
P
os
te
d
on

15
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
15
35
70
8.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Fluorescence Lifetime Endomicroscopic Image-based ex-vivo

Human Lung Cancer Differentiation Using Machine Learning

Qiang Wang 1, Marta Vallejo 1, and James Hopgood 1

1Affiliation not available

October 30, 2023

Abstract

Over 20,000 fluorescence lifetime images from 10 patients were collected using a fibre-based custom fluorescence lifetime imaging

endomicroscopy (FLIM) system. During the data collection, various measuring conditions were applied, including exposure

time, optical wavelength, and lifetime extraction approaches to obtain diverse results rich in spatial and spectral resolution.

The data for further processing was chosen with exposure time of 6 and 20 ns, excitation bands of 490-570 and 594-764 nm,

and RLD. In addition, there are some images with sizes different than 128x128. In order to avoid any artificial errors on

the lifetime images during the processing, only the lifetime images with 128x128 resolution were selected. After the selection,

there were 10,155 and 11,363 frames of cancer and normal tissues respectively, and each frame contained one intensity and one

corresponding lifetime image.
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Abstract 
Cancerous and normal tissue are different in their fluorescent lifetime. However, conventional 
approaches to derive the lifetime are based mainly on statistical information with auxiliary 
information, such as pathology images, or machine learning technologies with handcrafted 
features. This study reports preliminary results of using machine learning methods for the 
automatic discrimination of human lung cancer with fluorescence lifetime imaging 
endomicroscopy (FLIM). Over 20,000 fluorescence lifetime images from 10 patients were 
collected using a fibre-based custom FLIM system. Using the pixel values of the lifetime images 
as input, four different machine learning technologies, namely, K-nearest neighbour (KNN), 
support-vector classifier (SVC), neural network (NN), and random forest (RF), were applied for 
the classification. The training was performed on nine sets of the data using 10-folder cross-
validation to obtain the optimal parameters, and testing was performed on the remaining 
dataset using the optimised parameters. By repeating the procedure three times, the area 
under the receiver operating characteristic (ROC) curve (AUC) scores were averaged on 
individual results from three repetitions. Overall, all methods except KNN achieved acceptable 
scores, while SVC obtained the highest AUC, slightly better than NN and RF. 
 

1. Introduction 
Machine learning (ML) has achieved remarkable success in detecting cancer of different 
organs with the images at macro and/or micro level from various medical instruments, e.g. 
computed tomography and microscopy [1]. Particularly, fluorescence lifetime techniques 
have been successfully applied for various medical applications to diagnose disease and 
cancer [2–4]. However, there are a few papers in the literature focusing on the integration of 
ML techniques with fluorescence lifetime images for cancer classification. Lin et al. [5] 
combined principal component analysis (PCA) with a support-vector classifier (SVC) 1  to 
classify the spectral data from autofluorescence spectroscopy to distinguish nasopharyngeal 
carcinomas from normal tissues, yielding over 94% diagnostic accuracy. Majumder et al. [6, 
7] proposed PCA with SVC and its variants to estimate oral cancer with laser-induced 
fluorescence spectroscopy, which achieved over 85% scores on independent testing samples. 
However, all those studies were based on fluorescence intensity images, rather than the 
lifetime. Chen et al. [8] reported the discrimination of three different types of skin cancer 

                                                      
1 Support-vector classifier or SVC is used as an alternative name of support-vector machine (SVM) 



using SVC and fluorescence lifetime imaging endomicroscopy (FLIM) data. Their approach, 
however, was based on handcrafted features derived from the lifetime reconstruction results. 
Interestingly, all these studies used SVC with handcrafted features from fluorescence data, 
implying the prevalence and robustness of SVC. So far, little effort has been made on 
automatic discrimination of human disease/cancer directly on FLIM images by machine 
learning.  
 
In this study, we address two fundamental problems: whether fluorescence lifetime data 
could be directly used for lung cancer classification, and whether MLs are feasible to be 
employed as automatic detection tools in this context. In this regard, we apply four prevalent 
ML algorithms, namely K-nearest neighbour (KNN), SVC, neural network (NN), and random 
forest (RF), to over 20,000 fluorescence lifetime images collected by a fibre-based custom 
fluorescence lifetime imaging endomicroscopy, with various user-specified configurations. 
The models are trained and validated using 10-folder cross-validation on the datasets from 
nine patients and tested on the data from the remaining patient. This procedure is repeated 
three times to obtain three different sets of metrics. The final AUC score is derived by 
averaging the obtained metrics to quantify the performance of the models. Scikit-learn [15] 
is utilised to perform ML-related processing in the present investigation.  
 
The rest of the report is arranged as follows. Section 2 reviews the MLs techniques used in 
the evaluation. Section 3 introduces the methodology of data collection and image 
preprocessing. Results are presented in Section 4, followed by the conclusions in Section 5. 
 

2. Background 

2.1. Machine Learning Techniques 

A KNN classifier is a type of instance-based learning, which does not find out an internal 
relationship (model) among the given variables, but simply stores the instances of the data, 
and predicts a query sample according to its nearest neighbours with a certain metric, e.g. 
Euclidean distance [10, 11]. Due to its conceptual and computational simplicity, KNN requires 
the least time and resources for classification but sacrificing prediction accuracy. 
 
As a non-linear discriminative classifier, the SVC was firstly introduced by Boser et al. [12] and 
has been widely applied for classifying multivariate data since then. The algorithm outputs an 
optimal hyperplane that maximises the margin between the data belonging to different 
classes and, therefore, separates the data with the decision boundaries. A significant 
characteristic of SVC is that it supports different functions, called kernels, to solve the 
problems with different complexity. For example, non-linearly separated data can be 
classified by being transformed into a higher-dimension space, so that a linear boundary can 
be found.  
 
A NN classifier is a computational model inspired by how biological systems process 
information. Typically, a NN classifier is a linear combination of several non-linear activation 
functions, which transfers a number of given examples (input layer) into a certain number of 
outputs (output layer) associated with the number of classes to be separated [10, 11]. The 
stacked activation functions, along with relevant parameters, between input and output 



layers are called hidden layers. Nowadays, NNs have been widely applied to various areas. 
They achieved huge success thanks to the fast development of computational power, the 
increment in the number of hidden layers, and the development of diverse architectures, 
which are referred as deep neural networks [13]. In this study, a feed-forward neural network 
with two hidden layers is used. 
 
As an ensemble learning approach, the RF classifier combines decision tree predictors to vote 
for the most popular class for a given example [14]. A major advantage is that, by randomly 
sampling many independent decision trees, their individual correlation is minimised, and 
hence the prediction by each tree is relatively uncorrelated, making the overall prediction less 
bias. 
 

3. Methods 

3.1.  Image filtering 

During the data collection, various measuring conditions were applied, including exposure 
time, optical wavelength, and lifetime extraction approaches to obtain diverse results rich in 
spatial and spectral resolution. However, this may introduce some variance in lifetime 
estimation. For example, lifetime values estimated by rapid lifetime determination (RLD) and 
the centre-of-mass method (CMM) are significantly different. Therefore, the data for further 
processing was chosen with exposure time of 6 and 20 ns, excitation bands of 490-570 and 
594-764 nm, and RLD. In addition, there are some images with sizes different than 128x128. 
In order to avoid any artificial errors on the lifetime images during the processing, only the 
lifetime images with 128x128 resolution were selected. After the selection, there were 10,155 
and 11,363 frames of cancer and normal tissues respectively, and each frame contained one 
intensity and one corresponding lifetime image. 

3.2. Image pre-processing 

The overall schema of the pre-processing includes thresholding, normalisation, and 
refactoring. As mentioned previously, each frame contains an intensity and lifetime image. 

Let 𝐹𝑎
𝑖 = {𝑓𝑥,𝑦

𝑎 |𝑥, 𝑦 ∈ {1,2, . . . , 𝑁}}  denote ith frame, a is either it or lf representing the 

intensity or lifetime image of the frame, 𝑓𝑥,𝑦
𝑎  is the pixel at x and y location, and N is the size 

of the images assuming that all images are square. Accordingly, the thresholding is defined 
as: 

 𝐷𝑖𝑡
𝑖 = {

0 𝑓𝑥,𝑦
𝑖𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑓𝑥,𝑦
𝑖𝑡 𝑓𝑥,𝑦

𝑖𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
  (1) 

 𝐷𝑙𝑓
𝑖 = {

0 𝑓𝑥,𝑦
𝑖𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑓𝑥,𝑦
𝑙𝑓

𝑓𝑥,𝑦
𝑖𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

  (2) 

where 𝐷𝑎
𝑖  represents the denoised intensity and lifetime images. Afterwards, the thresholded 

images are normalised using the dark background and lightfield data collected during the 
experiments. The normalisation is governed by: 

 𝑁𝑎
𝑖 (𝑥, 𝑦) =

𝐺𝐵(𝐷𝑎
𝑖 (𝑥,𝑦)−𝐷𝑒(𝑥,𝑦))

𝐺𝐵(𝐿𝑒(𝑥,𝑦)−𝐷𝑒(𝑥,𝑦))
  (3) 



where 𝐷𝑒 and 𝐿𝑒 are the dark background and lightfield images relating to the input images 

𝐷𝑎
𝑖 , 𝑁𝑎

𝑖  is the normalised intensity and lifetime images, and GB is a 3x3 Gaussian smoothing 
filter defined by [9]: 

  GB(x, y) = 1/(2πσ2)𝑒
(−(𝑥2+𝑦2)/(2σ2))

   (4) 

where σ is the standard deviation of the Gaussian distribution which is empirically set to two 
in this study. OpenCV library [9] is utilised during the image pre-processing. Eventually, FLIM 
images are row-wise flattened to 1-dimensional vector as the input to the MLs. 

3.3. Dimensionality reduction 

The dimensions of the lifetime image are 128x128, and the pixel values are utilised for 
classification, but they are sparse and contain many zero values, including boundary and zero 
lifetime pixels. Dimensionality reduction is required so that the most important features are 
retained, in this case, the most important features refer to pixels that “contribute” the most. 
The employed technique is PCA, which in principle projects the high-dimension input data 
into a lower-dimension space so that the variance of the data can be best explained [10, 11]. 
In this study, the percentage of variance explained by the PCA-selected components is set to 
95%. After the reduction, the number of features decreases from the number of pixel values 
in the flattened lifetime image (16,384), to 2100. 
 

3.4. Training and validation of machine learning algorithms 

There are, in total, 10,155 and 11,363 frames of cancer and normal tissue respectively, and 
each frame contains a fluorescence intensity and the corresponding lifetime image. For the 
training, 10-folder cross-validation is applied to optimise the hyperparameters of the ML 
methods using the data collected on nine patients. After the fine-tuning of the 
hyperparameters with grid search, the values that achieved the best scores are obtained as 
listed in Table 1 and will be used for the independent evaluation. Predictions are derived and 
aggregated to calculate average accuracy and AUC.  
 

Table 1: Hyperparameters of the MLs and fine-tuned results 

ML Hyperparameters to be tuned 
Best value 

Test set 1 Test set 2 Test set 3 

KNN Number of neighbours (1, 2, 3, 4, 5, 6) 3 3 3 

SVC 
Regularisation parameter (0.001, 0.01, 0.1, 1, 10, 100) 10 10 10 

Gamma (0.001, 0.01, 0.1, 1, 10, 100) 10 10 10 

NN 
Learning rate (1, 0.1, 0.01, 0.001, 0.0001) 0.0001 0.0001 0.0001 

Hidden layers with units ((64, 32), (128, 64), (256, 64)) (256, 64) (256, 64) (256, 64) 

RF 
Max features (16, 32, 64, 128, 256) 256 256 256 

Number of estimators (100, 500, 1000, 2000, 3000) 3000 3000 3000 

 



4. Results 

 
Figure 1: ROC curves and AUC scores reached by the ML techniques on the testing datasets 



 
Figure 2: Confusion matrix of the predictions of the testing datasets by the MLs 
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(b) 

 

 
(c) 



 
(d) 

 
Figure 3: Cancerous and normal tissue predictions by SVC (a), RF (b), NN (c), and KNN (d) 

 
Figure 1 presents the ROC curves and the corresponding AUC scores achieved by the ML 
approaches. Let TP, FP, TN and FN denote true positive, false positive, true negative, and false 
negative, respectively. Precision, and recall can be defined as: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                        (5) 

Recall =
𝐹𝑃

𝑇𝑃+𝐹𝑁
                                                            (6) 

 
Figure 2 illustrates the confusion matrices of the predictions on the testing dataset generated 
by the MLs, along with the calculated precision and recall. Similar to the AUC scores, KNN 
performs the worst in terms of deriving precision and recall. SVC and NN have comparable 
performance for precision and recall, since the incorrect predictions (TN and FP) are close to 
each other. As far as RF is concerned, it is good at predicting normal tissue with only 414 false 
predictions, and thus achieves the highest precision among the four ML techniques. However, 
RF struggles to predict cancerous tissue. 
 
The predictions on the testing sets gathered by the MLs are illustrated in Figure 3, using 
averaged lifetime against mean intensity. Figure 3 depicts that the estimations generated by 
SVC and NN are very close for both cancer and normal tissues, whereas RF is more confident 
in estimating normal tissues rather than the cancerous, which is also reflected by the 
confusion matrix in Figure 2. 

5. Conclusion 
In this study, we reported the feasibility investigation of applying ML techniques to 
fluorescence to distinguish ex-vivo normal and cancerous human lung with lifetime images. 
Through the experimental results, we can conclude that the most complex ML algorithms are 
able to be utilised for FLIM-based lung cancer classification. In addition, pixel lifetime in FLIM 



images, rather than professional engineered features based on the images, can be applied for 
the classification.  
 
Despite the encouraging results, there are still some aspects need to be addressed in the 
future. The input for the MLs was flattened from 2-dimensional lifetime to 1-dimensional 
vector, and thus the correlations among adjacent pixels were lost. Accordingly, the 
classification at the image level, e.g. using deep convolutional neural networks [13], could be 
a promising direction to further improve the prediction accuracy. In addition, enhancing the 
quality of the images with higher resolution and more spectral information would be helpful 
to make the predictions more robust. 
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