
P
os
te
d
on

17
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
15
65
62
7.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Probabilistic spike propagation for FPGA implementation of

spiking neural networks

Abinand Nallathambi 1 and Nitin Chandrachoodan 2

1Affiliation not available
2Indian Institute of Technology Madras

October 30, 2023

Abstract

The results presented in the paper are based on simulations on benchmark spiking neural networks. The methodology is

described in the paper.

1

PROBABILISTIC SPIKE PROPAGATION FOR FPGA
IMPLEMENTATION OF SPIKING NEURAL NETWORKS

A PREPRINT

Abinand Nallathambi
IIT Madras

ee16s032@ee.iitm.ac.in

Nitin Chandrachoodan
IIT Madras

nitin@ee.iitm.ac.in

January 10, 2020

ABSTRACT

Evaluation of spiking neural networks requires fetching a large number of synaptic weights to update
postsynaptic neurons. This limits parallelism and becomes a bottleneck for hardware.

We present an approach for spike propagation based on a probabilistic interpretation of weights,
thus reducing memory accesses and updates. We study the effects of introducing randomness into
the spike processing, and show on benchmark networks that this can be done with minimal impact
on the recognition accuracy.

We present an architecture and the trade-offs in accuracy on fully connected and convolutional net-
works for the MNIST and CIFAR10 datasets on the Xilinx Zynq platform.

1 Introduction

Spiking neural networks are often referred to as the third generation of neural network models [10], and have several
characteristics that make them attractive from the viewpoint of hardware design. They follow an event-driven model of
computation, where the work done (hence energy consumed) can be made proportional to the number of spike events,
and do not require the arrays of multiply-accumulate (MAC) operations that characterize conventional artificial neural
networks (including convolutional networks, referred to here as ANNs) This makes ANNs well-suited to parallel
implementation on architectures such as GPUs.

In contrast, spiking neural networks may require other types of computations to determine whether a neuron is to
fire or not. Hardware architectures for spiking networks (eg. [2, 4, 7, 11]) therefore differ considerably from those for
regular ANNs, and focus more on features that enable efficient event-driven computation. This usually requires the
network to be trained specifically for the target architecture (due to restrictions on permitted connections or weights),
and it is not efficient to take a network trained for one architecture and directly run it on another.

Despite being event driven, spiking networks still require a large number of memory accesses, primarily for two
purposes [11]: determining the recipient neurons of a spike, and fetching weights of the corresponding synapses.
Recent data (eg. [8]) indicates that fetching data from memory (especially off-chip) is much more expensive in energy
than arithmetic computations. For reasonably sized networks, the neuron weight and index information becomes too
much to store on-chip – the resulting off-chip memory accesses thus end up dominating the energy consumed for the
computation, and can also lead to increased latency.

The regular view of a spiking network is that if a presynaptic neuron spikes, it increases the membrane potential of the
postsynaptic neuron by an amount equal to the weight of the synapse. Alternatively, similar to the ideas in [9, 16], we
could view weight as a measure of how likely it is that a spike will propagate across a synapse.

In this paper, we present a probabilistic method of spike propagation that can significantly reduce the number of
memory accesses required for evaluation of a spiking neural network, thus saving both time and energy. The specific
contributions of this paper are as follows:

A PREPRINT - JANUARY 10, 2020

• We show that by interpreting synaptic weights as probabilities, it is possible to implement spiking networks,
and show that as the number of timesteps in the computation increases, the behaviour converges to that of the
original (deterministically evaluated) network.

• By altering the way the weights are stored and indexed, we achieve significant decrease in the number of
memory accesses required to evaluate a network.

• We present a hardware architecture that can be used as an accelerator on a System-on-Chip (SoC) platform,
and can implement this model of computation efficiently. Several optimizations on the architecture are pre-
sented that allow significant speedups over the software implementation.

• The impact of this approach is quantified on well known benchmark circuits (MNIST and CIFAR-10).

The paper is organized as follows: we next present the motivation for the probabilistic interpretation of weights, and
show through experiments that this can be implemented with minimal impact on accuracy of the network. We quantify
the reduction in memory accesses that would result even in a pure software implementation of the scheme. Next, we
present an architecture suitable for implementation as a hardware accelerator for an SoC, and study several variants
of the probabilistic spike propagation that provide different accuracy vs performance tradeoffs. We then discuss the
results in the context of previous approaches from the literature, and finally present our conclusions.

2 Motivation

A spiking neural network involves three kinds of operations, namely (a) injection, (b) generation and (c) propagation of
spikes. Spike injection involves injecting input spikes into the network, which would excite and initiate activity in the
network. This is done either by generating spike trains from static inputs by following some probability distribution,
or by input mechanisms that naturally generate spike trains.

Spike generation is the process of evaluating the neurons and their spiking in response to stimuli based on some
mathematical model of the neuron. In this work, we have used the Integrate-and-Fire neuron model, but the approach
is largely independent of the underlying model. The computational load of this part grows with the number of neurons.

Spike propagation decides which output synapses should be affected by a spike on a neuron. This requires identifying
the recipients of the spikes and fetching the corresponding synaptic weights. The computational load for this grows
with the number of synapses, making it the bottleneck of SNN evaluation.

Consider a neuron i with N outgoing connections: every time it spikes, all of its outgoing connections must be updated.
This requires accessing the N synaptic weights and updating the state variables of the postsynaptic neurons. In the
case of fully connected networks, or the fully connected layers of a deep network, the number of connections and
weights can be very large, and the memory accesses here can dominate the overall performance of the network. In the
present work, we focus on these layers as they are the ones with the highest ratio of memory to computation.

Fig. 1a shows a schematic architecture for this approach: the spike injection unit as well as the neuron evaluation unit
feed into a queue of spikes, that are in turn processed by the evaluation unit. This unit needs to read in the weights of
all outgoing synapses for each spiking neuron, and update the target’s membrane potential by an amount equal to the
weight of the synapse. In this architecture, almost all the work (and memory access) happens in the evaluation unit,
and the propagation unit just passes generated spikes through to the queue for the next timestep.

Fig. 1b shows an alternate view where the decision on which neurons are to be updated in the next timestep is made
by the spike propagation unit, which decides whether a spike propagates across a synapse, while the evaluation unit
makes the final decision on spiking and inserts entries into the queue for the next timestep. In the next section, we will
see how this change can be used to reduce memory accesses.

2.1 Probabilistic spike propagation

The typical weight distribution for a neuron shows a few synapses with large weights, tapering down to a relatively
large number of synapses of low weight. For example, fig. 2 shows the outgoing synaptic weights of a few sample
neurons in a network for the MNIST dataset. Note that if the weights were uniformly distributed, we would expect
this chart to be a straight (diagonal) line. For a weight distribution skewed towards the lower bound the curve would
be below this diagonal.

One way to take advantage of this is to quantize the weights, and suppress those below a threshold. However this
impacts accuracy, and the resulting loss cannot be recovered.

2

A PREPRINT - JANUARY 10, 2020

EvaluationEvaluationSpike injection
Queue

Combiner

Propagation Evaluation

Neuron data
(Memory)

All spikes propagated:
Eval unit reads all synaptic weights

(a) All synapses evaluated

EvaluationEvaluationPropagationPropagationSpike injection
Queue

Combiner

Propagation Evaluation

Neuron data
(Memory)

Fewer updates to eval
Reduced memory accesses

(b) Probabilistic synapse evaluation

Figure 1: Schematic architectures for spike processing.

0.0 0.2 0.4 0.6 0.8 1.0
Target neuron index

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
ts

 in
 so

rte
d

or
de

r

Figure 2: Weights of sample neurons in descending order, normalized against maximum outgoing weight for that neuron; x-axis is
index of target neuron normalized by number of outgoing synapses. Expected termination points are marked as dots on the x-axis.

3

A PREPRINT - JANUARY 10, 2020

We propose an alternate interpretation of a synaptic weight in terms of the probability of propagating a spike on that
synapse. By limiting the randomness to the propagation of spikes alone and leaving other aspects of the neuron model
unchanged, we show that we can use weights from existing spiking networks without major changes.

In the deterministic approach, when neuron i spikes, the applied weight for every postsynaptic neuron update is equal
to the actual weight wij . For the integrate-and-fire neuron model, over a set of Ni spikes, this will cause an increase
in membrane potential of Ni × wij on neuron j. If this exceeds the threshold voltage, a spike is produced, and the
membrane potential is reset. We hypothesize that it is enough that the temporal sum of the applied weights, across
multiple spikes of i, for each neuron j should approach Ni × wij . In other words, if we apply a weight ŵij with
probability pij , then it is sufficient that

Ni × wij = Ni × pij × ŵij (1)

This can be achieved by letting pij =
wij

wmax
i

and ŵij = wmax
i , where wmax

i is the maximum weight for outgoing

synapses of neuron i. When neuron i spikes, we generate a random number r uniformly distributed between [0, wmax
i],

compare r with wij and update only those postsynaptic neurons j for which the comparison succeeds, with an applied
weight of wmax

i .

Note that we process excitatory and inhibitory synapses separately as they correspond to positive and negative weights
respectively. Both types are treated in the same way, but for the inhibitory synapses we let pij =

wij

wmin
i

and ŵij =

wmin
i .

Incoming synapses
of recipient

Outgoing synapses
 of spiking neuron

wij < threshold
spike not propagated

wij >= threshold
spike propagated

i

Figure 3: Probabilistic spike propagation.

2.2 Reducing memory accesses

Probabilistic spike propagation can be leveraged to reduce memory fetches for outgoing synaptic weights by sorting
the weight array. We generate a random value r per spiking neuron, and propagate the spike to those targets with
wij > r. This requires reading the weight and index of the postsynaptic neuron, but as soon as the comparison fails
for one synapse, all remaining synapses can be skipped.

Note that we need to store both the actual weight value and the index of the target neuron, potentially requiring twice
the amount of memory, and twice the number of memory accesses. Therefore, for this approach to be useful, we will
need to reduce both these requirements.

Assume the target neuron indices for the outgoing synapses of neuron i are numbered from 1 to Nmax
i . Note that

Nmax
i could vary from one neuron to another – this can account for differences between layers or even in the number

of excitatory and inhibitory connections a given neuron has. We define the termination point of the weight update
for neuron i as the smallest index t ∈ [1, Nmax

i] for which sorted weighti[t] < r. It is clear that we would like the
average value of t over all neurons and all timesteps to be small in order to save on memory accesses. The expectation
of this t approaches

∑
j wij/w

max
i . In particular, if E[t] < Nmax

i /2, then even if we access weights and indices
separately to propagate spikes, we still need fewer memory accesses than the original deterministic approach.

This condition is satisfied even for the simple case that the weight distribution for a given neuron is uniform. Since r
is drawn from uniform distribution between 0 and wmax

i , across multiple spikes on i the expected value (E[r]) would
approach wmax

i /2. On the other hand, for the type of distribution discussed in sec. 2.1, the termination point would
shift to smaller values, as can be seen in fig. 2. Here, most neurons have termination points much lower than Nmax

i /2,
which implies that the probabilistic method would need fewer total memory accesses than the deterministic approach.

4

A PREPRINT - JANUARY 10, 2020

2.3 Figure of merit

We introduce the term Memory accesses per spike (MAPS) to quantify and compare different implementations of a
spiking network. When a neuron spikes, we measure the number of memory accesses (synaptic weights or indices)
that are required to process the spike, or update neurons affected by this spike.

For example, if the output of a given neuron in a SNN is connected to N other neurons, then in the baseline determin-
istic approach, we would need to read in the weights for all N synapses, and perform updates on all N of the output
neurons. However, with the probabilistic approach, it may be possible to process only a subset of these for a given
spike. This will result in a lower MAPS.

Note: it is quite possible that the neuron indices and the synaptic weights require different numbers of bits for storage,
which would also impact the energy consumed for reading one of these values. This would vary significantly from
one network to another, and there are also known techniques to try and further compress the storage and bandwidth
requirements. However, our purpose in the study here is to quantify the savings in memory accesses themselves, and
we ignore differences in numbers of bits.

3 Implementation Issues

We now consider how the probabilistic approach can be implemented, both on pure software platforms, as well as on
custom hardware.

Algorithm 1: Scan-based termination
Input: i, sorted weight, sorted index
r ← UniformRandom(0, wmax

i)
j ← 1
while sorted weight[j] ≥ r do

UpdateNeuron(sorted index[j], wmax
i)

j++

Alg. 1 implements the probabilistic approach by scanning weights until the value drops below the randomly generated
threshold. This approach has the disadvantage that both the sorted weight[i] and sorted index[i] need to be read to
process each outgoing synapse.

Algorithm 2: Termination with binary search
Input: i, sorted weight, sorted index
r ← UniformRandom(0, wmax

i)
termpt← BinarySearch(sorted weights, r)
for j ∈ [1, termpt] do

UpdateNeuron(sorted index[j], wmax
i)

Alg. 2 modifies this to determine the termination point by running a binary search on the sorted weight array. This
can be done much faster (O(logNmax

i) comparisons) than the scanning based method (which will end up performing
termpt comparisons), and once the termination point has been determined, only the neuron indices (sorted index)
need to be read.

3.1 Hardware Architecture

Though the proposed approach already shows advantages in a software implementation, it is possible to extract even
more benefit from a hardware architecture that is able to exploit the memory access patterns appropriately. Rather than
designing a full architecture for spiking network processing, we designed a hardware accelerator in an SoC system
built around the ARM processor core of a Xilinx Zynq FPGA. A schematic of the architecture is shown in fig. 4.

The main tradeoff we are investigating is to store some weights on-chip in exchange for much lower off-chip access.
FPGAs are well suited to this kind of architecture, as they have built-in RAM blocks that can be used for such storage,
whereas this could be quite expensive in an ASIC. So even though the core ideas here would apply to an ASIC as well,

5

A PREPRINT - JANUARY 10, 2020

the benefits are easiest to realize on an FPGA platform where the approach is implemented as a hardware co-processor
for the system CPU.

Software

Spike injection
Queue

Combiner

Propagation Evaluation

On­Chip
(ONC)

Off­chip memory
(Complete weights and
remaining indices) Image Input data

On­Chip
(ONC)

Final layer
spike counts
for output

Hardware

Figure 4: Hardware accelerator architecture

We now examine some variants of the probabilistic method, and how they would impact the resulting architecture and
performance.

Binary search

The basic binary search based method allows us to quickly compute a termination point and then use a simple iteration
through indices to update the outgoing synapses. While this is a good fit for software, in hardware the random access
to weights at different indices that is required for binary search can be a problem, since off-chip memory accesses in
hardware are usually best performed in a sequential burst.

Random index

Since the sole purpose of the binary search is to compute a termination point for alg. 2, we examine alternative ap-
proaches to solve this problem. The most obvious solution is to just generate termpt randomly, rather than generating
r and mapping it to termpt. This completely eliminates the need to access weights to decide how many synapses
are to be updated, but the drawback is that it also loses any information contained in the weight distribution. As a
result, the random index based termination method performs poorly on networks where the majority of weights follow
distributions other than uniform.

Weight transformed indexing

Another possibility is to generate a random index x ∈ [1, Nmax
i], and use a function fwi(x) to translate that into a

termination point:
termpt = fwi(x) (2)

With this formulation, it can be shown that if the normalized weight distribution (weights normalized against wmax
i as

a function of neuron index normalized against Nmax
i) satisfies the equation

f(f(x)) = x (3)

then we can use a transform function of the form

termpt = wi[x]×
Nmax

i

wmax
i

(4)

It turns out that eq. 3 is reasonably closely satisfied for several practical sorted weight distributions, similar to those
seen in fig. 2. For example, a linearly decaying sorted weight distribution or a hyperbolic distribution will both satisfy
this condition.

This implies that we can compute the termpt using a single weight lookup: generate a random index x, look up wi[x]
and transform it to termpt = wi[x]×Nmax

i /wmax
i . Although this requires one random access to the weight memory,

6

A PREPRINT - JANUARY 10, 2020

Network Architecture Layers
MNIST1 Fully connected 784-1200-1200-10
MNIST2 Convolutional 5x5x32c-2x2p-5x5x64c-

-2x2p-2048-10
CIFAR10 Convolutional 3x3x64c-2x2p-3x3x128c-

-2x2p-3x3x256c-2x2p-1024-10
Table 1: Benchmark networks: the Layers indicate the number of neurons in each layer, with c for convolutional, p for average-
pooling, and others fully connected.

Technique Termination point
DET Deterministic (baseline)
BS Binary search
RI Random index chosen
TR Weight transform function

PWL Piecewise linear with 5 segments
Table 2: Techniques to determine the termination point for the probabilistic approach. DET is the deterministic baseline where all
neurons are updated.

this is considerably less expensive than the binary search, and in most cases is found to perform better than the pure
random termpt method described previously.

For a hardware implementation, we need to store both sorted weights and sorted indices in memory (which could be
off-chip high density DRAM for example), but only the sorted indices will need to be read in large quantities: weights
will only be accessed to map the termpt.

Piecewise linear approximation

The final approach we consider further trades off additional storage for accuracy. Here, we use the observation from
fig. 2 that several of the sorted weight distributions seem to show a pattern of piecewise linear segments. This means
that if we can use some additional storage to keep track of indices where the weight distribution changes slope, we
could get better accuracy, and closer fidelity to the original sorted weight distribution, while not incurring the full cost
of binary search or other methods.

3.2 Experimental results

The proposed approaches were validated on well-known benchmark problems (MNIST and CIFAR-10), using multiple
networks that were trained as ANNs and converted to SNNs using the methods in [6]. The networks and the different
probabilistic approaches are listed in tables 1 and 2.

We conducted experiments on the different approaches to quantify the loss in accuracy compared to the deterministic
approach, and to estimate how many more timesteps are required by the probabilistic method to reach the same
accuracy as the deterministic approach. The piecewise linear approximation seems to be the best compromise between
hardware complexity (storage required for the piecewise linear breakpoints) and the accuracy.

Table 3 summarizes the reduction in off-chip memory access that can be obtained through use of the probabilistic
methods. As off-chip memory typically consumes considerably more energy (and has higher latency) [8] than on-chip
memory, we would like to move as many of the weight accesses to on-chip storage as possible. Assuming we have a
fixed amount of memory is available on-chip, we would like to know which weights should be stored on-chip to get
the best benefit.

The deterministic approach has to read all outgoing synaptic weights in any case, so cannot benefit from this, but
the probabilistic methods can gain considerably here. As we can see from the table, for the benchmark networks
considered, if we can store around 40% of the weights on-chip, the number of off-chip accesses drops to very low
levels.

Most importantly, we can trade off the on-chip storage for reduction in off-chip accesses much more effectively than
when doing deterministic evaluation.

Table 4 shows how the accuracy of the probabilistic methods converges to that of the deterministic method as we run
for more simulation steps. Even though this looks like it may be a negative point for the probabilistic approach, the
fact that the number of memory accesses has been reduced disproportionately (table 3) means that the total memory
accesses are in fact lower than the deterministic approach, even after accounting for the additional simulation time.

7

A PREPRINT - JANUARY 10, 2020

Network Prop Avg MAPS Fraction of weights on-chip
0 0.2 0.4 0.6 0.8

MNIST1 DET 1200 1 0.8 0.6 0.4 0.2
PWL 240 0.20 0.11 0.06 0.03 0.01

MNIST2 DET 2048 1 0.9 0.8 0.7 0.6
PWL 684 0.33 0.21 0.12 0.05 0.01

CIFAR10 DET 1024 1 0.9 0.8 0.7 0.6
PWL 250 0.24 0.25 0.08 0.00 0.00

Table 3: Average memory accesses per spike (MAPS) when a fraction of the weights/indices are stored on-chip (MAPS normalized
against the baseline deterministic value)

Network Steps DET BS RI TR PWL

MNIST1

100 98.55 98.48 97.49 98.29 98.43
200 98.53 98.5 97.51 98.29 98.47
300 98.54 98.5 97.5 98.29 98.49

1000 98.56 98.52 97.5 98.29 98.51

MNIST2

100 99.13 98.96 99.05 99.07 99
200 99.17 99.05 99.13 99.11 99.1
300 99.16 99.09 99.12 99.12 99.13

1000 99.17 99.12 99.14 99.11 99.14

CIFAR10
200 74.35 71.73 72.51 73.13 72.4
400 76.05 74.79 75.63 75.14 74.92
600 76.44 75.4 76.87 75.62 75.74

Table 4: Accuracy of the probabilistic methods converges towards that of deterministic as the number of simulation steps increases.

Fig. 5 highlights the accuracy convergence: for the two variants of MNIST, we see how the difference between the
deterministic and two probabilistic methods decreases with more timesteps.

4 Discussion

The focus of this work is on reducing memory accesses in implementation of spiking neural networks. We have
achieved this by introducing a probabilistic approach to spike propagation, that allows weights of known pre-trained
spiking networks to be used, without requiring retraining or restructuring the network. We now relate this to previously
published works in this area, and bring out the differences in our approach.

100 200 300 1000
Simulation steps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Er
ro

r d
iff

er
en

ce

BS(MNIST1)
PWL(MNIST1)
BS(MNIST2)
PWL(MNIST2)

Figure 5: Difference in error percentage over increasing run times between deterministic and probabilistic spike propagation for
the MNIST1 and MNIST2 networks.

8

A PREPRINT - JANUARY 10, 2020

Use of pre-trained networks

Training spiking neural networks is not as well developed as training conventional artificial neural networks (ANNs),
and the level of accuracy obtained using methods such as spike timing dependent plasticity (STDP) [6] are generally
lower than the state of the art ANNs. Previous research (eg. [6, 14]) has shown how weights obtained by training an
ANN can be converted for use with a spiking network model, with minimal impact on accuracy. A problem with this
approach is that the resulting spiking networks are often quite complex. In particular, the expected benefits of spiking
networks: less complex compute units, fewer and sparser weights and activations etc. may not be obtained by this
method of conversion. However, since they provide high accuracy spiking networks, they are often used as a reference
to compare a spiking network against an ANN.

In this paper, we are not concerned with how the spiking network is obtained, only whether we can interpret the
synaptic weight as probability of transmission of a spike. We try to show how the benchmark circuit’s accuracy can
be retained at a high level with the conversion to our probabilistic approach, and not to try and improve on it in any
way. In fact, we do not attempt to compare against the original ANN, and are only interested in retaining fidelity to
the converted SNN, and comparing the number of memory accesses that would be required for implementing it.

Custom hardware architectures

There have been several custom hardware accelerators designed expressly to implement spiking networks, such as
[2–4, 11, 18] etc.. These accelerators usually aim to minimize power or energy, for which they introduce certain
restrictions on the type of spiking network that can be realized effectively. For example, [4] specifically takes up a
custom benchmark example of the LASSO algorithm to demonstrate the effectiveness of the spiking architecture when
compared to a software implementation, and similar custom benchmarks are considered by [2]. This is not in itself a
shortcoming of those architectures – it could in fact point to a problem with how spiking networks are currently being
applied to problems they are not well suited to.

The memory access reduction we consider in this work applies uniformly to any spiking network architecture, includ-
ing the custom approaches mentioned above. In fact, most of the work on the custom architectures uses techniques
such as bitwidth reduction or weight truncation to reduce memory traffic. Our approach is complementary to such
techniques, but would require the weights and indices to be stored in sorted order. If this is possible for a given hard-
ware architecture, then it is possible to apply our ideas to these custom hardware systems as well and further improve
their performance.

Stochastic techniques

Stochastic computation techniques apply randomness to the process of computation itself [17]. Variants of this ap-
proach have been applied to spiking neural networks (eg. [1, 13, 19]). These are mostly orthogonal to the ideas we
discuss, since a different (stochastic) hardware architecture for individual compute units can also be incorporated into
our approach.

[1] considers the probabilistic model of the neuron itself, but here the neuron is modified so that the spiking behavior
itself is stochastic. We want to use pre-existing neuron models without changing the intrinsic spiking behavior, so only
the spike propagation is made random in such a way as to exploit the time averaging.

Bayesian spiking neurons [5, 12] apply probabilistic techniques for the neuron models themselves. These and similar
probabilistic neuron models such as [9] focus on improving the functionality and scope of neuron models, rather than
hardware implementation.

Approximate and Emerging technologies

Approximate computing is well known in the area of signal processing and neural network hardware, but has seen lim-
ited application to spiking networks. One example is [15], where neurons are progressively trimmed from evaluation
as time progresses. Again, our approach is orthogonal to this, and could be used to further reduce computations even
for those neurons that are being evaluated.

Finally, there are approaches that rely on the use of new and emerging technologies, such as spin-based computing
([20]). These are out of the scope of the present work as they completely change the way in which networks are
implemented, and everything from the neuron model to the training is different.

9

A PREPRINT - JANUARY 10, 2020

5 Conclusions

Repeated accesses to synaptic weights forms the main bottleneck in the evaluation of spiking neural networks, espe-
cially in fully connected layers involving large numbers of weights. The probabilistic approach to spike propagation
presented in this paper can result in significant savings in the number of memory accesses required to evaluate a spik-
ing neural network. The approach can be applied to a pre-trained spiking network without imposing restrictions on
the type of network or the weights, and without requiring retraining. This is made possible by the observation that the
long-term average weight applied by this probabilistic approach over a number of timesteps converges to the actual
synaptic weight that should have been applied in a deterministic approach.

Experiments on benchmark circuits show that the proposed approach is able to achieve equivalent results to a determin-
istic spiking network, given enough timesteps. Even though the number of timesteps may be more, the probabilistic
approach is able to achieve the same level of accuracy as a deterministic approach using fewer total memory accesses,
which would translate directly into a lower total energy of computation. For the benchmark circuits considered, by
storing just 40% of the weights from the fully connected layer on chip, we can reduce the number of off-chip memory
accesses by close to 90%.

References

[1] K. Ahmed et al. Probabilistic inference using stochastic spiking neural networks on a neurosynaptic processor.
In IJCNN 16, pages 4286–4293. IEEE, 7 2016.

[2] F. Akopyan et al. TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic
Chip. IEEE Trans. on CAD, 2015.

[3] K. Cheung et al. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customiz-
able Processors. Frontiers in Neuroscience, 9:516, 1 2016.

[4] M. Davies et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro, 38(1), 2018.
[5] S. Deneve. Bayesian Spiking Neurons I: Inference. Neural Computation, 20(1):91–117, 1 2008.
[6] P. Diehl et al. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In

Proc. Intl. Joint Conf. on Neural Networks, 2015.
[7] S. Furber et al. The SpiNNaker Project. Proceedings of the IEEE, 102(5):652–665, 5 2014.
[8] S. Han et al. EIE: Efficient Inference Engine on Compressed Deep Neural Network. In Proc. ISCA ’16, vol-

ume 44, pages 243–254. IEEE, 6 2016.
[9] N. Kasabov. To spike or not to spike: A probabilistic spiking neuron model. Neural Networks, 23(1), 1 2010.

[10] W. Maass. Networks of spiking neurons: The third generation of neural network models. Neural Networks,
10(9):1659–1671, 12 1997.

[11] D. Neil and S.-C. Liu. Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator. IEEE Trans. on
VLSI, 22(12):2621–2628, 12 2014.

[12] M. G. Paulin and A. Van Schaik. Bayesian Inference with Spiking Neurons. In arXiv: 1406.5115, 2014.
[13] J. L. Rossello et al. Probabilistic-based neural network implementation. In The 2012 International Joint Confer-

ence on Neural Networks (IJCNN), pages 1–7. IEEE, 6 2012.
[14] B. Rueckauer et al. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for

Image Classification. Frontiers in Neuroscience, 11:682, 12 2017.
[15] S. Sen et al. Approximate computing for spiking neural networks. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, pages 193–198. IEEE, 3 2017.
[16] H. Seung. Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission. Neuron,

40(6):1063–1073, 12 2003.
[17] N. R. Shanbhag et al. Stochastic computation. In Proc. DAC ’10, page 859. ACM Press, 2010.
[18] G. Smaragdos et al. BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations. J. of

Neural Engg., 14(6):066008, 12 2017.
[19] S. Smithson et al. Stochastic Computing Can Improve Upon Digital Spiking Neural Networks. In 2016 IEEE

International Workshop on Signal Processing Systems (SiPS), pages 309–314. IEEE, 10 2016.
[20] G. Srinivasan et al. Magnetic tunnel junction enabled all-spin stochastic spiking neural network. In Proc. of

DATE, 2017, pages 530–535. IEEE, 3 2017.

10

