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Abstract

A coupling of wireless access via non-orthogonal multiple access (NOMA) and wireless backhaul via beamforming is a promising

way for downlink user-centric ultra-dense networks (UDNs) to improve system performance. However, the ultra-dense deploy-

ment of radio access points in macrocell and the user-centric view of network design in UDNs raise important concerns about

resource allocation and user association, among which notably is energy efficiency (EE) balance. To overcome this challenge, we

develop a framework to investigate the resource allocation problem for energy efficient user association in such a scenario. The

joint optimization framework aiming at the system EE maximization is formulated as a large-scale non-convex mixed-integer

nonlinear programming problem, which is NP-hard to solve directly with lower complexity. Alternatively, taking advantages

of the sum-of-ratios decoupling and successive convex approximation methods, we transform the original problem into a series

of convex optimization subproblems. Furthermore, we solve each subproblem through the Lagrangian dual decomposition, and

design an iterative algorithm in a distributed way that realizes the joint optimization of power allocation, sub-channel assign-

ment, and user association simultaneously. Simulation results demonstrate the effectiveness and practicality of our proposed

framework, which achieves the rapid convergence speed and ensures a beneficial improvement of system-wide EE.
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Abstract

A coupling of wireless access via non-orthogonal multiple access (NOMA) and wireless backhaul

via beamforming is a promising way for downlink user-centric ultra-dense networks (UDNs) to improve

system performance. However, the ultra-dense deployment of radio access points in macrocell and the

user-centric view of network design in UDNs raise important concerns about resource allocation and

user association, among which notably is energy efficiency (EE) balance. To overcome this challenge,

we develop a framework to investigate the resource allocation problem for energy efficient user associ-

ation in such a scenario. The joint optimization framework aiming at the system EE maximization is

formulated as a large-scale non-convex mixed-integer nonlinear programming problem, which is NP-hard

to solve directly with lower complexity. Alternatively, taking advantages of the sum-of-ratios decou-

pling and successive convex approximation methods, we transform the original problem into a series

of convex optimization subproblems. Furthermore, we solve each subproblem through the Lagrangian

dual decomposition, and design an iterative algorithm in a distributed way that realizes the joint opti-

mization of power allocation, sub-channel assignment, and user association simultaneously. Simulation

results demonstrate the effectiveness and practicality of our proposed framework, which achieves the

rapid convergence speed and ensures a beneficial improvement of system-wide EE.
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1. Introduction

During the past few years, the rapid proliferation of massive wireless smart devices and the trend in-

crease in emerging applications, e.g., eXtended reality (XR), super Hi-vision (8K) videos, ultra-immersive
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games, etc., have propelled the unprecedented growth in mobile data traffic. It is predicted that the total

data traffic in global scale will reach 136 EB per month and 1000 times more until 2024 from the existing

Long Term Evolution (LTE) system to the fifth generation (5G) mobile system [1]. Such a thousand-

fold traffic growth necessitates the configuration of ultra-dense networks (UDNs) as a new evolution

paradigm to meet the challenges of fulfilling network capacity and spectral efficiency (SE) enhancement

requirements for 5G and beyond [2, 3]. Instead of relying on a tower-mounted macro base station (MBS)

with high transmit power in macrocell sending signals to a large number of user equipments (UEs), e.g.,

0.2 UEs/m2, UDNs deploy tens or hundreds more of low-powered radio access points (APs) with smaller

coverage areas to coherently provide wireless access service for those users. As such, the ultra-dense de-

ployment of APs has potentials to bring multiple benefits, e.g., enlarged cell coverage, improved spatial

reuse of wireless resources, enhanced performance gains, etc [4, 5].

In spite of being advantageous, such an increasing density of APs with dense cell coverage, e.g., 103

APs/km2 or more, results in the complex distribution of APs in UDNs and even possible overlapped

coverage for the users. Therefore, simply using the traditional cell-centric architecture poses extra

challenges on network planning and design for UDNs, e.g., complicated resource management, severe

inter-cell interference, large signalling overhead, etc. More seriously, irregular coverage of the cells may

cause some users exist in the overlapped area with severe interference, while other users exist in the edge

of the cells or the area without coverage, which seriously degrade the quality-of-service (QoS) performance

of the users. Therefore, it is imperative to implement a transformation of the network architecture from

cell-centric to user-centric by adopting the idea of “network serving user” and cell-free fashion [6]. In

a user-centric UDN, each user is simultaneously and jointly served by its selected subset of APs, i.e.,

an AP group (APG), in which the density of the APs is comparable to or even higher than that of the

users. Through the deconstruction of cellular structure, user-centric UDNs not only eliminate the cell

boundaries with entirely suppressed inter-cell interference, but also achieve the dynamic configuration of

APG and flexible resource allocation in a user-centric manner.

While the user-centric UDNs with ultra-densely deployed APs overlaid with a traditional MBS in

macrocell enable multi-Gigabit-per-second user experience and SE increases in wireless access downlink,

limited wireless resources bring about serious competitions among APs towards massive access oppor-

tunities for the users [7]. This drives the research community to design more resource-efficient wireless

network paradigm that copes with the scarcity of wireless resources. Recently, non-orthogonal multiple

access (NOMA) has been recognized as one of the enabling air-interface techniques for 5G and beyond

due to its advantages in support of overloaded transmission with limited resources and higher SE [8].

The key idea of NOMA is to allow multiple signals multiplexed to transmit simultaneously on the same

frequency/time resource block (RB) by differentiating the signals through distinct power levels or user-

specific codes, i.e., power-domain or code-domain multiplexing. For power-domain NOMA, successive

interference cancellation (SIC) is exploited at the receiver side to decode its own received signal and

reduce the undesired interference effectively. In this regard, NOMA can be well tailored to the wireless

access downlink scenario in user-centric UDNs, where massive connectivity and heavy data traffic for

the users is required over limited wireless resources. From a user-centric point of view, multiple APs,
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e.g., an APG, can cooperatively and concurrently serve every user on the same sub-channel in wireless

access downlink via NOMA. By doing so, significant SE enhancement will be attained in comparison

with conventional orthogonal multiple access (OMA) schemes.

On the other hand, tens or hundreds more of distributed APs in user-centric UDNs impose additional

constraints on the design of backhaul connections. Unlike traditional macrocell, in which a dedicated,

high-capacity wired backhaul exists, e.g., optical fiber and digital subscriber line connections, it is im-

practical and uneconomical for every AP to be connected via fiber backhauling to the core networks

[9]. This is due to the dramatic increase in deployment cost and possible geographical limitations for

placement, e.g., hard-to-reach locations of APs in urban areas. An alternative is to utilize the wire-

less backhauling, which allows low-cost plug-and-play APs to employ over-the-air links to the MBS for

backhauling. To reduce computational complexity of wireless backhaul design and to improve system

efficiency of wireless access, there is a need to apply the clustering scheme to classify all the APs into

a specific disjoint part based on feasible policy, e.g., channel condition and spatial location. Given this

context, it is critical to manage the interference in wireless backhaul connections, especially for the inter-

cluster interference in downlink transmission [10, 11]. Recently, multiple-antenna techniques have been

regarded as a promising solution to achieve both higher SE and powerful interference mitigation via

transmit beamforming [12]. Thus, a natural idea is to link beamforming and wireless backhaul downlink

together to manage the interference intelligently. In the wireless backhaul, with multiple antennas at the

MBS, downlink beamforming can be used to simultaneously transmit the weighted signals to the APs in

different clusters by concentrating the signal power to the intended AP while reducing the interference

generated to the other APs.

Under such circumstances, the integration of the wireless access via NOMA and the wireless backhaul

via beamforming into user-centric UDNs is not only an extension and branch of traditional UDNs,

but also a practical application incentive promoted to provide significant performance gains in terms

of coverage, rate, delay, capacity, SE, and energy efficiency (EE). Despite these potential advantages,

such an integration also imposes additional challenges and revealed some serious concerns particularly

with the ultra-dense and random deployment of APs and the user-centric view of network optimization

design. Firstly, relying on the sub-channels, every user is capable of being simultaneously associated

with multiple APs for wireless access, and every AP has to be wirelessly connected to the MBS for

backhauling. Hence, an increased complexity incurred by the ultra-densely deployed nodes makes the

user association along with the AP-MBS association a challenging problem. Secondly, due to the limited

available resources shared by the high number of users and APs, flexible and efficient resource allocation

schemes are essential and very crucial to alleviate competition, control interference, and optimize system

performance. Thirdly, a large-scale deployment of APs inevitably triggers a enormous growth of energy

consumption, causing global warming for our planet and more operational costs for network operators.

As such, it is of paramount importance to take the EE into account in the fundamental design objective

for user-centric UDNs from the green communication perspective. Furthermore, user association also

shows significant influence on the overall system-level energy consumption [13, 14]. For instance, some of

the APs are highly overloaded due to the excessive associations with users, resulting in the similar amount
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of energy consumed by other lightly underutilized APs, which degrades the long-term EE performance.

It is for this reason that energy efficient user association is a key issue in the field of EE in UDNs.

Aiming to address the above problems, there are two key network bottlenecks that must be overcome,

namely resource allocation for a large-scale node deployments over the shared radio resources and energy

efficient user association for achieving a load balancing of APs and MBS. Admittedly, these bottlenecks

and challenges motivate the need for better understanding of the interplay between resource allocation

and energy efficient user association, which typically require a trade-off between them.

Motivated by the above observations, we can find that the exploration of resource allocation for energy

efficient user association has become highly valuable. Correspondingly, our objective in this paper is to

achieve the resource allocation for energy efficient user association for identifying such an interplay under

the scenario of user-centric UDNs integrating wireless access and wireless backhaul. To the best of our

knowledge, the problem of resource allocation for energy efficient user association through the efficient

integration of user-centric UDNs with NOMA and beamforming has yet not been thoroughly studied in

the literature, especially considering the joint coordination between the access downlink via NOMA and

the backhaul downlink via beamforming. In this paper, we investigate a resource allocation problem for

energy efficient user association for downlink user-centric UDNs integrating wireless access via NOMA

and wireless backhaul via beamforming, aiming to maximize the system EE under the constraints of

achievable rate for wireless access/backhaul connection, transmit power limit of the MBS and every AP,

and user association relations. More specifically, the main contributions of this paper can be summarized

as follows:

• We develop a novel resource allocation optimization framework to achieve the energy efficient

user association in the downlink transmission of user-centric UDNs by jointly taking into account

wireless access and wireless backhaul. This is a new approach to user-centric view of network

optimization design in UDNs to capture the EE balance through a flexible paradigm of tightly

integrating the access downlink via NOMA and the backhaul downlink via beamforming from a

global standpoint. Our framework is the first time in the literature to identify a close coupling of

NOMA based wireless access and beamforming based wireless backhaul in downlink user-centric

UDNs.

• We formulate the resource allocation problem for energy efficient user association under such an

integration of user-centric UDNs with NOMA and beamforming as a large-scale non-convex mixed-

integer nonlinear programming problem, which is NP-hard to solve in reasonable time with the

growing numbers of densely distributed users and APs. The objective of joint resource allocation

and user association is to maximize the system EE of the downlink transmission subject to the

constraints of achievable data rate for wireless access and backhaul connection, maximum transmit

power for the MBS and each AP, and user association relations. The framework is shown to jointly

optimize the transmit power allocated to the users and the APs, the sub-channel assignment for the

access and backhaul downlink, and the association relations for both the user-AP and the AP-MBS

simultaneously.
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• To tackle this problem with a reduced complexity, we firstly conduct a series of reformulation based

on the time-sharing relaxation strategy to relax the binary variables for user association. Then the

sum-of-ratios decoupling method is used to construct the transformation of the fractional structure

of the relaxed objective function into an equivalent parametric subtractive function. We accordingly

employ the iterative successive convex approximation (SCA) to transform the original highly non-

convex problem into a series of convex subproblems via the exponential-logarithmic approximation,

and apply the Lagrangian dual decomposition approach to solve these optimization subproblems.

To ensure rapid convergence speed of the update of optimal power, an effective algorithm in a fully

distributed fashion is developed to determine a specific execution coordination between sub-channel

assignment and power allocation.

• Through extensive simulations, we demonstrate the proposed algorithm in our framework is indeed

an efficient and practical solution for joint resource allocation and user association in user-centric

UDNs integrating NOMA and beamforming, and we obtain insights into how the various system

parameters influence the convergence speed of the optimal power update and the system-wide EE.

With regard to the same system parameters and requirements of data rate and power consumption

for each user, each AP, and the MBS, we also show that the overall EE performance from a system

point of view is always superior with the proposed framework when compared with the baseline

schemes.

The rest of this paper is organized as follows. We first introduce the related work in Section 2.

Section 3 describes the system model, followed by a construction of the optimization problem. In Section

4, we present the problem reformulation through the relaxation of binary variables, the sum-of-ratios

decoupling, and the successive convex approximation technique. Section 5 provides the Lagrangian dual

decomposition method to solve the convex subproblem and proposes a decentralized iterative algorithm

to derive the optimal solutions. In Section 6, we present the simulation results to evaluate the proposed

optimization framework. Finally, we conclude our paper in Section 7.

Notation: Throughout this paper, we use a, a, A, and A to denote a scalar variable, a vector, a

matrix, and a set, respectively. The distribution of a circularly symmetric complex-valued Gaussian

random variable x with mean % and variance σ2 is represented by x ∼ CN
(
%, σ2

)
, where ∼ stands for

“distributed as”. The identity matrix, or sometimes ambiguously called a unit matrix, is denoted as I,

and an (n× n)-dimensional identity matrix is defined by In. The superscript [·]T refers to the transpose

of a matrix or a vector. In addition, we denote the statistical expectation of a random variable by

the notation E {·}. Symbol C is used to indicate the complex number field. An n-dimensional complex

vector is represented by Cn×1, whereas Cn×m corresponds to the generalization to an (n×m)-dimensional

complex matrix.

2. Related Work

Currently, many potential issues in the realization of user-centric UDNs have been identified and

discussed separately [2, 3, 4, 6]. Among them, resource allocation in this scenario is a critical issue
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that has gained widespread popularity. In [15], Lin et al. presented an optimization framework of the

modularity-based user-centric clustering and resource allocation for UDNs to maximize the sum-rate

per orthogonal RB. Based on a three-stage sequential method, a heuristic RB allocation solution was

obtained by confining the maximum size of the clusters. In [16], Zhang et al. studied the joint sub-channel

and power allocation problem in full-duplex user-centric UDNs to maximize the total capacity of system.

Through the problem decomposition, the inter-cell and intra-cell resource allocation was proposed by

using a tier-separate and variable-separate based approach. In [17], Cao et al. modeled the potential

interference relationship of users in ultra-dense femtocell networks as conflict-graph according to the

network partition state. Based on this graph model, a sub-channel allocation algorithm was devised by

assigning the orthogonal sub-channels to the users that severely interfere each other or assigning the

unavailable sub-channels in a profit-calculating method. However, all these works just concerned the

resource allocation for the users in wireless access without capturing the potential benefits of designing

wireless backhaul connections.

As mentioned in Section 1, the EE is an unneglected key performance metric in user-centric UDNs

from the point of view of green communications. Some recent works have recognized the EE as one of

important optimization criteria in resource allocation. In [18], Park et al. proposed a decentralized user-

centric reverse association policy, which achieves the joint optimization of handover and power control

to maximize the EE of AP. Both the spatial randomness of user movement and temporally correlated

channel fading under a large number of APs were incorporated based on the spatio-temporal dynamics.

From a secrecy EE perspective, Lin et al. [19] developed a user-centric clustering method to attain secure

transmissions, i.e., user association, for both the dedicated and the embedded jamming. The proposed

method can degrade the overheard signals of the eavesdroppers and guarantee secure transmission by

considering the involvement status of each AP. However, the transmit power of each AP was treated as the

same fixed value, whereas how to allocate the AP’s power was not exploited. In addition, to increase both

EE and SE, Zhang et al. [14] designed a joint optimization framework of load-aware user association

and power allocation in mmWave-based UDNs with energy harvesting APs. These above studies are

heuristic, although they only investigated the impact of either power allocation or user association on

the EE maximization for system or AP in the scenario of wireless access. By contrast, we extensively

consider the joint coordination between the access downlink and the backhaul downlink from a global

standpoint.

Due to its appealing advantages such as enhanced SE, massive user connectivity, and low latency, etc,

the combination of NOMA and user-centric UDNs has recently aroused enormous interests and attention

from the research community. In [7], Liu et al. explored the efficient access framework for users in

NOMA-based user-centric UDNs, in which both the access downlink and the backhaul downlink were

designed by using power-domain NOMA, respectively. An optimization problem for user-centric access

was formulated by aiming at maximizing the EE of system, and further transformed to an equivalent

AP grouping problem along with cooperative resource allocation. Despite the joint consideration of

the access and backhaul downlink, our work differs from the work in [7] due to the specific technology

usage for the wireless backhaul downlink. We focus on the application of multiple-antenna technique
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into the wireless backhaul downlink aiming to control the inter-cluster interference intelligently. To

show the benefits of the EE and SE improvements of wireless backhaul in heterogeneous UDNs over the

traditional OMA, Zhang et al. [20] developed a two-tiered hierarchical model, i.e., cooperative OMA and

cooperative NOMA, for the cooperative wireless backhaul scheduling. A cooperative wireless backhaul

optimization problem was devised by achieving the system EE maximization under the power and rate

threshold constraints, and the greedy algorithm-based schemes were further proposed. In [21], Qin et

al. presented a unified NOMA framework covering power-domain NOMA and code-domain NOMA in

UDNs, and performed the uplink and downlink design under this framework. Particularly, the problem

of resource allocation and user association for this scenario was studied by using the stochastic geometry

model and the sequential convex programming method. To improve the fairness and resource efficiency

among Internet of Things (IoT) users, the fairness factor was introduced by Wang and Zhou [22] into

the design of utility function for resource allocation and computation offloading in an MEC-enabled

ultra-dense IoT network with power-domain NOMA. The optimal trade-off between computation rate

and power consumption for each user was obtained by adjusting the fairness factor. However, only a

wireless access scenario with NOMA was considered in [20, 21, 22], which cannot capture the effect of the

wireless backhauling design on the overall system performance. Meanwhile, none of these works dealt

with the sub-channel assignment strategies under their proposed resource allocation frameworks.

Moreover, there is limited work available in the open literature applying multiple-antenna technique

into user-centric UDNs. In [23], Kwon and Park explored the joint problem of time resource allocation,

user association, and hybrid beamforming design in mmWave UDNs with wireless backhaul to maximize

the weighted sum rate of the users with limited feedback. A two-stage approach was employed to solve

this problem for reducing the complexity and overhead. However, the work in [23] focused on the hybrid

beamforming design in both the backhaul links and the access links. By jointly considering the uplink

feedback and downlink transmission process in UDNs, Teng et al. [24] analyzed the impact of delayed

feedback and limited measure range on transmit beamforming performance. To resolve the interference

problem caused by content-centric communications by cache-enabled UDNs, a collaborative multicast

beamforming scheme was proposed by Nguyen et al. [25] aiming to maximize the cost efficiency in

content delivery. By using the zero-forcing beamforming and generalized zero-forcing beamforming, the

multi-content interference was forced to zero and mitigate it while amplifying the desired signals for the

users, respectively. However, the above related works in [24, 25] applied the downlink beamforming only

to the scenario of the access links and did not consider the wireless backhaul design.

To sum up, although a lot of works have been carried out on the resource allocation problem in

user-centric UDNs, NOMA-aided UDNs, and beamforming-aided UDNs extensively, efficient integration

of user-centric UDNs with NOMA and beamforming techniques has not been fully utilized. This research

gap motivates us to pursue a solution for the problem of joint resource allocation and user association

optimization to maximize the system-wide EE of the downlink transmission integrating both the access

downlink via NOMA and the backhaul downlink via beamforming.
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Figure 1: Illustration of a user-centric UDN integrating NOMA and beamforming for the downlink transmission.

3. System Model and Problem Formulation

In this section, we first introduce the network model of a typical user-centric UDN. Under this system

configuration, we provide the transmission model from the downlink perspective, i.e., the access downlink

via NOMA and the backhaul downlink via beamforming, and further describe the power consumption

model for the downlink transmission. Then, the system EE maximization problem for the downlink

transmission will be formulated.

3.1. Network Model

Consider a user-centric UDN as shown in Fig. 1, where an MBS with a large scale antenna array

is located in the center with a large number of APs, denoted by a set M = {1, 2, · · · ,M}, densely

deployed within the macrocell coverage of that MBS. Particularly, the macrocell is connected to the core

networks through optical fiber backhaul and the MBS is responsible for wireless backhaul connections for

all the APs. The coverage radius of the macrocell is specified by r. There also exist N users randomly

distributed in the overlapping macrocell coverage area, denoted by a set N = {1, 2, · · · , N}, sharing

the same spectrum resource with the MBS and the APs. Note that each AP is equipped with one or

more receive antenna(s) for backhaul connections, and also configured with multiple transmit antennas

to serve more users simultaneously in a user-centric fashion. We assume that the locations of the APs

are modeled by an independent homogeneous Poisson point process (PPP) Φρ1 with density ρ1 = M
πr2

8



that is comparable to or even larger than user density ρ2 = N
πr2 . For simplicity, we utilize a quasi-

static deployment scenario for users, such that the location of each user remains unchanged within the

considered time duration1.

In this paper, we focus on joint resource allocation and user association in the downlink transmission

of such a user-centric scenario by tightly integrating wireless access and wireless backhaul together.

Specifically, the wireless downlink consists of two parts: (i) wireless access downlink from an AP to a

user in the corresponding cluster, and (ii) wireless backhaul downlink from the MBS to an AP in the

macrocell2. For the coordination between the MBS and the AP, we adopt a dynamic time division

duplex (TDD) mode [7], in which both the MBS and the AP can independently transmit in the wireless

backhaul connections and the wireless access, respectively.

The total available bandwidth W is equally divided to K orthogonal sub-channels, represented by

a set K = {1, 2, · · · ,K}. So each sub-channel has an equally-sized bandwidth of $ = W
K . Due to the

densely deployment scenario, we consider the universal frequency reuse policy so that the sub-channels

are available to all the users for the wireless access and all the APs for the wireless backhaul connections,

respectively. To avoid the interference between the access downlink and the backhaul downlink, the

sub-channel set K is separated into two subsets, i.e., A = {1, 2, · · · , δ} for the access downlink and

B = {δ + 1, δ + 2, · · · ,K} for the backhaul downlink. In other words, the former δ sub-channels in K are

used for the wireless access, and the other K− δ sub-channels in K are selected for the wireless backhaul

connections.

Let us assume that the perfect knowledge of the channel side information (CSI) for every sub-channel

is known at both the MBS and every AP. In accordance with the perfect CSI of every sub-channel, the

APs allocate a subset of A to the users, and the MBS assigns a subset of B to the APs. To strike a

balance between efficient user-centric wireless access and computational complexity, the ultra-densely

distributed APs are initially separated into F disjoint clusters based on their spatial directions3, denoted

by a set F = {1, 2, · · · , F}, as displayed in Fig. 1. We suppose that an AP can only provide wireless

access service exactly for one or more user(s) over a subset of A within the same cluster to avoid extra

inter-cluster interference. More precisely, in every cluster f , user n can be simultaneously associated with

at most Mf APs on one or more sub-channel(s) within the considered time duration, for 0 ≤Mf �M ,

f ∈ F , and n ∈ N . As such, Mf APs in cluster f constitute a generalized APG, denoted by a set Gf , to

serve user n by concurrently transmitting independent signals in a user-centric way4, for Gf ⊂ M. We

wish to remark that the APs in generalized APG Gf also belong to cluster f .

1We would like to mention that our proposed optimization framework for joint resource allocation and user association
is conducted within the considered time duration, which can be interpreted as a specific time slot or a period of time.
However, the results about this framework will be easily extendable to the general case for multiple time slots.

2In what follows, unless otherwise stated, we use the terms “wireless access” and “access downlink” interchangeably.
Furthermore, the terms “wireless backhaul” and “backhaul downlink” are all interchangeable.

3Noticing that a detailed discussion on the clustering method is beyond the scope of this work.
4We should pay more attention to the difference between the AP cluster and the APG in this work. An AP cluster is

referred to as the result of the task of classifying all the APs into a specific disjoint part according to their spatial location
relations. From a user perspective, an APG is a subset of APs in an AP cluster, and each AP in this subset is associated
with that user in a user-centric fashion.

9



3.2. Transmission Model

3.2.1. Access Downlink via NOMA

In the access downlink, a user in each cluster can be simultaneously served by multiple APs in a

user-centric fashion through an assigned sub-channel from the sub-channel set A. Motivated by that, we

assume that the considered system adopts the power-domain NOMA for the access downlink transmission,

which enables that multiple signals from the APs in a cluster can multiplex on the same sub-channel at

the same time. According to the NOMA principle, one user can receive from the APs in the same cluster

via multiple sub-channels, and one sub-channel can be assigned to multiple users.

For convenience, let us define a binary variable as follows to indicate the association relationship

between user n on sub-channel k and AP m in cluster f , for f ∈ F , m ∈M, n ∈ N , and k ∈ A:

af,m,n,k =

{
1 if usern is associatedwithAPm in cluster f using sub-channel k,
0 otherwise.

(1)

Let PAP
f,m,n,k denote the allocated transmit power of AP m in cluster f to user n on sub-channel k. We

further assume that all the sub-channels for the access downlink follow a quasi-static block fading, where

the channel gains remain to be constant over the considered time duration, but may vary independently

between different time duration. As such, we denote the downlink channel coefficient from AP m in

cluster f to user n on sub-channel k as hf,m,n,k = gf,m,n,kd
−ϑ1

f,m,n, where gf,m,n,k is the flat Rayleigh

fading channel gain, df,m,n is the distance between AP m in cluster f and user n, and ϑ1 is the path

loss exponent. Let Nf,k be the number of users using sub-channel k in cluster f , and sf,m,n,k be the

transmitted symbol of AP m in cluster f to user n on sub-channel k. Thus, the received signal at user

n on sub-channel k from AP m in cluster f can be expressed as:

yf,m,n,k = hf,m,n,k

Nf,k∑
i=1

√
PAP
f,m,i,ksf,m,i,k + zn,k, (2)

where zn,k ∼ CN
(
0, σ2

n,k

)
is the additive white Gaussian noise (AWGN) at user n on sub-channel k

with zero mean and variance σ2
n,k. After receiving the superposed signals from Mf,k APs on sub-channel

k in generalized APG Gf with a user-centric approach, user n employs the SIC technique to decode its

desired messages, for 0 ≤ Mf,k < Mf
5. Let Hf,m,n,k = |hf,m,n,k|2 /σ2

n,k represent the channel to noise

ratio (CNR) of sub-channel k from AP m in cluster f to user n. Without loss of generality, we assume

that the CNRs of the received signals at user n on sub-channel k served by Mf,k APs on sub-channel k

in generalized APG Gf are sorted in the ascending order, i.e.:

Hf,1,n,k ≤ Hf,2,n,k ≤ · · · ≤ Hf,m,n,k ≤ · · · ≤ Hf,Mf,k,n,k. (3)

Note that the received signals with lower CNRs from the APs in a generalized APG are allocated higher

powers and can be recovered by treating the received signals with lower powers as the interference in the

5It should be pointed out that the group of Mf,k APs on sub-channel k can be deemed to a subset of generalized APG
Gf on the entire sub-channels.
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SIC decoding [26, 27]. To be precise, for the received signal from AP m, user n on sub-channel k first

decodes the message from AP j in generalized APG Gf , for j < m, and then removes this message from

its received signals, in the order of j = 1, 2, · · · ,m−1. Through the sequential decoding, the signals from

AP j can be treated as the interference, for j > m. As a result, the received signal-to-interference-plus-

noise ratio (SINR) at user n on sub-channel k served by AP m in generalized APG Gf by performing

the SIC is given by:

γAD
f,m,n,k =

Hf,m,n,kP
AP
f,m,n,k

1+

Mf,k∑
j=m+1

Hf,j,n,kPAP
f,j,n,k

, (4)

where
∑Mf,k

j=m+1Hf,j,n,kP
AP
f,j,n,k is the interference that user n on sub-channel k receives from other APs

in generalized APG Gf . Correspondingly, the achievable rate (in bit/s) of user n on sub-channel k served

by AP m in generalized APG Gf can be written as:

Rf,m,n,k = $ log2

(
1 +

Hf,m,n,kP
AP
f,m,n,k

1 +
∑Mf,k

j=m+1Hf,j,n,kPAP
f,j,n,k

)
. (5)

Recall that one or more user(s) in N over a subset of A can access to multiple APs in every cluster

through a user-centric way. Let Nf denote the number of users that are associated with the APs in

cluster f , for 0 ≤ Nf � N . Therefore, the achievable sum rate of the system for the access downlink via

NOMA can be calculated by:

RAD
Sum =

F∑
f=1

Nf∑
n=1

Mf∑
m=1

δ∑
k=1

af,m,n,k$ log2

(
1 +

Hf,m,n,kP
AP
f,m,n,k

1 +
∑Mf,k

j=m+1Hf,j,n,kPAP
f,j,n,k

)
. (6)

3.2.2. Backhaul Downlink via Beamforming

In the backhaul downlink, the MBS concurrently transmits independent signals to the APs in different

clusters over the sharing sub-channels. By exploiting multiple antennas at both the MBS and the APs,

downlink beamforming is considered in the wireless backhaul not only to increase the SE, but also to

combat the inter-cluster and intra-cluster interference.

Let Q be the number of the transmit antennas for beamforming in the antenna array of the MBS,

for Q = M . Denote φf,k as the number of APs on sub-channel k in cluster f , for 0 ≤ φf,k � M ≤ Q.

The downlink channel between the MBS and φf,k APs on sub-channel k in cluster f is described by

a matrix Hf,k =
[
hf,1,k,hf,2,k, · · · ,hf,φf,k,k

]T ∈ Cφf,k×Q, and the row vector hf,m,k ∈ C1×Q is the

channel coefficient between the MBS and AP m on sub-channel k in cluster f . For ease of exposition,

the channel coefficient vector is characterized by hf,m,k = h̃f,m,kd
−ϑ2

f,m , where df,m is the distance between

the MBS and AP m in cluster f , ϑ2 is the path loss exponent, and h̃f,m,k is the small scale fading (e.g.,

Rayleigh fading) channel coefficient vector that is assumed to be complex Gaussian distributed with zero

mean and unit variance matrix, i.e., h̃f,m,k ∼ CN (0, IQ). Thus, such kind of channel coefficient is time

invariant over the considered time duration, but may still vary from different time duration. Moreover,
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we suppose that the downlink channel coefficient vector of interest is available at the MBS by the aid of

the CSI feedback information [12].

In order to represent the association relationship between the MBS and AP m on sub-channel k in

cluster f , for f ∈ F , m ∈M, and k ∈ B, a binary variable is also introduced, which can be defined by:

bf,m,k =

{
1 if APm in cluster f is associatedwith theMBSusing sub-channel k,
0 otherwise.

(7)

Let us utilize sk = [s1,k, s2,k, · · · , sF,k]T ∈ CF×1 to represent the transmitted symbol vector of the

MBS on sub-channel k for F clusters. Assume that PMBS
f,m,k is the allocated transmit power of the MBS

to AP m on sub-channel k in cluster f . Thereby, the transmitted symbols for φf,k APs on sub-channel

k in cluster f can be expressed as:

sf,k =

φf,k∑
m=1

√
PMBS
f,m,ksf,m,k, (8)

where sf,m,k is the normalized transmitted symbol of the MBS to AP m on sub-channel k in cluster f ,

i.e., E
{
|sf,m,k|2

}
= 1. To carry out the downlink beamforming, let wf,m,k stand for the beamforming

vector for AP m on sub-channel k in cluster f . Accordingly, the downlink beamforming matrix of

the MBS on sub-channel k for F clusters is given by Wk = [w1,k,w2,k, · · · ,wF,k] ∈ Cφf,k×F , where

wf,k =
[
wf,1,k,wf,2,k, · · · ,wf,φf,k,k

]T ∈ Cφf,k×1 is the beamforming vector for φf,k APs on sub-channel

k in cluster f . Note that the conventional beamforming approaches can be used in that the downlink

channel coefficient vectors are known at the MBS as mentioned earlier. However, we do not discuss the

issue of the beamforming vector optimization as it is beyond the scope of the paper.

By combining the transmitted symbol vector and the downlink beamforming matrix of the MBS on

sub-channel k for F clusters, we can obtain the transmitted signals on sub-channel k, i.e., Xk = Wksk.

To simplify analysis, we consider that the number of the used transmit antennas for beamforming at the

MBS is equal to the number of APs on sub-channel k in cluster f . As a result, the received signal at AP

m on sub-channel k in cluster f can be modeled as:

yf,m,k = hf,m,kwf,ksf,k + hf,m,k

F∑
`=1, 6̀=f

w`,ks`,k + zm,k

= hf,m,kwf,k

√
PMBS
f,m,ksf,m,k + hf,m,kwf,k

φf,k∑
j=1,j 6=m

√
PMBS
f,j,k sf,j,k

+hf,m,k

F∑
`=1, 6̀=f

w`,ks`,k + ℘f,m,kzm,k,

(9)

where zm,k ∼ CN
(
0, σ2

m,k

)
is the AWGN at AP m on sub-channel k with zero mean and variance σ2

m,k.

Thus, the SINR at AP m on sub-channel k in cluster f for the backhaul downlink via beamforming can

be obtained as follows:
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γBD
f,m,k =

|hf,m,kwf,k|2 PMBS
f,m,k

|hf,m,kwf,k|2
φf,k∑

j=1,j 6=m

PMBS
f,j,k︸ ︷︷ ︸

Intra-cluster interference

+

F∑
`=1, 6̀=f

|hf,m,kw`,k|2 PMBS
`,k︸ ︷︷ ︸

Inter-cluster interference

+ σ2
m,k︸︷︷︸

AWGN

, (10)

where PMBS
`,k is the total transmit power of the MBS to the APs on sub-channel k in cluster `, for

` ∈ F \ {f}. It suffices to mention that the received signal at AP m on sub-channel k in cluster f is

corrupted by the intra-cluster interference, the inter-cluster interference, and the AWGN. For analytical

simplicity, we employ the zero-forcing beamforming to eliminate the inter-cluster interference [28]. As

such, the achievable rate (in bit/s) of AP m on sub-channel k in cluster f is given by:

Rf,m,k = $ log2

(
1 +

|hf,m,kwf,k|2 PMBS
f,m,k

|hf,m,kwf,k|2
∑φf,k
j=1,j 6=m P

MBS
f,j,k + σ2

m,k

)
. (11)

In consequence, the achievable sum rate of the system for the backhaul downlink via beamforming

can be denoted as:

RBD
Sum =

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,k$ log2

(
1 +

|hf,m,kwf,k|2 PMBS
f,m,k

|hf,m,kwf,k|2
∑φf,k
j=1,j 6=m P

MBS
f,j,k + σ2

m,k

)
. (12)

3.3. Power Consumption Model

Power consumption during the downlink transmission with the combination of wireless access via

NOMA and wireless backhaul via beamforming is considered in this subsection. The total system power

consumption of particular interest can be divided into the power consumed in the access downlink and

the power consumed in the backhaul downlink.

For the access downlink, the power consumption is aimed at the power consumed at the users in

receiving mode and at the APs in transmission mode, respectively. To be precise, the power consumption

for user n in cluster f can be written as PCon
f,n = PR

f,n + ψAP
D
f,n, where PR

f,n is the constant circuit

power consumption for received signal processing, PD
f,n is the dynamic circuit power consumption for

signal decoding, and ψA is correlated with the number of APs in every APG on each sub-channel.

Additionally, the power consumption for AP m in cluster f sending signal to user n on sub-channel k

is determined by the transmitter circuit power consumption PC
m and the transmit power PAP

f,m,n,k, i.e.,

PCon
m = PC

m + PAP
f,m,n,k. Thus, the sum power consumption in the access downlink can be expressed as:

PAD
Sum =

F∑
f=1

Nf∑
n=1

(
PR
f,n + ψAP

D
f,n

)
︸ ︷︷ ︸

Receiving mode for users

+

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k
(
PC
m + PAP

f,m,n,k

)
︸ ︷︷ ︸

Transmission mode for APs

=

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k
(
PCon
f,n + PC

m + PAP
f,m,n,k

)
.

(13)
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For the backhaul downlink, the power consumption consists of the power consumed at the APs in

receiving mode and at the MBS in transmission mode. Similarly, the power consumption for AP m in

cluster f can be specifically defined as PCon
f,m = PR

f,m +ψBP
D
f,m, where PR

f,m is the constant circuit power

consumption for received signal processing, PD
f,m is the dynamic circuit power consumption for signal

decoding, and ψB is also correlated with the number of APs in every cluster on each sub-channel. In

addition, the power consumption of the MBS for downlink beamforming mainly depends on the transmit

power PMBS
f,m,k of the MBS to to AP m on sub-channel k in cluster f . Accordingly, the sum power

consumption in the backhaul downlink is given by:

PBD
Sum =

F∑
f=1

Mf∑
m=1

(
PR
f,m + ψBP

D
f,m

)
︸ ︷︷ ︸

Receiving mode for APs

+

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,kP
MBS
f,m,k︸ ︷︷ ︸

Transmission mode for MBS

=

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,k
(
PCon
f,m + PMBS

f,m,k

)
.

(14)

Based on the sum power consumption in both the access downlink and the backhaul downlink, the

total power consumption for the downlink transmission can be represented as:

PTot =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k
(
PCon
f,n + PC

m + PAP
f,m,n,k

)
︸ ︷︷ ︸

Access downlink

+

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,k
(
PCon
f,m + PMBS

f,m,k

)
︸ ︷︷ ︸

Backhaul downlink

.
(15)

3.4. Problem Formulation

In this paper, we investigate the resource allocation problem for energy efficient user association in

the downlink transmission of the system with the emphasis on the EE metric. It has been shown that the

system-wide EE metric of interest is generally described in terms of bit-per-Joule capacity, to indicate

how efficiently one Joule power consumption is utilized for data transmission of the system. Considering

the wireless access downlink from the APs to the users via NOMA and the wireless backhaul downlink

from the MBS to the APs via beamforming, the actual total achievable rate (in bit/s) of the system for

the downlink transmission is in general obtained by:

RTot = min
{
RAD

Sum, R
BD
Sum

}
. (16)

From the perspective of the wireless backhaul connections, the MBS in the macrocell must provide

enough data rate for the APs to guarantee that all the users can obtain the wireless access from these

APs in a user-centric way. To reach this goal, the achievable sum rate of the system for the backhaul

downlink should not be less than that for the access downlink, i.e., RBD
Sum ≥ RAD

Sum. Thus, the actual total

achievable rate (in bit/s) for the downlink transmission, henceforth referred to as the sum of the data

rate, on the wireless access downlink of the system for all the users, can be expressed by RTot = RAD
Sum.

Therefore, the system EE of the downlink transmission, denoted by ξEE (in bit/Joule), can be formally

defined as the ratio of the total achievable rate RTot (in bit/s) to the total power consumption PTot (in

Watt), which is then calculated as follows:

ξEE =
RTot

PTot
=
RAD

Sum
PTot

. (17)
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Under the above setup, our objective is to maximize the system EE of the downlink transmission while

guaranteeing the data rate and power consumption requirements for the users, the APs, and the MBS,

by the joint optimization of resource allocation and user association. Let Rmin
n denote the minimum data

rate for user n. We further employ Pmax and Pmax
m to stand for the maximum transmit power of the

MBS and the maximum transmit power of AP m, respectively. Then the optimization problem can be

mathematically formulated as:

(P1) : max
{af,m,n,k,bf,m,k}

{PAP
f,m,n,k,P

MBS
f,m,k}

ξEE =
RAD

Sum
PTot

(18a)

s.t.
F∑
f=1

Mf∑
m=1

δ∑
k=1

af,m,n,k$ log2
(
1 + γAD

f,m,n,k

)
≥ Rmin

n , ∀n, (18b)

F∑
f=1

K∑
k=δ+1

bf,m,k$ log2
(
1 + γBD

f,m,k

)
≥

F∑
f=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$ log2
(
1 + γAD

f,m,n,k

)
, ∀m, (18c)

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,kP
MBS
f,m,k ≤ Pmax, ∀f, ∀m, ∀k, (18d)

Nf∑
n=1

δ∑
k=1

af,m,n,kP
AP
f,m,n,k ≤ Pmax

m , ∀f, ∀m, (18e)

af,m,n,k ∈ {0, 1} , ∀f, ∀m,∀n, ∀k, (18f)

bf,m,k ∈ {0, 1} , ∀f, ∀m,∀k. (18g)

With the constraint in (18b), the achievable rate of every user for wireless access via NOMA must satisfy

its minimum data rate constraint. Constraint (18c) ensures that the achievable rate from the MBS to

every AP for the backhaul connection via beamforming has to be greater than the wireless access rate

from that AP to the users. Constraint (18d) is imposed to guarantee the maximum transmit power

constraint for the MBS, and constraint (18e) indicates that the transmit power of every AP is restricted

by its maximum power level. Finally, constraints (18f) and (18g) hold due to the definition of binary

variable af,m,n,k in the access downlink (k ∈ A) and binary variable bf,m,k in the backhaul downlink

(k ∈ B), respectively, for f ∈ F , m ∈M, and n ∈ N .

4. Problem Analysis and Reformulation

In this section, we consider the solution to the optimization problem (P1) in (18) to find an opti-

mal resource allocation and user association scheme for the system EE maximization of the downlink

transmission. Clearly, the problem is a non-convex mixed-integer nonlinear programming problem due

to the existence of the interference terms in the objective function in (18a), the nonlinear rate constraints

in (18b) and (18c), and the binary-constrained variables in (18f) and (18g). Such kind of the problem
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is NP-hard and computationally intractable. Especially, for the UDN scenario with larger numbers of

densely distributed users and APs, it is extremely difficult to solve the problem directly with feasible

lower computational complexity.

To efficiently solve the problem, we need to transform it into a more tractable convex optimization

problem. Having this in mind, we first relax the binary variables into the continuous real variables to

redesign some constraints for the problem reformulation. Then, we leverage the sum-of-ratios decoupling

strategy to achieve the transformation of the fractional structure of the relaxed objective function into an

equivalent parametric subtractive one. Lastly, we use the exponential-logarithmic transformation policy

to construct a series of convex optimization subproblems, and further apply the method of the iterative

successive convex approximation (SCA) to obtain the feasible lower-complexity solutions by iteratively

tightening the lower bounds of the achievable sum rate functions.

4.1. Relaxation of Binary Variable

As noticed previously, binary variables af,m,n,k ∈ {0, 1} and bf,m,k ∈ {0, 1} reflect the association

relationship between the user and the AP on an assigned sub-channel k in the access downlink (k ∈ A),

and the association relationship between the MBS and the AP on an allocated sub-channel k in the

backhaul downlink (k ∈ B), respectively. That is, binary variable af,m,n,k or bf,m,k can be interpreted

as a user association-dependent indicator for assigning sub-channel k, i.e., the sub-channel allocation

indicator. With the assigned sub-channel k, i.e., af,m,n,k = 1 or bf,m,k = 1, the power can be allocated

by APm in cluster f to user n (k ∈ A) or by the MBS to APm in cluster f (k ∈ B). Otherwise, the power

will not allocated by the AP and the MBS over this sub-channel. Based on this insight along with the

time-sharing relaxation mechanism [29], we turn to relax binary variables af,m,n,k and bf,m,k to be two

continuous real variables within the range of [0, 1], respectively. As a result, the actual power allocated

by AP m in cluster f to user n on sub-channel k can be represented as P̃AP
f,m,n,k = af,m,n,kP

AP
f,m,n,k, for

f ∈ F , m ∈ M, n ∈ N , and k ∈ A. Likewise, the actual power allocated by the MBS to AP m on

sub-channel k in cluster f is expressed by P̃MBS
f,m,k = bf,m,kP

MBS
f,m,k, for f ∈ F , m ∈ M, and k ∈ B. In this

case, the achievable sum rate of the system in (6) and (12) for the access downlink and the backhaul

downlink can be respectively rewritten as:

R̃AD
Sum =

F∑
f=1

Nf∑
n=1

Mf∑
m=1

δ∑
k=1

af,m,n,k$ log2

(
1 +

Hf,m,n,kP̃
AP
f,m,n,k

1 +
∑Mf,k

j=m+1Hf,j,n,kP̃AP
f,j,n,k

)
, (19)

and

R̃BD
Sum =

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,k$ log2

(
1 +

|hf,m,kwf,k|2 P̃MBS
f,m,k

|hf,m,kwf,k|2
∑φf,k
j=1,j 6=m P̃

MBS
f,j,k + σ2

m,k

)
. (20)

Accordingly, the total power consumption in (15) for the downlink transmission can be derived as:

P̃Tot =

F∑
f=1

Mf∑
m=1

 Nf∑
n=1

δ∑
k=1

(
PCon
f,n + PC

m + P̃AP
f,m,n,k

)
+

K∑
k=δ+1

(
PCon
f,m + P̃MBS

f,m,k

). (21)
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With such a relaxation process in mind, the original problem (P1) in (18) of particular interest can

be reformulated as following problem:

(P2) : max
{af,m,n,k,bf,m,k}

{P̃AP
f,m,n,k,P̃

MBS
f,m,k}

ξ̃EE =
R̃AD

Sum

P̃Tot
(22a)

s.t.
F∑
f=1

Mf∑
m=1

δ∑
k=1

af,m,n,k log2
(
1 + γ̃AD

f,m,n,k

)
≥ Rmin

n

$
, ∀n, (22b)

F∑
f=1

K∑
k=δ+1

bf,m,k log2
(
1 + γ̃BD

f,m,k

)
≥

F∑
f=1

Nf∑
n=1

δ∑
k=1

af,m,n,k log2
(
1 + γ̃AD

f,m,n,k

)
, ∀m, (22c)

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

P̃MBS
f,m,k ≤ Pmax, ∀f, ∀m,∀k, (22d)

Nf∑
n=1

δ∑
k=1

P̃AP
f,m,n,k ≤ Pmax

m , ∀f, ∀m, (22e)

af,m,n,k ∈ [0, 1] , ∀f, ∀m,∀n, ∀k, (22f)

bf,m,k ∈ [0, 1] , ∀f, ∀m,∀k, (22g)

where γ̃AD
f,m,n,k =

Hf,m,n,kP̃
AP
f,m,n,k

1+
∑Mf,k
j=m+1Hf,j,n,kP̃

AP
f,j,n,k

and γ̃BD
f,m,k =

|hf,m,kwf,k|2P̃MBS
f,m,k

|hf,m,kwf,k|2
∑φf,k
j=1,j 6=m P̃MBS

f,j,k+σ
2
m,k

. We wish to

remark that the optimal solution of the problem (P2) in (22) can be viewed as an upper bound of the

solution to the original problem (P1) in (18) through the relaxed binary variables and constraints.

4.2. Equivalent Reformulation via Sum-of-Ratios Decoupling

Although the original problem (P1) in (18) has been transformed into a new one, we can easily find

that the reformulated problem (P2) in (22) of particular interest is still not a convex problem. It is still

rather challenging to derive an optimal solution for this problem due to the reasons: (i) the existence

of the interference terms and the fractional component for the objective function in (22a), and (ii) the

nonlinear and non-convex constraints in (22b) and (22c). Thus, we need to further convert this problem

into an equivalent but more tractable one. Let us first recheck the structure of the objective function in

(22a), which can be specifically rewritten by:

ξ̃EE =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$ log2

(
1 +

Hf,m,n,kP̃
AP
f,m,n,k

1 +
∑Mf,k

j=m+1Hf,j,n,kP̃AP
f,j,n,k

)
Nf∑
n=1

δ∑
k=1

(
PCon
f,n + PC

m + P̃AP
f,m,n,k

)
+

K∑
k=δ+1

(
PCon
f,m + P̃MBS

f,m,k

) . (23)

From (23), we can observe that the objective function holds the structure of a nonlinear sum of

fractional functions. To maximize a sum of fractional functions subject to the non-convex constraints is
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a sum-of-ratios fractional programming problem, which is difficult to solve by conventional optimization

methods [30]. To address this problem, we attempt to adopt the sum-of-ratios algorithm by decoupling

the numerators and denominators of the objective function with the fractional structure. More partic-

ularly, according to [30], the fractional form objective function of the problem (P2) in (22) is further

reformulated into an equivalent parametric subtractive structure. Thereby, the optimization objective

of the problem (P2) in (22) can be expressed as:

max
{af,m,n,k,bf,m,k,P̃AP

f,m,n,k,P̃
MBS
f,m,k}

ξ̃EE = R̃AD
Sum − µP̃Tot, (24)

where µ is an auxiliary parameter. So far, we break down the fractional structure of the objective function

via the sum-of-ratios decoupling. Unfortunately, the objective function in (24) is still non-concave due

to the interference terms in highly non-concave sum rate function R̃AD
Sum. To obtain the convex structure

of the objective function, by the help of the feature of logarithmic structure, we can rewrite R̃AD
Sum as the

following difference of convex structures:

R̃AD
Sum =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$ log2

1 +Hf,m,n,kP̃
AP
f,m,n,k+

Mf,k∑
j=m+1

Hf,j,n,kP̃
AP
f,j,n,k


−

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$ log2

1+

Mf,k∑
j=m+1

Hf,j,n,kP̃
AP
f,j,n,k

.
(25)

Through the above logarithmic operation, R̃AD
Sum in the objective function of interest in (24) can be

formulated as a sum of difference of convex functions. As a result, the reformulated problem (P2) in (22)

can be further expressed by:

(P3) : max
{af,m,n,k,bf,m,k}

{P̃AP
f,m,n,k,P̃

MBS
f,m,k}

ξ̃EE =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$ log2

1 +Hf,m,n,kP̃
AP
f,m,n,k+

Mf,k∑
j=m+1

Hf,j,n,kP̃
AP
f,j,n,k



−
F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$ log2

1+

Mf,k∑
j=m+1

Hf,j,n,kP̃
AP
f,j,n,k


−µ

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

(
PCon
f,n + PC

m + P̃AP
f,m,n,k

)

−µ
F∑
f=1

Mf∑
m=1

K∑
k=δ+1

(
PCon
f,m + P̃MBS

f,m,k

)
(26a)

s.t. (22b), (22c), (22d), (22e), (22f), (22g). (26b)

4.3. Successive Convex Approximation

Apparently, the problem (P3) in (26) is not convex because the constraints in (22b) and (22c) is

highly non-concave. To tackle such an issue, we resort to the iterative successive convex approximation

(SCA) approach for solving the non-convex optimization problem, where, in each iteration, the original

highly non-convex problem of particular interest is approximately transformed into a convex problem
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[31]. According to [32, 33], by applying γ̃AD
f,m,n,k =

Hf,m,n,kP̃
AP
f,m,n,k

1+
∑Mf,k
j=m+1Hf,j,n,kP̃

AP
f,j,n,k

into (19), a lower bound of

R̃AD
Sum can be characterized by:

R̃AD
Sum =

F∑
f=1

Nf∑
n=1

Mf∑
m=1

δ∑
k=1

af,m,n,k$ log2
(
1 + γ̃AD

f,m,n,k

)
≥

F∑
f=1

Nf∑
n=1

Mf∑
m=1

δ∑
k=1

af,m,n,k$
(
αf,m,n,k log2

(
γ̃AD
f,m,n,k

)
+ βf,m,n,k

)
,

(27)

where αf,m,n,k and βf,m,n,k are the auxiliary approximation variables, respectively, for f ∈ F , m ∈ M,

n ∈ N , and k ∈ A. When the following constants are satisfied, the approximation of R̃AD
Sum is equivalent

to or tight at the lower bound in (27)6, i.e.:

αf,m,n,k =
γ̃AD
f,m,n,k

1 + γ̃AD
f,m,n,k

, (28)

βf,m,n,k = log2
(
1 + γ̃AD

f,m,n,k

)
−

γ̃AD
f,m,n,k

1 + γ̃AD
f,m,n,k

log2
(
γ̃AD
f,m,n,k

)
. (29)

In the same way, by applying γ̃BD
f,m,k =

|hf,m,kwf,k|2P̃MBS
f,m,k

|hf,m,kwf,k|2
∑φf,k
j=1,j 6=m P̃MBS

f,j,k+σ
2
m,k

into (20), we can also obtain

a lower bound of R̃BD
Sum, which is specified by:

R̃BD
Sum =

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,k$ log2
(
1 + γ̃BD

f,m,k

)
≥

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

bf,m,k$
(
Λf,m,k log2

(
γ̃BD
f,m,k

)
+Ξf,m,k

)
,

(30)

where Λf,m,k and Ξf,m,k are the auxiliary approximation variables, respectively, for f ∈ F , m ∈M, and

k ∈ B. When the following constants are satisfied, the approximation of R̃BD
Sum is further achieved as the

lower bound in (30), i.e.:

Λf,m,k =
γ̃BD
f,m,k

1 + γ̃BD
f,m,k

, (31)

Ξf,m,k = log2
(
1 + γ̃BD

f,m,k

)
−

γ̃BD
f,m,k

1 + γ̃BD
f,m,k

log2
(
γ̃BD
f,m,k

)
. (32)

For the given approximation variables αf,m,n,k, βf,m,n,k, Λf,m,k, and Ξf,m,k, we then transform the

problem (P3) in (26) into an approximated one, i.e.:

(P4) : max
{af,m,n,k,bf,m,k}

{P̃AP
f,m,n,k,P̃

MBS
f,m,k}

ξ̃EE =

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$
(
αf,m,n,k log2

(
γ̃AD
f,m,n,k

)
+ βf,m,n,k

)

6Note that the use of the logarithmic approximation makes a relaxation of highly non-concave sum rate function R̃AD
Sum

achieve the lower bound when both of the approximation constants are guaranteed. That is, the lower bound is said to be
a tight lower bound.
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−µ

 F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

(
PCon
f,n + PC

m + P̃AP
f,m,n,k

)

+

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

(
PCon
f,m + P̃MBS

f,m,k

) (33a)

s.t.
F∑
f=1

Mf∑
m=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̃AD
f,m,n,k

)
+ βf,m,n,k

)
≥ Rmin

n

$
, ∀n, (33b)

F∑
f=1

K∑
k=δ+1

bf,m,k
(
Λf,m,k log2

(
γ̃BD
f,m,k

)
+Ξf,m,k

)
≥

F∑
f=1

Nf∑
n=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̃AD
f,m,n,k

)
+ βf,m,n,k

)
, ∀m,

(33c)

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

P̃MBS
f,m,k ≤ Pmax, ∀f, ∀m,∀k, (33d)

Nf∑
n=1

δ∑
k=1

P̃AP
f,m,n,k ≤ Pmax

m , ∀f, ∀m, (33e)

af,m,n,k ∈ [0, 1] , ∀f, ∀m,∀n, ∀k, (33f)

bf,m,k ∈ [0, 1] , ∀f, ∀m,∀k. (33g)

Apparently, the problem (P4) in (33) is still non-concave. To address this issue, we intend to exploit

the exponential-logarithmic transformation method to achieve the logarithmic change of variables, i.e.,

P̂AP
f,m,n,k = log2

(
P̃AP
f,m,n,k

)
, for f ∈ F , m ∈ M, n ∈ N , and k ∈ A, and P̂MBS

f,m,k = log2

(
P̃MBS
f,m,k

)
, for

f ∈ F , m ∈ M, and k ∈ B. For the exponential structure, we have P̃AP
f,m,n,k = exp

(
P̂AP
f,m,n,k

)
and

P̃MBS
f,m,k = exp

(
P̂MBS
f,m,k

)
. To this end, by applying the logarithmic change of variables into a logarith-

mic transformation of the objective and constraint functions, we arrive at the following approximate

parametric subproblem:

(P5) : max
{af,m,n,k,bf,m,k}

{P̂AP
f,m,n,k,P̂

MBS
f,m,k}

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

)

−µ

 F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

(
PCon
f,n + PC

m + exp
(
P̂AP
f,m,n,k

))

+

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

(
PCon
f,m + exp

(
P̂MBS
f,m,k

)) (34a)

s.t.
F∑
f=1

Mf∑
m=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

)
≥ Rmin

n

$
, ∀n, (34b)
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F∑
f=1

K∑
k=δ+1

bf,m,k
(
Λf,m,k log2

(
γ̂BD
f,m,k

)
+Ξf,m,k

)
≥

F∑
f=1

Nf∑
n=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

)
, ∀m,

(34c)

F∑
f=1

Mf∑
m=1

K∑
k=δ+1

exp
(
P̂MBS
f,m,k

)
≤ Pmax, ∀f, ∀m,∀k, (34d)

Nf∑
n=1

δ∑
k=1

exp
(
P̂AP
f,m,n,k

)
≤ Pmax

m , ∀f, ∀m, (34e)

af,m,n,k ∈ [0, 1] , ∀f, ∀m,∀n, ∀k, (34f)

bf,m,k ∈ [0, 1] , ∀f, ∀m,∀k, (34g)

where log2

(
γ̂AD
f,m,n,k

)
= P̂AP

f,m,n,k + log2 (Hf,m,n,k) − log2

(
1+
∑Mf,k

j=m+1Hf,j,n,k exp
(
P̂AP
f,m,n,k

))
and

log2

(̂
γBD
f,m,k

)
= P̂MBS

f,m,k + log2

(
|hf,m,kwf,k|2

)
− log2

(
|hf,m,kwf,k|2

∑φf,k
j=1,j 6=mexp

(
P̂MBS
f,m,k

)
+σ2

m,k

)
. It should

be pointed out that the approximate subproblem (P5) in (34) follows the log-sum-exp function structure

after the exponential-logarithmic transformation. Given the fact that the log-sum-exp function is strictly

convex [34], we finally convert the original problem (P1) in (18) of particular interest into a standard

convex maximization problem with logarithmic change variables.

For convex problem, lots of traditional convex optimization solutions can be used to solve it. In fact,

we only maximize a lower bound of the objective function of (34a). To eventually solve the subproblem

(P5) in (34), by help of the iterative SCA approach, we need to further tighten the bound in (27) by

iteratively updating αf,m,n,k in (28) and βf,m,n,k in (29), and meanwhile tighten the bound in (30)

by iteratively updating Λf,m,k in (31) and Ξf,m,k in (32). After obtaining the optimal solution of

(34), through the exponential transformation, we then derive the relaxed binary variables P̃AP
f,m,n,k =

exp
(
P̂AP
f,m,n,k

)
and P̃MBS

f,m,k = exp
(
P̂MBS
f,m,k

)
, namely, the optimal power allocated by AP m in cluster f

to user n on sub-channel k as well as the optimal power allocated by the MBS to AP m on sub-channel

k in cluster f .

The detailed procedure of the adopted iterative algorithm via the SCA method to tighten the bounds

in (27) and (30) is summarized in Algorithm 1. It is noteworthy that Algorithm 1 is implemented in an

iterative way for each AP and the MBS, and is also distributed with guaranteed convergence and low

complexity. For each iteration, approximation variables α(τ+1)
f,m,n,k, β

(τ+1)
f,m,n,k, Λ

(τ+1)
f,m,k , and Ξ

(τ+1)
f,m,k are always

better than the previous values α(τ)
f,m,n,k, β

(τ)
f,m,n,k, Λ

(τ)
f,m,k, and Ξ

(τ)
f,m,k. These bounds will be improved

successively during each iteration, and the iterative process will terminate after finite iterations. So

far, we have transformed the original problem (P1) in (18) into a sequence of convex maximization

subproblems (P5) in (34) through the exponential-logarithmic approximation. In the following section,

we will design an effective algorithm to solve the subproblem (P5) in (34) for obtaining the optimal

solutions, aiming to achieve the joint power, sub-channel allocation, and user association in reasonable

time complexity.
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Algorithm 1 SCA-Based Iterative Algorithm for Approximation Variable Updating.
1: Initialization: Maximum number of iterations Γmax and maximum tolerance ε > 0.
2: Set approximation variables α(0)

f,m,n,k = 1, β(0)
f,m,n,k = 0, Λ(0)

f,m,k = 1, Ξ(0)
f,m,k = 0.

3: Set iteration index τ = 0.
4: while

∣∣∣α(τ+1)
f,m,n,k − α

(τ)
f,m,n,k

∣∣∣ > ε ‖
∣∣∣β(τ+1)
f,m,n,k − β

(τ)
f,m,n,k

∣∣∣ > ε ‖
∣∣∣Λ(τ+1)
f,m,k − Λ

(τ)
f,m,k

∣∣∣ > ε ‖
∣∣∣Ξ(τ+1)

f,m,k − Ξ
(τ)
f,m,k

∣∣∣ > ε ‖
τ < Γmax do

5: Solve subproblem (P5) in (34) to obtain optimal solutions P̃AP(τ)
f,m,n,k = exp

(
P̂

AP(τ)
f,m,n,k

)
and P̃

MBS(τ)
f,m,k =

exp
(
P̂

MBS(τ)
f,m,k

)
.

6: Update α(τ+1)
f,m,n,k and β(τ+1)

f,m,n,k to tighten the bound in (27) according to (28) and (29).
7: Update Λ(τ+1)

f,m,k and Ξ(τ+1)
f,m,k to tighten the bound in (30) according to (31) and (32).

8: τ = τ + 1.
9: end while

10: return α
(τ+1)
f,m,n,k, β

(τ+1)
f,m,n,k, Λ

(τ+1)
f,m,k, and Ξ(τ+1)

f,m,k .

5. Lagrangian Dual Decomposition and Optimal Solution

5.1. Lagrangian Dual Decomposition

Since the subproblem (P5) in (34) is a standard convex maximization problem after the SCA process,

we can adopt the Lagrangian dual decomposition method to solve it to obtain the optimal sub-channel

and power allocation for energy efficient user association. The detailed procedure is given in the following.

The Lagrangian function corresponding to the subproblem (P5) in (34) can be expressed by:

L
(
{af,m,n,k} , {bf,m,k}

{
P̂AP
f,m,n,k

}
,
{
P̂MBS
f,m,k

}
,λ,ϕ, η,χ

)

=

F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

af,m,n,k$
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

)

−µ
F∑
f=1

Mf∑
m=1

Nf∑
n=1

δ∑
k=1

(
PCon
f,n + PC

m + exp
(
P̂AP
f,m,n,k

))

−µ
F∑
f=1

Mf∑
m=1

K∑
k=δ+1

(
PCon
f,m + exp

(
P̂MBS
f,m,k

))

+

Nf∑
n=1

λn

 F∑
f=1

Mf∑
m=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

)
− Rmin

n

$


+

Mf∑
m=1

ϕm

 F∑
f=1

K∑
k=δ+1

bf,m,k
(
Λf,m,k log2

(
γ̂BD
f,m,k

)
+Ξf,m,k

)

−
F∑
f=1

Nf∑
n=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

)
+η

Pmax−
F∑
f=1

Mf∑
m=1

K∑
k=δ+1

exp
(
P̂MBS
f,m,k

)
+

F∑
f=1

Mf∑
m=1

χf,m

Pmax
m −

Nf∑
n=1

δ∑
k=1

exp
(
P̂AP
f,m,n,k

) , (35)
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where λ is the Lagrange multiplier (i.e., the dual variable) vector associated with constraint (34b) on

the minimum data rate requirement for each user, ϕ is the Lagrange multiplier vector for constraint

(34c) on the achievable rate between the backhaul connection and the wireless access of each AP, η is the

Lagrange multiplier corresponding to constraint (34d) on the maximum transmit power for the MBS, and

χ is the Lagrange multiplier vector accounting for constraint (34e) on the maximum transmit power of

each AP. The boundary constraints (34f) and (34g) will be absorbed in the Karush-Kuhn-Tucker (KKT)

conditions [34]. Thereby, the Lagrange dual function is obtained as:

g (λ,ϕ, η,χ) = max
{af,m,n,k},{bf,m,k}

{P̂AP
f,m,n,k},{P̂MBS

f,m,k}

L
(
{af,m,n,k} , {bf,m,k}

{
P̂AP
f,m,n,k

}
,
{
P̂MBS
f,m,k

}
,λ,ϕ, η,χ

)
. (36)

Thus, the Lagrangian dual problem can be represented by:

min
λ,ϕ,η,τ

g (λ,ϕ, η,χ) (37a)

s.t. λ,ϕ, η,χ ≥ 0. (37b)

Due to the differentiability of the Lagrange dual function, we then perform the update process of

the Lagrange dual multipliers in (37) based on the subgradient method to minimize the dual. Let l and

Lmax stand for the iteration index and the maximum number of iterations for the dual multiplier update

process, respectively. Concretely, in the (l + 1)-th iteration, for l = 1, 2, · · · , Lmax, the dual multipliers

can be independently updated by:

λ(l+1)
n = λ(l)n − ζ

(l)
λ

 F∑
f=1

Mf∑
m=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

)
− Rmin

n

$

 ,∀n, (38)

ϕ
(l+1)
m = ϕ

(l)
m − ζ(l)ϕ

 F∑
f=1

K∑
k=δ+1

bf,m,k
(
Λf,m,k log2

(
γ̂BD
f,m,k

)
+Ξf,m,k

)
−

F∑
f=1

Nf∑
n=1

δ∑
k=1

af,m,n,k
(
αf,m,n,k log2

(
γ̂AD
f,m,n,k

)
+ βf,m,n,k

),∀m, (39)

η(l+1) = η(l) − ζ(l)η

Pmax−
F∑
f=1

Mf∑
m=1

K∑
k=δ+1

exp
(
P̂MBS
f,m,k

) , (40)

χ
(l+1)
f,m = χ

(l)
f,m − ζ

(l)
χ

Pmax
m −

Nf∑
n=1

δ∑
k=1

exp
(
P̂AP
f,m,n,k

) ,∀f, ∀m, (41)

where ζ(l)λ , ζ(l)ϕ , ζ(l)η , and ζ
(l)
χ are the step sizes at the (l)-th iteration for dual multipliers λn, ϕm, η,

and χf,m, respectively. Additionally, the step size for each dual multiplier should satisfy the following

conditions:
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∞∑
l=1

ζ
(l)
λ =∞, lim

l→∞
ζ
(l)
λ = 0, forλn,∀n, (42)

∞∑
l=1

ζ(l)ϕ =∞, lim
l→∞

ζ(l)ϕ = 0, forϕm,∀m, (43)

∞∑
l=1

ζ(l)η =∞, lim
l→∞

ζ(l)η = 0, for η, (44)

∞∑
l=1

ζ(l)χ =∞, lim
l→∞

ζ(l)χ = 0, forχf,m,∀f, ∀m. (45)

5.2. Optimal Solution for Joint Resource Allocation and User Association

We are now ready to enumerate the KKT conditions. Let us use
{
P ∗AP
f,m,n,k

}
,
{
P ∗MBS
f,m,k

}
,
{
a∗f,m,n,k

}
,

and
{
b∗f,m,k

}
to represent the optimal solutions to the subproblem (P5) in (34), respectively. According

to the KKT conditions, upon taking the partial derivative of the Lagrangian function L (· · · ) with respect

to P̂AP
f,m,n,k and P̂MBS

f,m,k in (35), respectively, the optimal solutions P ∗AP
f,m,n,k and P ∗MBS

f,m,k to the subproblem

(P5) in (34) can be respectively obtained as:

∂L (· · · )
∂P ∗AP

f,m,n,k

= af,m,n,kαf,m,n,k ($ + λn − ϕm)

1−
∑Mf,k

j=m+1Hf,j,n,k exp
(
P ∗AP
f,m,n,k

)(
1 +

∑Mf,k

j=m+1Hf,j,n,k exp
(
P ∗AP
f,m,n,k

))
ln 2


− (µ+ χf,m) exp

(
P ∗AP
f,m,n,k

)
= 0, (46)

and

∂L (· · · )
∂P ∗MBS

f,m,k

= ϕmbf,m,kΛf,m,k

1−
|hf,m,kwf,k|2

∑φf,k
j=1,j 6=m exp

(
P ∗MBS
f,m,k

)
(
|hf,m,kwf,k|2

∑φf,k
j=1,j 6=m exp

(
P ∗MBS
f,m,k

)
+ σ2

m,k

)
ln 2


− (µ+ η) exp

(
P̂MBS
f,m,k

)
= 0. (47)

After some necessary algebraic manipulations, we then easily obtain the optimal power allocated by

AP m in cluster f to user n on sub-channel k, for f ∈ F , m ∈ M, n ∈ N , and k ∈ A, and the optimal

power allocated by the MBS to AP m on sub-channel k in cluster f , for f ∈ F , m ∈ M, and k ∈ B,

which can be given as follows:

P ∗AP
f,m,n,k = ln

af,m,n,kαf,m,n,k (ϕm −$ − λn)
µ+ χf,m

·

1−
∑Mf,k

j=m+1Hf,j,n,k exp
(
P ∗AP
f,m,n,k

)(
1 +

∑Mf,k

j=m+1Hf,j,n,k exp
(
P ∗AP
f,m,n,k

))
ln 2

 ,

(48)
and

P ∗MBS
f,m,k = ln

ϕmbf,m,kΛf,m,k
µ+ η

1−
|hf,m,kwf,k|2

∑φf,k
j=1,j 6=m exp

(
P ∗MBS
f,m,k

)
(
|hf,m,kwf,k|2

∑φf,k
j=1,j 6=m exp

(
P ∗MBS
f,m,k

)
+ σ2

m,k

)
ln 2

 . (49)

It is noticeable that there does not exist a derived closed-form expression of the optimal power allocation

24



values from (48) and (49). However, the existence and uniqueness of the optimal power allocation

P ∗AP
f,m,n,k and P ∗MBS

f,m,k are guaranteed according to [33]. Due to the space limitation, the specific detail

about the strict mathematical proof of the existence and uniqueness of the optimal power allocation is

omitted here, and readers can refer to [33] for more detailed description. Besides, we also would like to

mention that the update of the optimal power allocation can be made locally by each AP and the MBS,

respectively, via iteratively updating dual multipliers λn, ϕm, η, and χf,m.

Meanwhile, according to the KKT conditions, upon taking the partial derivative of the Lagrangian

function L (· · · ) with respect to af,m,n,k and bf,m,k in (35), respectively, the optimal solutions a∗f,m,n,k
and b∗f,m,k to the subproblem (P5) in (34) can be respectively calculated by:

∂L (· · · )
∂a∗f,m,n,k

=($ + λn − ϕm)
(
αf,m,n,kP

∗AP
f,m,n,k + αf,m,n,k log2 (Hf,m,n,k) + βf,m,n,k

)

−αf,m,n,k ($ + λn − ϕm) log2

1 +

Mf,k∑
j=m+1

Hf,j,n,k exp
(
P ∗AP
f,m,n,k

)

=


< 0 a∗f,m,n,k = 0,

= 0 0 < a∗f,m,n,k < 1

> 0 a∗f,m,n,k = 1,

, (50)

and

∂L (· · · )
∂b∗f,m,k

= ϕm

(
Λf,m,kP

∗MBS
f,m,k + Λf,m,k log2

(
|hf,m,kwf,k|2

)
+Ξf,m,k

)

−ϕmΛf,m,k log2

|hf,m,kwf,k|2
φf,k∑

j=1,j 6=m

exp
(
P̂MBS
f,m,k

)
+ σ2

m,k



=


< 0 b∗f,m,k = 0,

= 0 0 < b∗f,m,k < 1,

> 0 b∗f,m,k = 1.

(51)

Therefore, sub-channel k∗ is assigned to user n by AP m in cluster f via performing the maximization

operation of ∂L(··· )
∂a∗f,m,n,k

in (50), for f ∈ F , m ∈ M, n ∈ N , and k ∈ A, such that we have a∗f,m,n,k∗ = 1,

which is further expressed as:

a∗f,m,n,k∗
∣∣
k∗=arg max

k

∂L(··· )
∂a∗
f,m,n,k

= 1. (52)

Similarly, sub-channel k∗ is also assigned to AP m in cluster f by the MBS via performing the

maximization operation of ∂L(··· )∂b∗f,m,k
in (51), for f ∈ F , m ∈M, and k ∈ B, such that we obtain b∗f,m,k∗ = 1,

which can be specified by:

b∗f,m,k∗
∣∣
k∗=arg max

k

∂L(··· )
∂b∗
f,m,k

= 1. (53)

From (52) and (53), it suffices to mention that an assignment of 1 to either a∗f,m,n,k or b∗f,m,k not only

achieves the optimal sub-channel allocation to each user or each AP, but also indicates the determination

of user association index, namely, the association relation for the user-AP or the AP-MBS.
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Algorithm 2 Joint Power Allocation, Sub-channel Assignment, and User Association Algorithm.
1: Initialization: User’s minimum rate Rmin

n , MBS’s maximum power Pmax, AP’s maximum power Pmax
m , and

maximum number of iterations Lmax.
2: Set Lagrange multipliers λ(1)

n = 0, ϕ(1)
m = 0, η(1) = 0, and χ(1)

f,m = 0.
3: Set iteration index l = 1.
4: Obtain updated approximation variables αf,m,n,k, βf,m,n,k, Λf,m,k, and Ξf,m,k using Algorithm 1.
5: repeat
6: Sub-channel Assignment and User Association:
7: for f = 1 to F do
8: for m = 1 to M do
9: Calculate sub-channel k∗ for the AP-MBS association b∗f,m,k∗ according to (53).

10: Use sub-channel k∗ in Step 9 to update b∗f,m,k∗ .
11: for n = 1 to N do
12: Calculate sub-channel k∗ for the user-AP association a∗f,m,n,k∗ according to (52).
13: Use sub-channel k∗ in Step 12 to update a∗f,m,n,k∗ .
14: end for
15: end for
16: end for
17: Power Allocation:
18: for f = 1 to F do
19: for m = 1 to M do
20: Calculate ∂L(··· )

∂P∗MBS
f,m,k∗

to update power allocation P ∗MBS
f,m,k∗ according to (49).

21: if
∑F
f=1

∑Mf
m=1 b

∗
f,m,k∗P

∗MBS
f,m,k∗ > Pmax then

22: P ∗MBS
f,m,k∗ = Pmax.

23: end if
24: for n = 1 to N do
25: Calculate ∂L(··· )

∂P∗AP
f,m,n,k∗

to update power allocation P ∗AP
f,m,n,k∗ according to (48).

26: if
∑Nf
n=1 a

∗
f,m,n,k∗P

∗AP
f,m,n,k∗ > Pmax

m then
27: P ∗AP

f,m,n,k∗ = Pmax
m .

28: end if
29: end for
30: end for
31: end for
32: Update Lagrange multipliers λ(l+1)

n , ϕ(l+1)
m , η(l+1), and χ(l+1)

f,m according to (38), (39), (40), and (41) under
the step size constraint of (42), (43), (44), and (45).

33: l = l + 1.
34: until onvergence or l = Lmax

35: return P ∗AP
f,m,n,k∗ , P

∗MBS
f,m,k∗ , a

∗
f,m,n,k∗ , and b∗f,m,k∗ .

So far, we have devised Algorithm 1 to generate the updated approximation variables used for tight-

ening the bounds in (27) and (30), and also have given a solution for the joint resource allocation and

user association problem by incorporating the approximation variables as well as the iteratively updated

dual multipliers. By taking the advantage of the Lagrangian dual decomposition, we still need to de-

vise an effective algorithm to identify a specific execution coordination between power allocation and

sub-channel assignment and further to ensure fast convergence of the update of optimal power. As a

result, we present a distributed iterative algorithm to realize the joint optimization of power allocation,

sub-channel assignment, and user association simultaneously, which is sketched in the Algorithm 2.

In Algorithm 2, the Lagrange multipliers are firstly assumed to an fixed value after the setup of ini-

tialization. Then, the approximation variables are obtained by using Algorithms 1. Then, the algorithm

undertakes the iterative process. In each iterative process, each user and each AP can distributvely up-

date the corresponding user association index by using the assigned sub-channels. Based on the results of

the optimal sub-channel assignment and user association, each AP and each MBS can also update their

26



0 50 100 150 200
Distance (m)

0

50

100

150

200

D
is

ta
nc

e 
(m

)

AP, M=2000
User, N=2000
MBS

0 50 100 150 200
Distance (m)

0

50

100

150

200

D
is

ta
nc

e 
(m

)

AP, M=2000
User, N=4000
MBS

0 50 100 150 200
Distance (m)

0

50

100

150

200

D
is

ta
nc

e 
(m

)

AP, M=3000
User, N=2000
MBS

0 50 100 150 200
Distance (m)

0

50

100

150

200

D
is

ta
nc

e 
(m

)

AP, M=4000
User, N=4000
MBS

Figure 2: Simulation scenario of the user-centric UDN: M APs with independent homogeneous PPP Φρ1 and N randomly
generated users coexisting in a circular macrocell area with radius r = 100 m. The MBS is located in the center of
the macrocell. Here, four typical deployment scenarios based on different combination relations between M and N are
generated, respectively, i.e., (i) M = 2000, N = 2000, (ii) M = 2000, N = 4000, (iii) M = 3000, N = 2000, (iv) M = 4000,
N = 4000.

transmit powers in a distributed manner. By updating the sub-channel assignment and user association

as well as the power allocation alternatively, the iteration process is terminated when the convergence of

the update of optimal power is guaranteed or the maximum number of iterations is reached.

6. Simulation Results

In this section, we conduct simulation experiments to evaluate the performance of our proposed

resource allocation optimization framework, and to gain insights into how the various system parameters

affect the achievable EE in a user-centric UDN integrating the access downlink via NOMA and the

backhaul downlink via beamforming. The performance of the proposed algorithm in our framework is

compared with three conventional baseline schemes [35, 14], including the equal-power based allocation

strategy, the distance-based association algorithm, and the max-SINR association method. The equal-

power based allocation strategy aims at the transmit power equally allocated by every AP to each

associated user, and the transmit power equally allocated by the MBS to all the AP. For the distance-

based association algorithm, each user associates with the nearest AP for access in a distributed manner.

That is, user association at each user is determined by the distance metric between the user and the

AP. Additionally, the max-SINR association method is a cellular based approach to achieve the user

association based on the SINR level between the user and the AP. With this method, each user attempts

to attach to the AP that provides the highest SINR.

Results are obtained with the following default system parameters. For our considered user-centric

UDN scenario, the locations of the users are randomly generated with equal possibility in a circular
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Figure 3: The convergence process of the proposed algorithm in terms of the EE over the number of iterations l under
different settings of M and N according to four typical deployment scenarios in Fig. 2.

macrocell area with radius r = 100 m centered at the MBS. A large number of APs are also deployed

within this area subject to an independent homogeneous PPP Φρ1 to provide wireless access service for

those users. Especially, the densities of the APs and the users are specified as ρ1 = 31.85M AP/km2 and

ρ2 = 31.85N user/km2, respectively7. We set the minimum distance between the APs to be 2.5 m, and

the minimum distance between the users is 0.8 m. As shown in Fig. 2, four typical deployment scenarios

of the user-centric UDN are considered in the simulations with different combination relations between

M and N . Unless otherwise mentioned, we specifically set the power consumption related parameters

during the downlink transmission as: PR
f,n = 5 mW, PD

f,n = 10 mW, PC
m = 50 mW, PR

f,m = 15 mW, and

PD
f,m = 30 mW. For the simplicity, we consider that the separation of all the APs into F = 8 disjoint

clusters depends on their spatial direction to the MBS (i.e., the 45° direction angle interval), namely,

0° ∼ 45°, 45° ∼ 90°, 90° ∼ 135°, 135° ∼ 180°, 180° ∼ 225°, 270° ∼ 315°, and 315° ∼ 360°. For the sake of

generality, each user in every cluster is assumed to be simultaneously associated with at most Mf = 50

APs on one or more sub-channel(s), the MBS is also assumed to be simultaneously associated with at

most φf,k = 15 APs on each sub-channel in every cluster.

In our simulations, the total number of sub-channels is K = 5 × 103 with δ = 500 for the access

downlink and K−δ = 4.5×103 for the backhaul downlink to meet the resource management requirement

for ultra-densely deployed nodes. The carrier center frequency is set to 2 GHz and the bandwidth of each

sub-channel is set to $ = 180 kHz. For the access downlink via NOMA, we assume that each sub-channel

is assigned to at most Nf,k = 10 users in every cluster to reduce the complexity of the SIC decoding.

7By choosing proper values of M and N , the densities of the APs and the users in our simulations are nearly close to
the AP density and the user density, respectively, in the theoretical definition of UDNs.
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In every generalized APG, each user can be simultaneously served by at most Mf,k = 20 APs on each

sub-channel. The pass loss between the AP and the user in every cluster is obtained by a quasi-static

block fading model with the small scale Rayleigh fading channel gain distributed as gf,m,n,k ∼ CN (0, 1).

For the backhaul downlink via beamforming, the small scale Rayleigh fading channel coefficient vector

from the MBS to the AP in every cluster is assumed to satisfy the complex Gaussian model distributed

as h̃f,m,k ∼ CN (0, IQ). The beamforming vector for each AP on every sub-channel in every cluster

is generated based on the channel coefficient vector between the MBS and that AP [36]. We assume

that the number of the transmit antennas for beamforming in the antenna array of the MBS is equal to

the number of APs on each sub-channel in every cluster for simplicity of simulations. Without loss of

generality, the path loss exponents with respect to both the wireless access and backhaul downlink are

set as the same value, i.e., ϑ1 = ϑ2 = 2. Unless otherwise stated, we set the noise powers at each user

and each AP on the corresponding sub-channels to be the same ones with σ2
n,k |k∈A = σ2

m,k |k∈B = $N0,

where the AWGN power spectral density is initialized by N0 = −174 dBm/Hz.

Before validating the system performance through the above simulation settings, we first provide

insight on the convergence behavior of the proposed algorithm. Fig. 3 displays the convergence process

of the proposed algorithm in terms of the EE with different numbers of the APs M and the users N

after using four typical deployment scenarios generated in Fig. 2. It can be observed that the proposed

algorithm increases consistently and converges rapidly in less than 14 iterations to reach the optimal

points for different values of M and N . In addition, we can find that the proposed algorithm maintains

the best performance with respect to M = 4000 and N = 4000. That is because the overall EE

performance of the system is not superior when M
N is small or especially less than 1. Such behavior can

be interpreted that enough number of the APs are required to host the comparable number of the users

to guarantee the better performance of wireless access from a user-centric perspective, i.e., MN ≥ 1. When
M
N becomes smaller, the competition for wirelessly accessing to the limited number of APs prevents it

obtaining the better solution. The results indicate that the choice of the numbers of the APs M and

the users N has negligible effect on the system performance and the convergence speed of the proposed

algorithm.

Fig. 4 presents the comparison of the system EE between the proposed algorithm and the baseline

schemes with respect to two different numbers of the users, i.e., N = 2000 and N = 4000, respectively.

It is immediately seen that the EE of the system using no matter the proposed algorithm or the baseline

schemes will gradually increase with the growth of the number of the APs. That is, the larger number of

the APs, the more obtained EE for the system. To explain, with the increasing number of the APs, more

and more users can be hosted by allocating powers and assigning sub-channels properly, resulting in the

alleviated resource competition and thereby improving the system performance. Referring to Fig. 4, we

can also observe that the system EE with the number of the users N = 2000 outperforms that with the

number of the users N = 4000 as for the same scheme with the increasing of M . The reason is that the

comparability of the amount of the APs towards the number of the users usually plays an important role

in improving the EE balance. Furthermore, under the constraint of the same number of the users N , our

proposed algorithm can bring a beneficial performance gain in the EE compared to three other baseline
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Figure 4: The comparison between the proposed algorithm and the baseline schemes in terms of the EE over the number
of the APs with two kinds of setups for the number of the users, i.e., N = 2000 and N = 4000.

schemes especially for N = 2000. The EE gap between the proposed algorithm and the baseline schemes

can be explained as follows: (i) The proposed algorithm obtains the better performance by achieving the

joint optimization of power allocation, sub-channel assignment, and user association simultaneously. (ii)

The baseline schemes only realize an optimization of a single criterion without a joint consideration of

power, sub-channel, and user association. This result further provides a hint to choose appropriate joint

optimization mechanisms to further improve the system performance.

In Fig. 5, we show the comparison between the proposed algorithm and the baseline schemes in terms

of the system EE against the number of the users with respect to two different numbers of the APs,

i.e., M = 2000 and M = 4000, respectively. From Fig. 5, it is evident that the simulated system EE

markedly increases with the continuous evolution of the number of the users, i.e., higher user density.

The reason for this is that larger densities of the users basically obtain more EE gains in spite of more

resource competition and high interference. As a consequence the obtained performance gains in the EE

are on an increasing trend gradually for more and more users in the system. Moreover, it can be also

seen from this figure that our proposed algorithm greatly outperforms the baseline schemes in terms of

the system EE no matter M = 2000 or M = 4000. This is due to the fact that the proposed algorithm

fully takes the joint optimization of power allocation, sub-channel assignment, and user association into

account and thereby achieves good performance. As can be seen from the result, the EE performance of

the system no matter for the proposed algorithm or for the baseline schemes when M = 4000 is always

much higher than that of M = 2000. This behavior is explained as follows: more APs or the increasing

densities of the APs can actually host larger amount of the users under the same system configuration,

which can reduce resource competition for the users and further enhance the system performance. This
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Figure 5: The comparison between the proposed algorithm and the baseline schemes in terms of the EE over the number
of the users with two kinds of setups for the number of the APs, i.e., M = 2000 and M = 4000.

result manifests the importance of the selection of the density of the APs.

Finally, in Fig. 6, we analyze the system EE performance for different values of AP’s maximum power

Pmax
m under the corresponding numbers of the users and the APs, i.e., N = 2000 and M = 2000. It can

be easily seen from this figure that the proposed algorithm greatly outperforms the baseline schemes in

terms of the system EE with the increasing maximum power of the AP, indicating that our proposed

algorithm achieves a beneficial improvement of system-wide EE over other baseline schemes. Referring

to this result, we also find that the increase of AP’s maximum power from 1 W to 3.5 W results in the

dramatic increase of the obtained system EE, while the simulated curves of the system EE finally all

tend to different fixed values with the continuous evolution of AP’s maximum power from 3.5 W to 5

W. This can be explained as follows: the transmit power of each user allocated by the AP is more likely

to be updated when the AP’s maximum power is in a small value below 3.5 W, thus resulting in the

lower system EE. However, with the increase of AP’s maximum power, the power of each user is properly

allocated by the AP, thus satisfying the constraint of AP’s maximum power. Furthermore, when AP’s

maximum power is enough larger, e.g., more than 3.5 W, the possibility of updating the power for each

user is also very lower, which results in the nearly fixed values for the overall EE of the system. Such

observations above demonstrate the benefit of the proposed algorithm in the maximum EE achievement

and provide insightful guidelines for designing the practical user-centric UDNs.

7. Conclusion

In this paper, we proposed a resource allocation framework for energy efficient user association in

downlink user-centric UDNs that closely integrate the wireless access via NOMA and wireless back-
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Figure 6: The comparison between the proposed algorithm and the baseline schemes in terms of the EE over the maximum
power of the AP under the fixed numbers of the users and the APs, i.e., N = 2000 and M = 2000.

haul via beamforming. The framework was aimed at the realization of the maximization of the overall

system-level EE by jointly optimizing user association index, sub-channel assignment, and transmit

power allocation for every user and every AP. The aforementioned design problem was a large-scale

non-convex mixed-integer nonlinear programming problem and thus difficult to be solved with affordable

computational complexity, especially when the numbers of densely distributed users and APs were larger.

Therefore, we conducted the problem reformulation through necessary variable relaxation and sum-of-

ratios decoupling, and then converted this highly non-convex problem into the convex subproblem based

on the SCA method. On this basis, a distributed iterative algorithm was further developed to achieve

the joint optimization of power allocation, sub-channel assignment, and user association simultaneously.

Simulation results demonstrate the convergence of this algorithm, and also show that this algorithm

achieves good performance with beneficial increase on the system-wide EE compared with other baseline

schemes, indicating its potential for a practical design.
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