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Abstract

Change detection is a topic of great interest in remote sensing. A good similarity metric to compute variations
among the images is the key for high-quality change detection. However, most existing approaches rely on fixed
threshold values or user-provided ground truth in order to be effective. The inability of dealing with artificial
objects such as clouds and shadows is a significant difficulty for many change detection methods. We propose a
new unsupervised change detection framework to address those critical points. The notion of homogeneous regions
is introduced together with a set of geometric operations and statistic-based criteria to formally characterize and
distinguish change and non-change areas in a pair of remote sensing images. Moreover, a robust and statistically
well-posed family of stochastic distances is also proposed, which allows comparing the probability distributions of
different regions/objects in the images. These stochastic measures are then used to train a SVM-based approach in
order to detect the change/non-change areas. Three study cases using images acquired with different sensors are
given in order to compare the proposed method with other well-known unsupervised methods.

Index Terms

Unsupervised change detection, stochastic distance, single-class SVM, classification.

I. INTRODUCTION

CHANGE DETECTION is an active research field that seeks to track land cover differences in
images remotely acquired over the same region at different moments [1]. It has appeared in several

applications, ranging from urban environmental monitoring [2] to vegetation mapping [3]. In forestry, for
example, the identification of spatial-temporal changes allows for a better understanding of how ecosystems
behave along the time, elucidating the progressive interaction between natural phenomena and human
activities.

Wu et al. [4] review recent approaches devoted to identifying abrupt changes in remotely sensed
images. The authors grouped them into post-classification inspections, Principal Component Analysis
(PCA), and arithmetic with image bands and spectral indexes. Another approach commonly adopted to
differentiate these methods is by employing the well-known taxonomy of image classification, i.e., a
particular algorithm is either supervised or unsupervised. More specifically, a change detection method is
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referred to as “supervised” if a set of labeled samples is given as input to the algorithm; otherwise, it is
called “unsupervised.” Since our approach relies on unsupervised learning, the forthcoming discussion is
conducted on the basis of the unsupervised literature.

In remote sensing, the most representative precursors of unsupervised change detection methods are:
the Change Vector Analysis (CVA) [5], and the framework described by Celik [6], the so-called PCA-
KM, which integrates PCA and k-means clustering. The first method, CVA, comprises three stages: a
pre-processing step (radiometric and geometric corrections), the computation of the change vector values
for each pixel, usually through the norm of a feature vector difference for a pair of instants, and, finally,
the binarization of the generated vectors into change and non-change segments, by using a thresholding
scheme such as Otsu [7] or Kitller-Illinghworth [8]. Concerning PCA-KM, it relies on a simple, but
highly-efficient algorithm to accomplish the identification of apparent changes, which is also robust to
noise.

The change evidence is computed as a vector from a pair of co-registered images obtained at two
different instants. Next, the change vector image is partitioned into disjoint blocks and their values are
used to generate a high dimensional vector. PCA is applied on these data to extract the most relevant
information from each block. The final representation, usually composed by the first principal components,
is handed over the k-means algorithm in order to distinguish the changes and non-changes regions.

Despite its high flexibility in dealing with several applications, CVA and PCA-KM also have some
intrinsic weaknesses which can undermine their accuracy and effectiveness. For instance, the use of input
data without an adequate radiometric correction in CVA may produce very unstable and inconsistent
outputs. Furthermore, the use of only a single cut-off value to distinguish between change and non-change
regions usually leads to omission and inclusion errors. Regarding PCA-KM, the presence of high-contrast
elements like clouds and background regions may impair the clustering process carried thought the k-means
algorithm. The accommodation of such outliers into the clusters may induce omission and inclusion errors.

Aiming at addressing these drawbacks without penalizing the computational cost, a new unsupervised
change detection technique is proposed in this paper. Given an image pair, our method takes two main
steps: the identification of non-change homogeneous regions, and the decision rule modeling, based on
the identified non-change homogeneous regions, which allows the discrimination between change and
non-change areas in the input pair. In our approach, we exploit the ideas of stochastic distances [9], [10]
to drive the identification of non-change homogeneous regions. Finally, the decision rule is computed by a
Single-Class Support Vector Machine (SVM) classification in order to properly label the change areas.

Contributions. In summary, the main contributions of this paper are the following:
• A fully unsupervised change detection method which unifies a robust and statistically well-posed

family of stochastic distances with a SVM-based approach.
• A set of geometric structures as well as a statistic criterion especially designed to characterize and

identify homogeneous regions within a sequence of images.
• In contrast to CVA and PCA-KM, our method is capable of coping with outliers such as clouds and

background regions, while still avoiding a fixed threshold to classify the images.
• The proposed method is modular and, thus, flexible regarding the use of other statistical measures

and decision functions beyond those presented in the following formalization.
To assess our method while comparing it with CVA and PCA-KM, we study three cases of landscape

changes occurred as consequence of rupture dams in Brazil. We employed images acquired from different
satellites: Landsat-8, Sentinel-2, and ALOS-1.

This paper is organized as follows: Section II presents the the underlying concepts of hypotheses tests
from stochastic distances, and the single-class classification based on SVM. Section III introduces the
proposed unsupervised change detection method, formalizing it under the basis of stochastic distances.
Section IV provides the details about the data, experiment design, the results, and discussions. Finally,
Section V summarizes the findings of this paper.
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II. MATHEMATICAL BACKGROUND

A. Testing hypothesis from stochastic distances
Stochastic distance has its origin on divergence measures, i.e., based on the Information Theory, as

established in the pivotal work by Shannon [11]. A divergence measure quantifies the level of complexity
when the difference of two models needs to be computed.

Salicrú et al. [9] obtained a generalization of divergence measures, known as h-φ divergence family,
with interesting statistical properties. Let X and Y be two random variables with probability density
functions fX(x;θX) and fY (x;θY ), defined over the same support Ξ, indexed by parameters θX and θY .
The h-φ divergence between X and Y is:

dhφ(X, Y ) = h

(∫
ξ∈Ξ

φ

(
fX(ξ;θX)

fY (ξ;θY )

)
fY (ξ;θY )dξ

)
, (1)

φ : (0,∞) → [0,∞) is a convex function, h : (0,∞) → [0,∞) is a strictly increasing function with
h(0) = 0, and h′(t) strictly positive for any value t ∈ (0,∞).

Several well-know divergence measures found in the literature can be obtained from (1) by taking
appropriate choices for h and φ. Since divergence measures are not necessarily symmetric functions, we
employ a straightforward symmetrization to obtain a distance D(X, Y ) from any divergence:

D(X, Y ) =
dhφ(X, Y ) + dhφ(Y,X)

2
(2)

These measures are termed “Stochastic Distances” or h-φ distances. As we will see, every h-φ distance
between members of the same family of distributions can be turned into a statistical goodness-of-fit test.

Test statistic-based metrics. Let us assume that X and Y belong to the same family of distributions.
One may define a stochastic distance between X and Y as a function of its maximum likelihood estimators
θ̂X and θ̂Y . This gives rise to the notation D(θ̂X , θ̂Y ) in place of D(X, Y ). Salicr et al. [9] introduced
the test statistic given by:

Shφ(θ̂X , θ̂Y ) =
2nXnY
nX + nY

D(θ̂X , θ̂Y )

h′(0)φ′′(1)
. (3)

Under the null hypothesis (i.e., θX = θY ) and for nX , nY → ∞, where nX and nY are the number
of observations used to estimate θ̂X and θ̂Y so as to ensure that nX/(nX + nY ) ∈ (0, 1), statistic Shφ
converges to a χ2

M distribution with M degrees of freedom, where M is the dimension of θX and θY .
The hypothesis θX = θY can be then rejected at level α when Pr(χ2

M > Shφ(θ̂X , θ̂Y )) ≤ α [10].

The Bhattacharya distance and test. The more recent use of stochastic distances has supported several
Remote Sensing applications, including image classification [12]–[14], speckle filtering [15] and change
detection [16]. Bhattacharya, Kullback-Leibler, Hellinger, Harmonic, and Triangular, are examples of such
stochastic distances.

We obtain the Bhattacharya distance setting h(y) = − log(1− y) and φ(x) = −
√
x+ (x+ 1)/2 in (1),

and then (2):

DB(X, Y ) = − log

∫
ξ∈Ξ

√
fX(ξ; θX)fY (ξ; θY )dξ. (4)

If fX and fY are multivariate Gaussian distributions with means µX and µY and covariance matrices
ΣX and ΣY , one obtains the expression:

DB(X, Y ) =
1

8
(µX − µY )†

(
ΣX + ΣY

2

)−1

(µX − µY )

+
1

2
ln
|ΣX + ΣY |√
|ΣX ||ΣY |

. (5)
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The symbols †, | · | and (·)−1 represent the transpose, determinant and inverse matrix, respectively.
By setting (5) into (3), the following test statistic is derived:

Shφ(θ̂X , θ̂Y ) =
8nXnY
nX + nY

DB(θ̂X , θ̂Y ), (6)

where θ̂X = (µ̂X , Σ̂X) and θ̂Y = (µ̂Y , Σ̂Y ).
Statistic (6) is particularly important because it allows the computation of hypothesis tests with simple

operations. It also allows quantifying the difference between two distributions in terms of its significance
level. Moreover, Eq. (6) induces a theoretically well-defined comparison between distributions, which drives
our approach to compare objects/regions from their own probabilistic behaviors, including homogeneity
and temporal changes.

B. Support Vector Machines
Let X be a dataset whose elements xi are feature vectors evaluated on a certain position/pixel of the

image I. Also, consider that I is defined on a support S ⊂ N2. Then, classification aims at assigning to
each xi ∈ X a particular class wk ∈ Ω = {ω1, ω2, . . . , ωz} from z possible classes by applying a labeling
function F : X → Ω. Classification methods differ in terms of the formulation of F and the learning
strategy used to label data instances in X .

Support Vector Machines (SVMs) have been successfully used in the classification of remotely sensed
data. A solid mathematical foundation, simple algorithmic architecture, and high generalization capability
are some of the benefits of using SVMs [17]. Furthermore, as reported in Ref. [18], SVMs have achieved
similar or even better results compared to other influential classification methods such as maximum
likelihood, k-nearest neighbor, fuzzy c-means, neural networks and decision trees.

Inspired on the seminal SVM formulation, diverse variants have been proposed to classifying data,
for example, the Laplacian [19], Transductive [20], Context Sensitive [17], [21] and Single-Class [22]
SVMs. The latter example, Single-Class SVM, presents an unsupervised approach that relies on quantile
estimation for pattern detection in high-dimensional data.

From a set of unlabeled observations, the Single-Class SVM obtains a model which classifies elements
as part of such set with a probability ν of false positive or negative occurrence. Formally, a labeling
function F : D ⊂ X → {+1,−1} can de written, where +1 means that the input elements appear in D,
and −1 otherwise. The classifier F is given by (cf. Ref. [22]):

F (x) = sgn
( m∑
i=1

αiK(x,xi)− b
)
, (7)

where b =
∑m

j=1 αjK(xi,xj) for any xi ∈ D, i = 1, . . . ,m, and K(·, ·) is a kernel function. Coefficients
αi, i = 1, . . . ,m, are computed as the solution of the following optimization problem:

min
α1,...,αm

∑m
i,j=1 αiαjK(xi,xj).

s.t.

{
αi ∈ [0, 1

νm
]∑m

i=1 αi = 1.

(8)

Notice that the Single-Class SVM is parameterized by ν ∈ [0, 1], in addition to the parameters that
may be related to the choice of kernel function. For instance, if K(xi,xj) = exp (−γ‖xi,xj‖2), then
γ ∈ (0,∞) should be also handled. See Ref. [23] for a complete discussion about kernel functions.

In our approach, the Single-Class SMV has been adopted to perform the discrimination of changes
and non-change events, thus ensuring that the classification will not rely on a global-fixed threshold, but
instead through a more flexible and adaptive decision function.
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III. SINGLE-CLASS CLASSIFICATION OF HOMOGENEOUS UNCHANGED AREAS

This section introduces our new framework for unsupervised change detection. Figure 1 shows a general
pipeline, which is modulated into four main steps: (i) compute a band-wise difference image from a pair of
images; (ii) search for homogeneous blocks in the band-wise difference image; (iii) remove homogeneous
blocks related to areas wherein probably have occurred a temporal change while keeping the remain blocks
as non-changed areas; and (iv) train and perform a single-class classification of band-wise difference
image using the information obtained from homogeneous non-change areas, hence obtaining the definitive
change/non-change map.

The framework outputs a binary classification where unchanged areas may occur or not. Notice that, in
our approach, the lack of non-changed areas suggests a temporal change. Furthermore, the method learns
in an unsupervised fashion, as the training process is fully performed using an automatic selection of
unchanged area samples.

...... ...

blocks
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itu
de

I(1) I(2) I(1	2) Homogeneous
block

identification

µ
µ− σ

µ + σ

Identify non-change blocks

D
F

Single-class
classification

M

C
ha
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e/
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Fig. 1. Pipeline overview of proposed unsupervised change detection method.

Section III-A presents the notation and metrics employed, while the next Sections (III-B to III-D) discuss
and formalize each step of the framework outlined in Figure 1.

A. Preliminaries
Let I(1) and I(2) be images defined on the same support S ⊂ N2, acquired over the same region scene

in distinct instants. To preserve the consistency with the notations used in Section II, X ⊂ Rn denotes the
feature space, while x

(j)
i = I(j)(si) is the observation at position si ∈ S in the image I(j), j = 1, 2. The

elements of x(j)
i are the values measured by the sensor, or derived features, over a specific Earth surface

position.
Several measures may be applied to highlight the changes between two images, I(1) and I(2). A

commonly chosen measure is the L2 norm between x
(1)
i and x

(2)
i [5] :

I‖1−2‖(si) = ‖x(1)
i − x

(2)
i ‖2. (9)

Another way to identify potential changes between I(1) and I(2) is to compute the band-wise difference
image:

I(1	2)(si) = x
(1)
i − x

(2)
i . (10)

Notice that, while I‖1−2‖ returns a scalar as attribute, I(1	2) remains in the feature space X .

Region, block and geometric aspects. We introduce here the mathematical entities that support
the following formalizations, especially regarding the scalability of the method concerning the size
of the objects in the scene. This formalization also serves to define lower-bounds regrading the number
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of observations for the statistical estimation. Additionally, this detailed notation also helps avoiding
computational implementation issues.

Without loss of generality, assume that the support S is of the form {0, . . . , δ1} × {0, . . . , δ2}. In our
approach, the characteristic points of S are defined by the pairs (cρ(i), `ρ(j)) such that cρ(i) = ρ+(2ρ+1)i,
i = 0, 1, . . . , b(δ1 − ρ)/(2ρ + 1)c, and `ρ(j) = ρ + (2ρ + 1)j, j = 0, 1, . . . , b(δ2 − ρ)/(2ρ + 1)c, ρ ∈ N∗.
The set of characteristic points creates a regular grid on S whose minimum distance between any two
points is always 2ρ+ 1. Figure 2 depicts these introduced elements.

(0, 0)

(0, δ2)

(δ1, 0)

ρ
ρ

2ρ+ 1

2ρ
+

1
(cρ(2), `ρ(1))

R [(cρ(3), `ρ(2))]

R [(cρ(4), `ρ(2))]

Regular region
(“block”)

Irregular region

Fig. 2. The elements of S, characteristic points, regions and blocks.

From the pairs (cρ(i), `ρ(j)), i = 0, 1, . . . , b(δ1 − ρ)/(2ρ + 1)c and j = 0, 1, . . . , b(δ2 − ρ)/(2ρ + 1)c,
the following subsets R [(cρ(i), `ρ(j))] ⊂ S are determined, called here as regions:

R [(cρ(i), `ρ(j))] = {(p, q) ∈ S :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ;

`ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ} . (11)

From (11), one can conclude that (2ρ+1)2 is the maximum number of pairs in R [(cρ(i), `ρ(j))]. However,
depending where (cρ(i), `ρ(j)) is located on S, it is possible that p and/or q, such that cρ(i)− ρ ≤ p ≤
cρ(i) + ρ and `ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ, defines a pair (p, q) /∈ S (i.e., the pair falls out the bounds of S).
We, thus, define a block within S for every region R [(cρ(i), `ρ(j))]:

B [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

#R [(cρ(i), `ρ(j))] = (2ρ+ 1)2
}
. (12)

Homogeneous block characterization. The proposed method relies on checking the homogeneity of
non-change areas. However, it is reasonable to admit that assessing the region homogeneity just in terms of
data values regardless of its geospatial distribution may lead to wrong conclusions. Herein, we introduce an
approach that considers both statistical and geographic data behavior, allowing then more sound decisions
about the region’s homogeneity.

Let us consider an image I whose pixels are embedded in the feature space X ⊂ Rn. We propose
multiple comparisons involving six block-shaped templates to assess the similarity of the feature vectors
in B [(cρ(i), `ρ(j))], as illustrated in Figure 3; the definition of block-shaped structures are given in Equa-
tions (13) to (18). While B1 [(cρ(i), `ρ(j))] and B2 [(cρ(i), `ρ(j))] are vertical structures, B3 [(cρ(i), `ρ(j))]
and B4 [(cρ(i), `ρ(j))] are horizontal, and B5 [(cρ(i), `ρ(j))] and B6 [(cρ(i), `ρ(j))] are halved templates.
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I(1	2)

cρ(i)

` ρ
(j
) B

B1 B2 B5

B3 B4 B6

Fig. 3. The six block-shaped structures taken to assess the block homogeneity.

B1 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ 0; `ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ} . (13)

B2 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

0 ≤ p ≤ cρ(i) + ρ; `ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ} . (14)

B3 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ; `ρ(j)− ρ ≤ q ≤ 0} . (15)

B4 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ; 0 ≤ q ≤ `ρ(j) + ρ} . (16)

B5 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ ;

`ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ; p ≥ q} . (17)

B6 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ ;

`ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ; p ≤ q} . (18)

Given a block-shaped structure as defined above, it is called a homogeneous block in I if the statistical
distribution of its feature vectors is similar to the ones observed in each structure Bk [(cρ(i), `ρ(j))],
k = 1, . . . , 6. When this condition holds, the notation H [(cρ(i), `ρ(j))] is used in place of B [(cρ(i), `ρ(j))]
to denote a homogeneous block.

B. Identifying homogeneous areas by measuring probability distribution similarity
In our work, the similarity between B [(cρ(i), `ρ(j))] and Bk [(cρ(i), `ρ(j))] is determined from a statistical

test. More specifically, we use the concept of hypothesis testing derived from stochastic distance to compute
the similarity, i.e.:

H [(cρ(i), `ρ(j))] =
{

(p, q) ∈ B [(cρ(i), `ρ(j))] :

Pr(χ2
M > Shφ(θ̂, θ̂k)) > α; k = 1, . . . , 6

}
, (19)

where θ̂ and θ̂k are the estimates of the parameters that index the distributions of the feature vectors
in B [(cρ(i), `ρ(j))] and Bk [(cρ(i), `ρ(j))], respectively, and α ∈ [0, 1] sets the significance level of the
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comparison. Without loss of generality, in this work we assume that the feature vectors follow multivariate
Gaussian distributions, and that the Bhattacharya is a convenient distance to assess the similarity between
θ̂ and θ̂k. Consequently, the test statistic Shφ(θ̂, θ̂k) is given by (6).

The rationale behind Equation (19) is that the probability Pr(χ2
M > Shφ(θ̂, θ̂k)) > α states that the null

hypothesis (i.e., H0 : θ̂ = θ̂k) should not be rejected with significance 1− α. As a result, if α→ 1, the
similarity between θ̂ and θ̂k will be high in order to avoid rejecting H0. Moreover, Equation (19) allows
the identification of blocks (i.e., square regions) in I whose feature vectors exhibits a common statistical
behavior.

The use of a hypothesis testing-based similarity metric as (19) provides not only a way of comparing
blocks in the feature space, but also a significance value assigned to such comparison. Additionally,
this significance is extended to the geometric space (i.e., the support S) when the block structures are
individually analyzed.
Dealing with block dimensions and scalability. Once the lengths of the blocks B are fixed in terms
of ρ, they have to meet the scale of objects and targets in I. However, it is usual that I be composed by
elements of different dimensions. In order to cope with this issue, we take ρ ∈ {2−tρmax : t = 0, 1, . . . , k},
with k = b(log(ρmax) − log(ρmin))/ log 2c to ensure (2−kρmax) ≥ ρmin. For simplicity, we will denote
ρ(t) = 2−tρmax when needed. Scalars ρmin and ρmax are determined from the X and S dimensions as well
as the probability distribution family used to assess the homogeneity of the blocks.

As initially stated, X is an n-dimensional Euclidean space whose data follow a multivariate Gaussian
distribution. Since such a distribution is parameterized by θ = (µ,Σ), the dimension of θ is n+ (n(n−
1))/2 = (n2 + 3n)/2, where n and n(n− 1)/2 are the dimensions of µ and Σ, respectively. Therefore, it
is possible to estimate θ when more than (n2 + 3n)/2 observations are available.

As previously discussed, since any block has (2ρ+ 1)2 elements, cf. (12), and its structures are half
of a block (see Eqs. (13)–(18)), we can impose ρmin such that (2ρmin + 1)2/2 ≥ (n2 + 3n)/2, and hence
ρmin = d(

√
n2 + 3n− 1)/2e. Concerning ρmax, it can be upper bounded so as to ensure at least one block

on S. Thereby, (2ρmax + 1) ≤ δmax leads to ρmax = b(δmax − 1)/2c, where δmax = min {δ1, δ2}, and
(2ρmax + 1) arises from the maximum block side that fits in S. Figure 4 illustrates the relation between
the values of ρ as well as the resemblance between δmin and 2ρmax + 1, where δmin = δ1 in this pictorial
example. It should highlight that the homogeneous block identification process uses different values for ρ,
adopted in decreasing scale from ρmax to ρmin. Thus, such a process encompasses a kind of multiscale
verification based on the Quad-Tree representation structure [24].

δ1

δ1

δ2

2ρmin + 1

2ρ
m

a
x

+
1

Fig. 4. The geometric rationale behind the ρ values.

Finally, we let H̄ be the set of all positions in S contained in a homogeneous block:

H̄ =
k⋃
t=0


z1(t),z2(t)⋃
i,j=0,0

H
[
cρ(t)(i), `ρ(t)(j)

] , (20)
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where
z1(t) =

⌊
δ1 − ρ(t)

2ρmin + 1

⌋
and z2(t) =

⌊
δ2 − ρ(t)

2ρmin + 1

⌋
define the upper-bound to the coordinates of characteristic points, as discussed at section beginning.

C. Homogeneous blocks on change and non-change areas
Although the identification process of homogeneous blocks proposed in Section III-B has useful for

any image, we apply it to the task of detecting temporal changes between I(1) and I(2). In this study, we
seek for a band-wise difference image I(1	2) in order to produce an initial representation of changes and
non-changes between I(1) and I(2).

It is expected that the feature vectors in I(1	2) assigned to non-change areas lie around a central tendency.
Oppositely, the feature vectors assigned to areas of potential changes should be far from such a tendency.
Figure 5 illustrates this concept.

I(1	2)

b
(1	2)
1

b
(1	2)
2

b
(1	2)
1

b
(1	2)
2

Central tendency

Potential changes

Fig. 5. Common tendency of attribute values on I(1	2).

Assuming H̄ from I(1	2), a simple way for distinguishing homogeneous blocks between those related
to change and non-change areas is defining statistic thresholds based on the tendency and deviation of the
attribute vectors of these blocks. To accomplish this task, firstly the amplitude of mean attribute vector is
computed from each homogeneous block of H̄. Such values are elements of the following set:

Q =
{
‖µ
[(
cρ(t)(i), `ρ(t)(j)

)]
‖ :

t = 0, . . . , k; i = 0, . . . , z1(t); j = 0, . . . , z2(t)} , (21)

where µ
[(
cρ(t)(i), `ρ(t)(j)

)]
is the mean attribute vector of the homogeneous block H

[(
cρ(t)(i), `ρ(t)(j)

)]
.

Then, we use the mean and standard deviation of Q, denoted as µQ and σQ, respectively, to establish
the interval [µQ − σQ, µQ + σQ]. Finally, the set of homogeneous blocks related to non-change areas is
given by:

E =
{
H
[(
cρ(t)(i), `ρ(t)(j)

)]
∈ H̄ :

‖µ
[(
cρ(t)(i), `ρ(t)(j)

)]
‖ ∈ [µQ − σQ, µQ + σQ] ;

t = 0, . . . , k; i = 0, . . . , z1(t); j = 0, . . . , z2(t)} . (22)

D. One-class classification of non-changed areas
From the formalization given in Sections III-B and III-C, we are now able to perform the detection

of non-change areas for a subject pair of multi-temporal images. Notice that the initial identification of
non-change homogeneous areas does not have the purpose of building a change/non-change map, but
instead allow us to understand the behavior of non-change areas regarding the analyzed pair of images.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

Aiming at producing change/non-change mappings from a pair of images, we employ the concept
of single-class classification (see Section II-B). From I(1	2), which embeds the two instants, I(1) and
I(2) into its representation, we obtain a training set D =

{
xs ∈ X : I(1	2)(s) = xs; s = (p, q) ∈ H̄

}
. This

training set is then employed to build a Single-Class SVM classifier F : X → {0, 1} which learns temporal
changes from the images. Finally, we produce a change/non-change mapping M by applying the obtained
classifier on each pixel of I(1	2). We should stress that although Single-Class SVM uses a training set to
model a decision function, such a set is not provided by any human/analyst intervention, but instead by an
automatic process as given by Equations (11)-(22).

E. Modular structure
The modular structure of our proposal is noteworthy. The spatial awareness is common to any type of

data, with only possible changes in the size of the smallest acceptable sample. The spectral components,
which we treated as multivariate Gaussian observations, may be modeled by any suitable distribution. Other
examples of possible changes include (i) the band-wise difference image (10); (ii) other block-shaped
structures used on the spectral-spatial comparisons, Eqs. (13)–(18); (iii) the adoption of other (stochastic
or deterministic) distances to test similarities (19); and (iv) other decision rules to distinguish change and
non-change areas.

IV. EXPERIMENTS

In this section, we apply the proposed method on study cases regarding land cover changes occurred
in three dams in Brazil. Moreover, we employ different remote sensors for each study case in order to
assess the sensitivity of the presented framework regarding distinct scenes. Also, we take well-established
unsupervised change detection methods as competitors against the proposed method, and we compare the
results in terms of accuracy and computational cost.

The compared change detection methods are the ones previously discussed in Section I, i.e., Change
Vector Analysis (CVA) [5], and binary clustering of PCA of spatial divergences (PCA-KM) [6]. Finally,
we employ the kappa coefficient [25] as well as F1-Score [26] as accuracy metrics.

Several parameter configurations have been exhaustively tested, and the best-achieved results, taken
from these comparisons. The parameters w.r.t. space-search for CVA were the Otsu (OT) [7] and Kittler-
Illingworth (KI) [8] thresholding options, with Freedman-Diaconis’ (FD) [27] and Scott’s (SC) [28] rules
to determine the size of the histograms bins before the thresholding step. Regarding the PCA-KM method,
we consider neighborhood radius ρ ∈ {1, 2, 3} to promote a spectral expansion (each value generates
squared neighborhoods of sizes 3, 5 and 7), and 1 ≤ Pc ≤ ρ to define the number of principal components.
Concerning the proposed method, the values for α ranged in {0.1, 0.2, . . . , 0.9}, while the parameter ν of
the Single-Class SVM ranges in {0.001, 0.0025, 0.005}. Finally, we chose RBF as kernel function, and
the parameter γ was also tested in {0.001, 0.0025, 0.005}.

The experiments were run on a computer with an Intel Xeon processor (16 core, 2.27 GHz), and 24 GB
of RAM running the Debian Linux version 9 operating system. The platform was IDL (Interactive Data
Language), and the LIBSVM [29] implementation was used to run the Single-Class SVM classification.
The code of the proposed framework is freely available at https://github.com/rogerionegri/HBSC.

A. Data description
This section presents three study cases regarding the detection of environmental changes occurred in

dam regions. Figure 6 depicts the spatial location of these regions.
The first area refers to Mariana’s dam region, state of Minas Gerais, Brazil. This area became known

since the rupture of its tailings dam on November 5th, 2015. We used a pair of Landsat-8 images (OLI
sensor), acquired on September 25th, 2015 (Figure 7(a)) and August 10th, 2016 (Figure 7(b)). These
images have 760 × 600 pixels, 30 m spatial resolution and three multispectral bands from red to short
wave infrared.
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Fig. 6. Study areas location.

Similarly, the second area is also known due to a rupture of a tailings dam in the state of Minas Gerais.
Such rupture occurred on January 25th, 2019. We used two images acquired by the Sentinel-2 satellite on
January 17th, 2019 (Figure 8(a)) and February 1st, 2019 (Figure 8(b)) to map the environmental changes.
The images have 1026 × 897 pixels, 10 m spatial resolution and four multispectral bands from blue to
near-infrared wavelength.

The third area refers to the Curuá-Una’s hydroelectric dam, state of Par, Brazil. Represented by the
pair of selected instants, on July 13th, 2007 (Figure 9(a)) and on November 6th, 2010 (Figure 9(b)), this
study area is characterized by changes caused by forest regeneration, crop stages, and variation level of
Curuá-Una river. The images for this study were acquired by the PALSAR sensor, onboard the ALOS
satellite, with 2797× 2581 pixels, 12.5 m spatial resolution, in HH and HV polarizations.

Figures 7(c), 8(c) and 9(c) show the spatial distribution of change and non-change samples for each
study area regarding the considered periods: polygons in green and red, respectively. Table I summarizes
the ground truth samples sizes. These samples, obtained by visual inspection, were taken to measure the
accuracy of the analyzed change detection methods via kappa coefficient and F1-Score.

TABLE I
SUMMARY OF CHANGE AND NON-CHANGE GROUND TRUTH SAMPLES.

Mariana Brumadinho Curuá-Una

Landsat-8 OLI Sentinel-2 ALOS PALSAR

Change 7712 67876 213588
Non-change 7258 67670 249903

It is worth mentioning that no additional atmospheric correction procedures were carried on the Sentinel-2
images. The OLI images were obtained in “level-2 processing” [30], which includes a built-in atmospheric
correction. A 7× 7 average low-pass filtering was applied on PALSAR images as a simple approach to
reduce the speckle noise and aid temporal changes detection.

B. Results and Discussions
1) Quantitative analysis: Figure 10 shows the performance of the analyzed methods to the kappa

coefficient, for each study area when different parameters are tested, as previously discussed in Section IV.
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(c) Groud thruth change/non-change samples

Fig. 7. Mariana’s Dam dataset. (a) and (b) Images represented in natural color composition. (c) Change and non-change areas, labeled in
green and red, respectively.

The box plot depicts the accuracy ranges and dots the individual accuracy values. One can observe that
the proposed method deliveries higher accuracy values when compared to the other methods. Furthermore,
our change detection framework is less sensitive to parameter tuning, especially in comparison to CVA.
On the other hand, the most competitive results are assigned to CVA in the third study area (Curuá-Unas
Dam area), but still numerically lower than our classification results.

TABLE II
BEST KAPPA VALUES (AND RESPECTIVE STANDARD DEVIATIONS) ACHIEVED BY THE ANALYZED METHODS AND RESPECTIVE BEST

PARAMETER CONFIGURATION.

Method Kappa coefficient (standard deviation ×10−3)
Mariana’s Dam Brumadinho’s Dam Curuá-Una’s Dam

CVA 0.599 (6.35) 0.159 (2.09) 0.842 (0.82)
PCA-KM 0.675 (5.90) 0.102 (2.70) 0.722 (1.01)
Proposed 0.768 (5.16) 0.837 (1.48) 0.811 (0.88)

Parameter configuration

Mariana’s Dam Brumadinho’s Dam Curuá-Una’s Dam

CVA KI, FD KI, SC KI, SC
PCA-KM (ρ, Pc) = (5, 5) (ρ, Pc) = (3, 3) (ρ, Pc) = (3, 3)
Proposed α = 0.3 α = 0.6 α = 0.7

Table II shows the highest kappa values found for each method and the respective parameter configuration.
The standard deviation of kappa values is also included in Table II. From the accuracy and deviation
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(b) February 1st, 2019
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(c) Groud thruth change/non-change samples

Fig. 8. Brumadinho’s Dam dataset. (a) and (b) Images represented in natural color composition. (c) Change and non-change areas, labeled in
green and red, respectively.

values listed in Table II, the statistical significance of the results was verified based on a statistic test
to compare the values of kappa [25]. It was attested that the proposed framework performs significantly
better than other competitors in all cases at least at the 1 % confidence level.

Additionally, the results are also compared in terms of true/false–positive/negative percentages as well as
F1-Score values. Figure 11 is a graphical representation for these values for each method and study area.

In this analysis, while a true-positive (TP) represents the accuracy percentage in the task of identifying
a land cover change, a false-positive (FP) quantifies false alarms for land cover changes. In a similar
fashion, true-negative (TN) and false-negative (FN) account for the percentage of areas truly and falsely
identified as areas where do not occur a land cover change. Finally, the F1-Score summarizes these four
percentages into a single value.

From the depicted results, we verify that, independently of the study area, the proposed method produces
small FP and FN values. Although CVA and PCA-KM provide highest TP values for Marianas Dam study
area, the FP values are also high, i.e., the methods over-estimate land cover changes. This behavior is also
observed for Marianas Dam area. When these accuracy indexes are combined and expressed by F1-Scores,
the proposed method still reach the highest accuracy scores in all the evaluations.
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(a) July 13th, 2007
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(b) November 6th, 2010
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Fig. 9. Curuá-Una’s Dam dataset. (a) and (b) Images represented in natural color composition. (c) Change and non-change areas, labeled in
green and red, respectively.

2) Computational cost: Regarding the computational cost, the proposed method presents an intermediate
run-time between CVA and PCA-KM. As expected for any method, the run-time increases as the input
data dimension grows. However, the low-cost assigned to CVA method rises from its simple architecture,
which requires an arithmetic operation on the input images followed by histogram thresholding. In contrast,
besides the same initial arithmetic operation of CVA, PCA-KM requires the computation of principal
components on a high-dimensional space, followed by a data clustering process, hence demanding large
amounts of computational resources proportionally to the input images.

Considering the proposed method, the identification of homogeneous blocks under different radius values
represents the main computational bottleneck. As our prototype does not take any boosting strategy to
accelerate the processing, the use of parallel computing schemes may highly reduce the computational
cost, especially for the computation of block distances.

Fig. 12 summarizes these results.
3) Qualitative analysis: Now, considering the change/non-change maps obtained for Marianas Dam

area, one can see that radiometric variations of the same target with respect to the considered instants lead
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the CVA and PCA-KM methods to detect such variations as false positives (see Figures 13(a) and 13(b)).
These variations appear to impair the adequate definition of threshold and clusters for CVA and PCA-KM
methods. In contrast, a better delimitation of changed regions is achieved by the proposed method, as
shown along the northwest-southeast track, where is located the dam that affected the river after the dams
collapse, as well as vegetation suppression on the right side of the study region (see Figure 13(c)).

Concerning the experiment on the Brumadinhos Dam area (Figure 14), the presence of atmospheric
factors (i.e., cloud/shadow and haze – see Figures 8(a) and 8(b)) result in inadequate change/non-change
maps for CVA and PCA-KM. Reversely, the proposed method was able to detect the region affected by
the rupture of Brumadinhos Dam with very fine details beyond could/shadow and haze presence, as small
soil and vegetation changes.
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Fig. 12. Run-time of the analyzed methods in logarithmic scale.

In our last experiment (Curuá-Unas Dam region, as shown in Figure 15), the evaluated change detection
methods provided consistent results in detecting changes on vegetation areas and, especially, the changes
highlighted by the drought on Curuá-Unas river and affluents in 2010. Nevertheless, it is worth observing
that CVA is more affected by speckle effects than the other methods.

Similar results were obtained with the PCA-KM approach, however with less influence of speckle noise
and more omission rate on detect vegetation changes. The best trade-off between speckle noise influence
and small omission rate is achieved by the proposed method, as one can see in Figure 15(c).

V. CONCLUSIONS

We proposed a new unsupervised change detection framework which combines stochastic distances and
single-class classification concepts. The core idea consists in identifying homogeneous areas where no
changes occur on a pair of images acquired in different instants, and to extract the information from these
areas to create a hypothesis testing-guided function capable of assessing the similarity among regions.

Three study cases were carried out to assess the accuracy of the current approach, including comparisons
against well-established unsupervised change detection methods. In all analyzed study cases, our model
overcomes the concurrent methods in terms of quantitative assessments, as well as qualitative results.
However, its main drawback lies on the computational cost when larger images are taken.

As future work, we plan to (i) investigate alternative schemes to reduce the computational burden;
(ii) analyze other stochastic distances beyond Bathacharyya; (iii) extend our method to deal with multiple
images in a time series, by simply taking into account all the band-wise difference images from the
sequence; and (iv) apply the technique on polarimetric synthetic aperture radar data using stochastic
distances between Wishart models.
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Brazil. Her research interests include Remote Sensing, Cartography, Image Processing, GIS and Geodesy.

Maurcio A. Dias received the M.Eng and the Ph.D. degrees from Universidade Estadual de Campinas (UNICAMP),
Campinas, Brazil, in 2002 and 2007, respectively. He was a Postdoctoral Researcher (Visiting Researcher in Sabbatical
Break) twice: (1) with the Centre for Vision, Speech and Signal Processing (CVSSP) of the Faculty of Electronics
and Physical Sciences of the University of Surrey, Guildford, England, in 2018; (2) with the Electronics Department
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