the probability that the URL is
malicious. In this work, we evaluate various state of the art deep
learning based character level embedding methods for malicious
URL detection. The optimal deep learning based character level
embedding model is selected by conducting various experiments.
All the experiments of various deep learning based character
level embedding models are run till 500 epochs with learning rate
0.001. The performance obtained by proposed method, DUD is
closer and computationally inexpensive in compared to various
state of the art deep learning based character level embedding
methods in all test cases. Moreover, deep learning architectures
based on character level embedding models outperformed n-
gram representation. This is primarily due to the reason that
the embedding captures the sequence and relation among all the
characters of URL.

Index Terms—Cyber security, Cybercrime, Malicious URL,
Machine learning, Deep learning, Character embedding.

I. INTRODUCTION

MALICIOUS Uniform Resource Locator (URL) host
unsolicited information and attackers use malicious

URLs as one of a primary tool to carry out cyber crimes. E-
mail and social media resources such as Facebook, Twitter,

This work was supported by the Department of Corporate and Information-
Services, Northern Territory Government of Australia, the Paramount Com-
puter Systems, and Lakhshya Cyber Security Labs.

Vinayakumar R, Sriram S, and Soman KP was with Center for Com-
putational Engineering and Networking(CEN), Amrita School of Engineer-
ing, Coimbatore Amrita Vishwa Vidyapeetham, India e-mail: (vinayaku-
marr77@gmail.com).

Mamoun Alazab was with Charles Darwin University, Australia e-mail:
(mamoun.alazab@cdu.edu.au).

WhatsApp, Orkut etc. are the most commonly used appli-
cations to spread the malicious URLs [1], [2], [3]. They
host unsolicited information on the web page. Whenever an
unsuspecting user visits that website unknowingly through the
URL, a host will be compromised, making them victims of
various types of frauds including malware installation, data
and identity theft. Every year, malicious URLs have been
causing around billions of dollars worth of losses [4]. These
factors force the development of efficient techniques to detect
malicious URLs in a timely manner and give an alert to the
network administrator.

Most of the commercial products exist in markets are based
on blacklisting [5]. This relies on a data base which contains a
list of malicious URLs. These are continually updated by anti-
virus group through scanning and crowdsourcing solutions.
This can detect the malicious URL which already exists in the
data base more accurately. This completely fails at detecting
the variants of existing malicious URL or the entirely new
malicious URL itself. In recent days, malicious authors follow
mutation techniques to generate the several variants of existing
malware. To cope with this, machine learning techniques are
followed.

In recent days, the most commonly used approach is
applying domain knowledge to extract lexical features of
URL, followed by applying machine learning models. Most
commonly used feature engineering is Bag-of-words (BoW)
and most commonly used machine learning model is support
vector machine (SVM) [6]. Though machine learning based
solution can be used instead of blacklisting methodology, it
suffers from many issues:

1) The conventional URL representation methods fails to
capture the sequential patterns and relation among the
characters.

2) Conventional machine learning models relies on manual
feature engineering. This requires an extensive domain
knowledge in cyber security domain and considered as
a daunting task. The methods based on features are not
safe in an adverserial environment.

3) Fails to hold unrevealed features and it doesn’t general-
ize on the test data. Additionally, the number of unique
words immensely large, the machine learning model
faces memory constraints while training.

To alleviate the aforementioned issues, this work propose
christened DeepURLDetect (DUD) which uses modern ma-
chine learning typically called as ’deep learning’ with non-
linear character embedding. Deep learning uses multiple hid-
den layers in which each layer does nonlinear projection to
learn representations of multiple levels of abstraction. The
main contributions of the proposed work are:

1) Detailed investigation and analysis of various benchmark



2

deep learning architectures are performed for malicious
URL detection.

2) Various types of data sets are used in experimental
analysis to find out how the models are generalizable.
The difference between the time-split and random-split
is shown in the experimental analysis.

3) Experiments are shown for character level embedding
and n-gram representation with various deep learning
architectures

The rest of the sections of this chapter are organized as
follows. Section 2 discusses the related works of malicious
URL detection. Section 3 provides information about URLs.
Section 4 discusses the background details of benchmark
text classification models and the proposed model. Section 5
provides the major shortcomings in malicious URL detection.
Section 6 includes description of data set. The working flow
of malicious URL detection is discussed in Section 7. Section
8 contains information of proposed architecture. Details of
performance measures is discussed in Section 9. Results are
discussed in Section 10. At last, conclusion and future works
are placed in Section 11.

II. RELATED WORKS

The detailed literature survey of machine learning based
malicious URL detection, see [6]. This section discusses the
most important works towards malicious URL detection.

At beginning stages, blacklisting, regular expression and
signature matching approaches are most commonly used for
malicious URL detection. These methods completely fails
to detect new or variant of existing URL. Moreover, the
signature data base has to be updated frequently to handle new
patterns of malicious URL. Later, machine learning algorithms
were used to effectively detect new types of malicious URL.
Conventional machine learning algorithms depends on feature
engineering to extract a list of features from URL. This
feature engineering requires an extensive domain knowledge
of URL in cyber security and a list of good features has
to be carefully chosen through feature selection. There are
various types of features were used in the published works
for malicious URL detection. This includes blacklist features
[7], [8], lexical features [9], [8], [10], host based features
[11], [12], [13], content features, context and popularity based
features [14], [15], [16]. Blacklist features are estimated
through by checking its presence of a URL in a blacklist. This
could serve as a strong feature in identifying malicious URL.
Lexical features are estimated through the string properties of
the URL e.g. number of special characters, length of URL
etc. Host based features are obtained from the host name
properties of the URL. This includes information related to
WHOIS information, IP Address, Geographic location etc.
Content feature are derived from the HTML and JavaScript
when an unsuspecting user visits a webpage through the
malicious URL. Content features includes information related
to their ranking, popularity scores and source of sharing. Many
existing studies have used separate feature category and as
well as a combination of these features which was continually
determined through domain experts.

Feature engineering is a daunting task with considering the
security threats. For example, obtaining context based features
consumes more time and it is high risky too. Moreover,
feature selection requires extensive domain knowledge. The
information which is obtained directly from the raw URL was
well-known approach [8], [17]. From the published results,
obtaining the lexical feature is easier in comparison to other
features and it gave good performances [18]. Statistical prop-
erties of the URL string such as length of the URL, number
of special characters [19] have been most commonly used
and other most popular features were BoW, term frequency
methods such as term document matrix (TDM) and term
frequency and inverse document frequency (TF-IDF) and n-
gram features [8], [18], [19]. All these features are not effective
in extracting sequential order and semantics of URL. This
completely disregards the information from unseen characters.
Moreover, malicious URL detection solution based on the
feature engineering with conventional machine learning can
be easily broken by an adversary.

In recent days, the application of deep learning with char-
acter level embedding has been used for malicious URL
detection [37], [38], [39], [40], [41], [42], [43], [44], [45].
In [20] compared a detailed analysis of deep learning with
character level embedding and conventional machine learning
with feature engineering methods for malicious and phishing
URL detection. Deep learning architectures performed well in
comparison to the conventional algorithms. The application of
recurrent neural network (RNN) and long short-term memory
(LSTM) applied to phishing URL detection [21]. For com-
parative analysis, lexical features and statistical URL analysis
was used with random forest classifier. Both models performed
well, the performance of LSTM was good in comparison
to the conventional machine learning method. In [22] used
convolution neural network (CNN) with character level char-
acter level Keras embedding for detecting malicious URLs,
file paths and registry keys. This study showed how a unique
deep learning architecture could be used on different cyber
security problems. Like this, there are so many benchmark
deep learning architectures exist. In this work, we evaluate
the performance of various deep learning architectures for
malicious URL detection.

III. AN OVERVIEW OF UNIFORM RESOURCE LOCATOR
(URL)

A uniform resource locator (URL) is a part of uniform
resource identifier (URI) which is used to identify and retrieve
a resource from the internet service. A URL is composed of
two parts, shown in Fig. 1. The first part defines the type of
protocol, for example http or https, the second part defines the
domain name or IP address and the third part defines path and
its parameters to a specific resource on the web. The protocols
are separated by double slash from a complete URL, domain
name are separated by dot and path and its parameters are
separated by single slash. A sample URL is given in Fig. 1.
An adversary use URL as a main source to host malicious
activities. Most commonly the malicious URLs are spreaded
via email and other social media apps. Once an unsuspecting



3

TABLE I: Character level deep learning architectures

Name Architecture Task
Endgame [28] LSTM Detecting and categorizing domain names that are generated by DGAs

Invincea [22] CNN To detect malicious URLs, file paths and registry keys

CMU [34] Bidirectional recurrent structures Social media text classification, Twitter

MIT [42] Hybrid of CNN and LSTM Social media text classification, Twitter

NYU [35] Stacked CNN layers Text classification

user visits a malicious URL, a host will be compromised.
Thus detecting the nature and type of URL is considered as a
significant task.

Fig. 1: Uniform resource locator (URL) components

IV. BACKGROUND DETAILS OF DEEP LEARNING MODELS

A. Hybrid architecture - convolutional neural network and
long short-term memory (CNN-LSTM) with character level
Keras embedding

Convolutional neural network (CNN) based on character
(CNN-C) level is a minimal variant of the deep CNN based on
character level [36]. CNN-C primarily uses one dimensional
convolution and pooling operations also called as temporal
convolution and temporal pooling respectively. CNN-C ex-
tracts optimal features from the character level representation
of URL. For character level representation, the character
level Keras embedding representation is used. This takes 3
parameters such as dictionary size, maximum length of the
character vector and embedding vector length. Initially, the
character level Keras embedding weights are initialized and it
can be controlled so it served as hyper parameter. The weights
are optimized during backpropogation. The CNN features are
passed into LSTM which facilitates to learn character level
sequence representation. The flow can be formulated as given
below

E = Character Level Keras embedding(URL) (1)

C = CNN(E) (2)

L = LSTM(C) (3)

Finally the L is passed into fully connected layer for
classifying the URL into either benign or malicious.

O = σ(L) (4)

Where σ is sigmoid activation function

B. Character based models

Character based model takes an input text as a string of
characters and automatically extracts features. These features
can be used for performing different tasks for e.g. text classifi-
cation. There are different character based models exist in the
field of natural language processing (NLP), in this work the
efficacy of them are evaluated for cyber security application
namely malicious URL detection, otherwise the best character
based model will not be known for malicious URL detection.
All model use embedding as first layer to transform the URLs
into numeric vectors. The details of the various character based
models are given in Table I. The details of the various character
based models are given below

1) Character level models based on RNN
Endgame Architecture: [28] It uses LSTM with char-
acter level Keras embedding for modeling domain gen-
eration algorithms (DGAs) to detect and categorize the
domain names that are generated by DGAs. As character
level Keras embedding facilitates to learn the sequence
of characters of domain names which helps to preserve
the order of character in domain names. Moreover, it
completely avoids the feature engineering method that
is an important step for classical machine learning meth-
ods. The method has outperformed well in comparison to
the other methods such as hidden markov model, feature
engineering and bigrams with classical machine learning
classifiers. The proposed LSTM network composed of
an embedding layer for URL representation, LSTM layer
for optimal feature extraction and logistic regression for
classification. The embedding layer maps each character
to of shape 128 and passes into LSTM for feature learn-
ing and logistic regression for assigning a probability
score for each domain name.
CMU Architecture: [34] CMU Architecture named as
Tweet2vec for tweet representation and classification for
social media data. It uses bidirectional gated recurrent
unit (BGRU) to learn feature representation of Twitter
data. The tweets are tokenized into a stream of char-
acters and each character is represented by using one-
hot character encoding. These one-hot representations
are mapped into a character space and passes into the
BGRU. It contains forward and backward GRU which
facilitate to learn the sequence of characters in the
domain name. Both the forward and backward GRU
layers are combined using a fully connected layer and
softmax non-linear activation function was used for
tweet classification particularly to predict hashtags of
tweets. For comparative study, the tweet2vec is evaluated



4

on the word level tweet representation.
2) Character level models based on CNN

NYU Architecture: Convolutional neural network
(CNN) is most commonly used in the field of image
processing. In recent days, 1D CNN has been mapped
into text classification [35]. They used word based
CNN and LSTM. The CNN of NYU is stacked CNN.
With CNN, pretrained embedding, embedding and
look up tables are used as text representation methods.
With LSTM, pretrained word embedding is used as
text representation method. For evaluation, they used
different types of large scale data sets. They claimed
that the character level CNN model performed well in
comparison to the classical and deep learning models.
The efficacy of deep learning models is evaluated on
the classical text representation methods such as BoW,
n-gram with TF-IDF.
Invincea Architecture: To model short character
strings such as URLs, file paths, or registry keys of
cyber security data, [22] proposed CNN network. This
CNN network is composed of character level Keras
embedding layer, parallel CNN layer and followed
by 3 fully connected layers. All 3 fully connected
layers contain 1,024 units and ReLU as an activation
function. The architecture uses batch normalization and
dropout regularization technique to speed up the model
training and prevent from over fitting. To classify the
short character strings as either legitimate or malicious,
the CNN network contains a fully connected layer with
unit 1 and sigmoid non-linear activation function.

3) Character level models based on hybrid CNN and
RNN
MIT Architecture: [36] This is an extension of NYU
model for tweet classification. It is composed of stacked
CNN layers followed by an LSTM layer. The stacked
CNN layer results in overfitting. To alleviate this, mini-
mum number of parameters is used, i.e. one CNN layer
followed by LSTM layer.

C. Problem Formulation

The objective of this work is to classify a given URL
as either legitimate or malicious and classification prob-
lem is binary. Let’s consider a set of URLs U =
{(u1, y1), (u2, y2), · · · (un, yn)} where u represents URL and
y represents ’0’ for legitimate and ’1’ for malicious.

There are two steps involved in classification procedure,
one is appropriate feature representation and second one is
prediction function. Feature representation forms n dimen-
sional vector representation xn which can be passed into
prediction function as input yn = sign(f(xn)). The main
aim is to minimize the total number of misclassification in
classification procedure. This can be achieved by minimizing
the loss function. This type of loss function can also include
regularization term. In this work f is represented as deep
learning architectures.

V. SHORTCOMINGS IN MALICIOUS URL DETECTION

There are no publically available benchmark data sets for
research in malicious URL detection. Most of the published
results on malicious URL detection have used their own private
data sets in evaluating the efficacy of various conventional
machine learning algorithms and deep learning architectures.
These private data sets are collected from various sources
such as Alexa, DMOZ, Phishtank, OpenPhish, MalwareDo-
mains, MalwareDomainList and many others. Though, these
approaches cannot be regarded as generic methods due to the
data sets are not common in the methods. Most of the pub-
lished results haven’t given any importance to the time-split
methodology to divide the data into train and test. Recently,
[27] discussed the importance of time-split in dividing the
data into train and test sets. The data splitting methodology
based on time-split is very important to meet the zero day
malware detection. Recently, the background reason behind
why machine learning based solutions for security are not
deployable discussed by [24]. The detailed test cases that
should be considered in test experiments is discussed in
detail by [25]. These different test cases helps to evaluate
the robustness of machine learning based solutions. Moreover,
they have discussed the difficulty behind applying data science
techniques for cyber security.

VI. DESCRIPTION OF DATA SET

It is necessary that different forms of URL have to be used
to assess the performance of various conventional machine
learning classifiers and deep learning architectures. There are
two types of data sets are used. They are Data set 1 and Data
set 2. The Data set 1 is collected from publically available
sources such as Alexa.com, DMOZ directory, MalwareDo-
mainlist.com and MalwareDomains.com, CEN Amrita Vishwa
Vidyapeetham research internal network backbone. The Data
set 2 is from Sophos research [26]. Most commonly used
methodology for dividing data into train and test is random-
split [31]. Data set 1 follows random-split. The classifier which
is modeled using random-split approach is not an efficient
splitting methodology to meet zero day malware detection
[27]. Data set 2 follows both the random-split and time-split
[27]. In the domain of Cyber security, it is good to follow the
time-split. This facilitates to enhance the zero day malware
detection. The detailed statistics of both Data set 1 and Data
set 2 are reported in Table II.

TABLE II: Detailed statistics URL data set

Data set Category Legitimate Malicious
Data set 1 train 212,751 175,121

Data set 1 test 122,406 101,616

Data set 2 random-split train 43,771 43,430

Data set 2 random-split test 18,516 18,857

Data set 2 time-split train 39,271 47,044

Data set 2 time-split test 23,016 15,243



5

VII. MODEL CONFIGURATION OF MALICIOUS URL
DETECTION ENGINE

The working flow of malicious URL detection process is
shown in Fig. 2. It is composed of 3 different sections.
They are (1) preprocessing (2) optimal features extraction (3)
classification
In preprocessing, the URLs are transformed into feature vector
using text representation methods and the optimal features
from the numeric vectors are extracted using various bench-
mark models such as Invincea, NYU, MIT, CMU, Endgame
and proposed model, DeepURLDetect (DUD) and finally
classification is done using fully connected layer with non-
linear activation function.

Fig. 2: Malicious URL Detection Engine

The characters in URLs are converted into lower case. This
is due to domain names are case insensitive and differentiating
between capital and small letters may cause regularization
issue. Otherwise, the models has to be run for more number
of epochs to learn the patterns of all possibilities of characters
exist in the URLs. The Data set 1 corpus contains 150
unique characters, dictionary size and the maximum length
of the URL is 2,307. The Data set 2 random-split and time-
split corpus contains 42 unique characters and the maximum
length of the URL is 246. The URL which is lesser than the
maximum length is padded with 0. The detailed architecture
and configuration details of DUD is shown in Table III and
Table IV for Data set 1 and Data set 2 random-split and time-
split respectively. In DUD, character level Keras embedding
contains 128 as embedding size, as each character is mapped
into 128 dimension. This helps to learn the similarity among
characters by mapping the semantics of similar characters to
similar vectors. All models contains character level Keras em-
bedding as URL representation method and the dimensionality
of the embedding size is set to same size to conduct a fair
comparative evaluation strategy. To know the effectiveness of
character level Keras embedding, 3-gram text representation
method is mapped into domain names. The features of 3-
grams are hash it into a vector of length 1,000 using feature
hashing. These 1,000 dimensional vectors are passed into

DNN for optimal feature extraction and classification, the
detailed configuration parameter details of DNN is available
in Table V. To avoid overfitting and speed up the training
process, dropout and batch normalization is used respectively
in between the DNN layers. Followed by embedding layer,
DUD contains convolution layer. This layer contains 64 filters
with filter length 5, activation function ReLU . Convolutional
layer follows maxpooling with pool length 4, LSTM with
70 memory blocks. Finally the optimal features are passed
into fully connected layer which contains sigmoid non-linear
activation function which results in 0 for legitimate and 1 for
spam. The loss function is binary cross entropy and defined
mathematically as given below.

loss(pd, ed) = − 1

N

N∑
i=1

[edi log pdi + (1− edi) log(1− pdi)]

(5)
where pd is a vector of predicted probability for all samples

in testing data set, ed is a vector of expected class label, values
are either 0 or 1.

TABLE III: Detailed configuration parameter information of
DUD for Data set 1

Layer (type) Output Shape Param #
embedding 1 (Embedding) (None, 2307, 128) 19200

conv1d 1 (Conv1D) (None, 2306, 128) 32896

max pooling1d 1 (MaxPooling1 (None, 1153, 128) 0

lstm 1 (LSTM) (None, 70) 55720

dense 1 (Dense) (None, 1) 71

activation 1 (Activation) (None, 1) 0

Total params: 107,887
Trainable params: 107,887
Non-trainable params: 0

TABLE IV: Detailed configuration parameter information of
DUD for Data set 2 random-split and time-split

Layer (type) Output Shape Param #
embedding 1 (Embedding) (None, 246, 128) 5376

conv1d 1 (Conv1D) (None, 245, 128) 32896

max pooling1d 1 (MaxPooling1 (None, 122, 128) 0

lstm 1 (LSTM) (None, 70) 55720

dense 1 (Dense) (None, 1) 71

activation 1 (Activation) (None, 1) 0

Total params: 94,063
Trainable params: 94,063
Non-trainable params: 0

VIII. PROPOSED ARCHITECTURE - DEEPURLDETECT
(DUD)

The proposed architecture for malicious URL detection in
an Ethernet level is shown in Fig. 3. It is typically called
as DeepURLDetect (DUD). DUD is a christened hybrid of
convolution and long short term memory in-house model. This
module can be added to the existing scalable framework for



6

TABLE V: Detailed configuration details of DNN

Layer (type) Output Shape Param #
dense 1 (Dense) (None, 128) 128128

batch normalization 1 (Batch (None, 128) 512

activation 1 (Activation) (None, 128) 0

dropout 1 (Dropout) (None, 128) 0

dense 2 (Dense) (None, 96) 12384

batch normalization 2 (Batch (None, 96) 384

activation 2 (Activation) (None, 96) 0

dropout 2 (Dropout) (None, 96) 0

dense 3 (Dense) (None, 64) 6208

batch normalization 3 (Batch (None, 64) 256

activation 3 (Activation) (None, 64) 0

dropout 3 (Dropout) (None, 64) 0

dense 4 (Dense) (None, 32) 2080

batch normalization 4 (Batch (None, 32) 128

activation 4 (Activation) (None, 32) 0

dropout 4 (Dropout) (None, 32) 0

dense 5 (Dense) (None, 16) 528

batch normalization 5 (Batch (None, 16) 64

activation 5 (Activation) (None, 16) 0

dropout 5 (Dropout) (None, 16) 0

dense 6 (Dense) (None, 1) 17

Total params: 150,689
Trainable params: 150,017
Non-trainable params: 672

Fig. 3: Proposed Architecture - DeepURLDetect (DUD)

cyber threat situational awareness in order to enhance the
malicious detection rate [32]. The architecture consists of three
main modules (1) Data collection (2) Identifying malicious
URL (3) Continuous monitoring

Distributed log collector collects URL logs from various
different sources inside an Ethernet LAN in a passive way
and passed into distributed data base. Following, the URLs
are parsed using distributed log parser and fed into deep
learning module. This classify the URLs into either malicious
or legitimate. A copy of the preprocessed URLs are stored in

distributed data base for further use. The deep learning module
has Front End Broker to display the detailed information
about the URL analysis. The framework contains continuous
monitoring module which monitors detected malicious URLs.
This continuously monitors the targeted URL once in 30
seconds. This helps to detect the malicious URL which are
generated using Digitally Generated Algorithms (DGA).

IX. PERFORMANCE MEASURES

The main objective of this work is classify whether the URL
is either benign or malicious. To identify the performance of
the deep learning architectures, we have used the following
statistical metrics.

• True positive (TP ) : malicious URL that is correctly
classified as malicious URL.

• True negative (TN) : benign URL that is correctly
classified as benign URL.

• False positive FP : benign URL that is incorrectly
classified as malicious URL.

• False negative (FN) : malicious URL that is incorrectly
classified as benign URL.

The above metrics are obtained from confusion matrix.
Confusion matrix a matrix representation where each row
indicates the URL samples in a predicted class and each
column indicates the URL samples URL samples in an actual
class. We estimate the statistical measures such as Accuracy,
Precision, Recall, F1-score, true positive rate (TPR) and
false positive rate (FPR) from confusion matrix and they
are defined mathematically as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FN
(7)

Pr ecision =
TP

TP + FP
(8)

F1− score = 2 ∗ Recall ∗ Pr ecision
Recall + Pr ecision

(9)

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

The accuracy estimates the ratio of the total number of
correct classifications. The precision estimates the number of
correct classifications penalised by the number of incorrect
classifications. The recall estimates the number of correct
classifications penalised by the number of missed entries.
Recall is also called as sensitivity or true positive rate. The
F1-score estimates the harmonic mean of precision and recall,
which serves as a derived effectiveness measurement. Receiver
operating characteristic (ROC) curve denotes the performance
of the classifier and plotted using TPR on Y axis and FPR
on X axis. Generally, the ROC curve is used when the classes
are balanced and for imbalanced classes precision-recall curve



7

TABLE VI: Test results

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)
Data set 1 (both train and test from public sources)

Invincea [22] 99.0 99.5 98.4 98.9

NYU [35] 97.7 98.0 96.8 97.4

MIT [36] 97.9 98.8 96.6 97.7

CMU [34] 99.1 99.2 98.7 99.0

Endgame [28] 99.1 99.3 98.7 99.0

DeepURLDetect (proposed) 97.2 97.4 96.4 96.9

3-gram with DNN 5 layer (proposed) 95.4 96.8 93.0 94.9

Data set 2 random-split
Invincea [22] 96.4 97.9 93.1 95.4

NYU [35] 96.1 97.9 92.2 95.0

MIT [36] 96.0 96.1 93.6 94.9

CMU [34] 95.4 95.1 93.3 94.2

Endgame [28] 96.6 97.2 94.1 95.6

DeepURLDetect (proposed) 95.4 97.4 90.8 94.0

3-gram with DNN 5 layer (proposed) 95.0 96.2 90.9 93.5

Data set 2 time-split
Invincea [22] 96.1 95.9 94.4 95.1

NYU [35] 95.0 95.8 91.3 93.5

MIT [36] 93.3 97.7 85.2 91.0

CMU [34] 94.1 95.9 89.0 92.3

Endgame [28] 97.1 97.6 95.0 96.3

DeepURLDetect (proposed) 93.1 94.5 87.8 91.1

3-gram with DNN 5 layer (proposed) 93.0 96.3 85.6 90.7

(a) (b) (c)

Fig. 4: ROC curve for (a) Data set 1, (b) Data set 2 (random-split ) (c) Data set 2 (time-split)

used. To generate precision-recall curve, we estimated the
trade-off between the precision and recall across varying
threshold in the range of [0, 1].

X. EVALUATION RESULTS AND OBSERVATIONS

All deep learning architectures are implemented using
TensorFlow [29] with Keras [30] and conventional machine
learning algorithms are implemented using Scikit-learn [31].
Graphical processing unit (GPU) enabled machine are used
for experimental purpose. Initially, all the models are trained
with Data set 1. To evaluate the performance of the trained
model on Data set 1 is tested with the test data set of Data
set 1. Likewise, same approach is followed for Data set 2
random-split and Data set 2 time-split. Most of the models

performed well on Data set 1 in comparison to the Data
set 2 random-split and time-split. Moreover, the performance
of various models on Data set 2 random-split is good in
comparison to the Data set 2 time-split. This is due to the
fact that the samples of test data of Data set 2 time-split is
unseen during training. The detailed results are reported in
Tables VI and VII. The receiver operating characteristic (ROC)
curve for various models on different test data sets are shown
in Fig. 4a for Data set 1, Fig. 4b for Data set 2 random-
split and Fig. 4c for Data set 2 time-split with comparing
two operating characteristics such as true positive rate and
false positive rate across varying threshold in the range [0.0
- 1.0]. Likewise the precision-recall curve for various models
on different test data sets are shown in Fig. 5a for Data set 1,



8

(a) (b) (c)

Fig. 5: ROC curve for (a) Data set 1, (b) Data set 2 (random-split ) (c) Data set 2 (time-split)

TABLE VII: Test results. TPR and FPR are w.r.t. a threshold
0.5

Model TPR (%) FPR AUC
Data set 1 (both train and test from public sources)

Invincea [22] 88.9 0.087 0.9995

NYU [35] 89.5 0.10 0.9974

MIT [36] 85.9 0.124 0.9980

CMU [34] 87.7 0.105 0.9995

Endgame [28] 87.1 0.081 0.9996

DeepURLDetect (proposed) 87.6 0.116 0.9964

3-gram with DNN 5 layer (proposed) 87.9 0.121 0.9909

Data set 2 random-split
Invincea [22] 93.9 0.142 0.9914

NYU [35] 94.2 0.143 0.9918

MIT [36] 95.0 0.146 0.9918

CMU [34] 94.4 0.145 0.9915

Endgame [28] 93.6 0.139 0.9913

DeepURLDetect (proposed) 95.3 0.146 0.9922

3-gram with DNN 5 layer (proposed) 95.3 0.143 0.9922

Data set 2 time-split
Invincea [22] 85.9 0.023 0.9938

NYU [35] 83.3 0.031 0.9896

MIT [36] 82.7 0.027 0.9815

CMU [34] 89.5 0.027 0.9865

Endgame [28] 92.1 0.034 0.9962

DeepURLDetect (proposed) 79.9 0.032 0.9823

3-gram with DNN 5 layer (proposed) 71.4 0.042 0.9812

Fig. 5b for Data set 2 random-split and Fig. 5c for Data set 2
time-split with comparing two operating characteristics such as
precision and recall across varying threshold in the range [0.0 -
1.0]. Obtaining better AUC in precision-recall curve indicates
that the models predicts more accurately. The performance
of all models have marginal difference in terms of accuracy
and AUC and thus voting methodology can be employed
to distinguish whether the URL is legitimate or malicious.
This can further enhance the malicious URL detection rate.
This is remained as one of the significant direction towards
future work. They all used character level Keras embedding
as text representation method and performed well over 3-

gram text representation method with DNN. Deep learning
with embedding based malicious URL detection can be robust
solution over hand crafted features with conventional machine
learning based solutions. This is due to malicious author can
utilize domain knowledge to learn the hand crafted features
with the aim to evade detection. They can make use of
generative adversarial networks in deep learning, the details
are discussed in [28].

XI. CONCLUSION

In this work, a comparative analysis of various deep learn-
ing based character level embedding models for malicious
URL detection is done. All deep learning architectures have
marginal difference in terms of accuracy. Among 5 models,
two are based on RNN, two are based on CNN and one is
based on hybrid of CNN and LSTM. All the models performed
well and achieved around 93-98% malicious URL detection
rate with false positive rate of 0.001. This indicates that if the
deep learning based character level embedding models able to
catch 970 malicious URL; they label only one benign URL
as malicious. For comparative analysis, DNN with n-gram is
used. In all test cases, deep learning based character level
models performed well in comparison to the other models. All
deep learning based character level embedding based models
have the potential to handle drifting of malicious URLs and
supply as a robust method in an adversarial environment.
Though deep learning has performed well, it is good to
have conventional methods such as blacklisting using regular
expression, signature matching method and conventional ma-
chine learning based solutions as an initial gateway followed
by deep learning based character level embedding models. The
christened DeepURLDetect (DUD) can be made more robust
by adding auxiliary modules such as registration services,
website content, network reputation, file paths and registry
keys. This can be considered as one of the significant direction
towards future work.

REFERENCES

[1] Tran, K. N., Alazab, M., & Broadhurst, R. (2013, November). Towards
a feature rich model for predicting spam emails containing malicious
attachments and urls. In 11th Australasian Data Mining Conference,
Canberra.



9

[2] Alazab, M., & Broadhurst, R. (2015). Spam and criminal activity.
[3] Alazab, M., Layton, R., Broadhurst, R., & Bouhours, B. (2013, Novem-

ber). Malicious spam emails developments and authorship attribution. In
Cybercrime and Trustworthy Computing Workshop (CTC), 2013 Fourth
(pp. 58-68). IEEE.

[4] Broadhurst, R., Grabosky, P., Alazab, M., Bouhours, B., & Chon, S.
(2014). An analysis of the nature of groups engaged in cyber crime.

[5] Alazab, M., Venkatraman, S., Watters, P., & Alazab, M. (2011, Decem-
ber). Zero-day malware detection based on supervised learning algorithms
of API call signatures. In Proceedings of the Ninth Australasian Data
Mining Conference-Volume 121 (pp. 171-182). Australian Computer
Society, Inc..

[6] Sahoo, D., Liu, C., & Hoi, S. C. (2017). Malicious URL detection using
machine learning: A survey. arXiv preprint arXiv:1701.07179.

[7] Felegyhazi, M., Kreibich, C., & Paxson, V. (2010). On the Potential of
Proactive Domain Blacklisting. LEET, 10, 6-6.

[8] Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009, June). Beyond
blacklists: learning to detect malicious web sites from suspicious URLs.
In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 1245-1254). ACM.

[9] Kolari, P., Finin, T., & Joshi, A. (2006, March). SVMs for the Bl-
ogosphere: Blog Identification and Splog Detection. In AAAI spring
symposium: Computational approaches to analyzing weblogs (pp. 92-99).

[10] Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009, June).
Identifying suspicious URLs: an application of large-scale online learning.
In Proceedings of the 26th annual international conference on machine
learning (pp. 681-688). ACM.

[11] Chiba, D., Tobe, K., Mori, T., & Goto, S. (2012, July). Detecting
malicious websites by learning IP address features. In Applications and
the Internet (SAINT), 2012 IEEE/IPSJ 12th International Symposium on
(pp. 29-39). IEEE.

[12] Chiba, D., Tobe, K., Mori, T., & Goto, S. (2012, July). Detecting
malicious websites by learning IP address features. In Applications and
the Internet (SAINT), 2012 IEEE/IPSJ 12th International Symposium on
(pp. 29-39). IEEE.

[13] McGrath, D. K., & Gupta, M. (2008). Behind Phishing: An Examination
of Phisher Modi Operandi. LEET, 8, 4.

[14] Cao, J., Li, Q., Ji, Y., He, Y., & Guo, D. (2016). Detection of forwarding-
based malicious urls in online social networks. International Journal of
Parallel Programming, 44(1), 163-180.

[15] Choi, H., Zhu, B. B., & Lee, H. (2011). Detecting Malicious Web Links
and Identifying Their Attack Types. WebApps, 11, 11-11.

[16] Lee, S., & Kim, J. (2012, February). WarningBird: Detecting Suspicious
URLs in Twitter Stream. In NDSS (Vol. 12, pp. 1-13).

[17] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker.
2009. Identifying suspicious URLs: an application of large-scale online
learning. In Proceedings of the 26th Annual International Conference on
Machine Learning. ACM, 681–688.

[18] Aaron Blum, Brad Wardman, Thamar Solorio, and Gary Warner. 2010.
Lexical feature based phishing URL detection using online learning. In
Proceedings of the 3rd ACM Workshop on Artificial Intelligence and
Security. ACM, 54–60.

[19] Pranam Kolari, Tim Finin, and Anupam Joshi. 2006. SVMs for the
Blogosphere: Blog Identification and Splog Detection. In AAAI Spring
Symposium: Computational Approaches to Analyzing Weblogs. 92–99

[20] Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2018). Eval-
uating deep learning approaches to characterize and classify malicious
URL’s. Journal of Intelligent & Fuzzy Systems, 34(3), 1333-1343.

[21] Bahnsen, A. C., Bohorquez, E. C., Villegas, S., Vargas, J., & González,
F. A. (2017, April). Classifying phishing URLs using recurrent neural net-
works. In Electronic Crime Research (eCrime), 2017 APWG Symposium
on (pp. 1-8). IEEE.

[22] Saxe, J., & Berlin, K. (2017). eXpose: A Character-Level Convolutional
Neural Network with Embeddings For Detecting Malicious URLs, File
Paths and Registry Keys. arXiv preprint arXiv:1702.08568.

[23] Machine Learning: How to Build a Better Threat Detection Model
By Madeline Schiappa, Available at https://www.sophos.com/en-
us/medialibrary/PDFs/technicalpapers/machine-learning-how-to-build-a-
better-threat-detection-model.pdf?la=en

[24] Sommer, R., & Paxson, V. (2010, May). Outside the closed world: On
using machine learning for network intrusion detection. In Security and
Privacy (SP), 2010 IEEE Symposium on (pp. 305-316). IEEE.

[25] Verma, R. (2018, March). Security Analytics: Adapting Data Science
for Security Challenges. In Proceedings of the Fourth ACM International
Workshop on Security and Privacy Analytics (pp. 40-41). ACM.

[26] Machine Learning: How to Build a Better Threat Detection Model
By Madeline Schiappa, Available at https://www.sophos.com/en-
us/medialibrary/PDFs/technicalpapers/machine-learning-how-to-build-a-
better-threat-detection-model.pdf?la=en

[27] Hillary Sanders and Joshua Saxe, “Garbage In, Garbage Out: How
purportedly great ML models can be screwed up by bad data”

[28] Anderson, H. S., Woodbridge, J., & Filar, B. (2016, October). Deep-
DGA: Adversarially-tuned domain generation and detection. In Proceed-
ings of the 2016 ACM Workshop on Artificial Intelligence and Security
(pp. 13-21). ACM.

[29] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ...
& Kudlur, M. (2016, November). Tensorflow: a system for large-scale
machine learning. In OSDI (Vol. 16, pp. 265-283).

[30] Chollet, F. (2015). Keras.
[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in
Python. Journal of machine learning research, 12(Oct), 2825-2830.

[32] Vinayakumar, R., Poornachandran, P., & Soman, K. P. (2018). Scalable
Framework for Cyber Threat Situational Awareness Based on Domain
Name Systems Data Analysis. In Big Data in Engineering Applications
(pp. 113-142). Springer, Singapore.

[33] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
521(7553), 436.

[34] Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., & Cohen, W. W.
(2016). Tweet2vec: Character-based distributed representations for social
media. arXiv preprint arXiv:1605.03481.

[35] Vosoughi, S., Vijayaraghavan, P., & Roy, D. (2016, July). Tweet2vec:
Learning tweet embeddings using character-level cnn-lstm encoder-
decoder. In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval (pp. 1041-1044).
ACM.

[36] Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional
networks for text classification. In Advances in neural information pro-
cessing systems (pp. 649-657).

[37] Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-
Nemrat, A., & Venkatraman, S. (2019). Deep Learning Approach for
Intelligent Intrusion Detection System. IEEE Access, 7, 41525-41550.

[38] Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., &
Venkatraman, S. (2019). Robust Intelligent Malware Detection Using
Deep Learning. IEEE Access, 7, 46717-46738.

[39] Vinayakumar, R., Soman, K. P., Poornachandran, P., Mohan, V. S., &
Kumar, A. D. (2019). ScaleNet: scalable and hybrid framework for cyber
threat situational awareness based on DNS, URL, and email data analysis.
Journal of Cyber Security and Mobility, 8(2), 189-240.

[40] Vinayakumar, R., Soman, K. P., Poornachandran, P., & Menon, V. K.
(2019). A Deep-dive on Machine Learning for Cyber Security Use Cases.
In Machine Learning for Computer and Cyber Security (pp. 122-158).
CRC Press.

[41] Vinayakumar, R., Alazab, M., Jolfaei, A., Soman, K. P., & Poornachan-
dran, P. (2019, May). Ransomware triage using deep learning: twitter as a
case study. In 2019 Cybersecurity and Cyberforensics Conference (CCC)
(pp. 67-73). IEEE.

[42] Vinayakumar, R., Soman, K. P., Poornachandran, P., Akarsh, S., & Elho-
seny, M. (2019). Deep Learning Framework for Cyber Threat Situational
Awareness Based on Email and URL Data Analysis. In Cybersecurity
and Secure Information Systems (pp. 87-124). Springer, Cham.

[43] Harikrishnan, N. B., Vinayakumar, R., Soman, K. P., & Poornachandran,
P. (2019). Time Split Based Pre-processing with a Data-Driven Approach
for Malicious URL Detection. In Cybersecurity and Secure Information
Systems (pp. 43-65). Springer, Cham.

[44] Vazhayil, A., Vinayakumar, R., & Soman, K. P. (2018, July). Compara-
tive Study of the Detection of Malicious URLs Using Shallow and Deep
Networks. In 2018 9th International Conference on Computing, Commu-
nication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.

[45] Harikrishnan, N. B., Vinayakumar, R., Soman, K. P., Poornachandran,
P., Annappa, B., & Alazab, M. (2019). Deep learning architecture for
big data analytics in detecting intrusions and malicious URL. Big Data
Recommender Systems: Algorithms, Architectures, Big Data, Security
and Trust, 303.


