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Abstract

Recently, the simple arithmetic averages (AA) fusion has demonstrated promising, even surprising, performance for multitarget

information fusion. In this paper, we first analyze the conservativeness and Frechet mean properties of it, presenting new

empirical analysis based on a comprehensive literature review. Then, we propose a target-wise fusion principle for tailoring the

AA fusion to accommodate the multi-Bernoulli (MB) process, in which only significant Bernoulli components, each represented

by an individual Gaussian mixture, are disseminated and fused in a Bernoulli-to-Bernoulli (B2B) manner. For internode

communication, both the consensus and flooding schemes are investigated, respectively. At the core of the proposed fusion

algorithms, Bernoulli components obtained at different sensors are associated via either clustering or pairwise assignment so that

the MB fusion problem is decomposed to parallel B2B fusion subproblems, each resolved via exact Bernoulli-AA fusion. Two

communicatively and computationally efficient cardinality consensus approaches are also presented which merely disseminate

and fuse target existence probabilities among local MB filters. The accuracy and computing and communication cost of these

four approaches are tested in two large scale scenarios with different sensor networks and target trajectories.
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On Arithmetic Average Fusion and Its Application
for Distributed Multi-Bernoulli Multitarget Tracking

Tiancheng Li, Xiaoxu Wang, Yan Liang and Quan Pan

Abstract—Recently, the simple arithmetic averages (AA) fusion
has demonstrated promising, even surprising, performance for
multitarget information fusion. In this paper, we first analyze
the conservativeness and Fréchet mean properties of it, presenting
new empirical analysis based on a comprehensive literature re-
view. Then, we propose a target-wise fusion principle for tailoring
the AA fusion to accommodate the multi-Bernoulli (MB) process,
in which only significant Bernoulli components, each represented
by an individual Gaussian mixture, are disseminated and fused in
a Bernoulli-to-Bernoulli (B2B) manner. For internode communi-
cation, both the consensus and flooding schemes are investigated,
respectively. At the core of the proposed MB fusion algorithms,
Bernoulli components obtained at different sensors are associated
via either clustering or pairwise assignment so that the MB fusion
problem is decomposed to parallel B2B fusion subproblems, each
resolved via exact Bernoulli-AA fusion. Two communicatively
and computationally efficient cardinality consensus approaches
are also presented which merely disseminate and fuse target
existence probabilities among local MB filters. The accuracy and
computing and communication cost of these four approaches are
tested in two large scale scenarios with different sensor networks
and target trajectories.

Index Terms—Target tracking, multisensor fusion, arithmetic
average fusion, multi-Bernoulli filter, Fréchet mean, average
consensus, cardinality consensus, flooding, clustering.

I. INTRODUCTION

DETECTING and tracking an unknown and time varying
number of targets in the cluttered and noisy background,

namely multitarget detection and tracking (MTDT), has led to
substantial interest in many realms [1]–[3]. Random finite set
(RFS) has identified a natural and promising tool for modeling
the problem of MTDT in the Markov-Bayes optimal paradigm
[4], [5]. The two well established branches of RFS filters are
the (cardinalized) probability hypothesis density (PHD) filters
[6]–[9] and the multi-Bernoulli (MB) filters [4, Ch.17] [10]–
[13]. In particular, the MB filter models the set of independent
targets by a union of independent Bernoulli RFSs. Unlike
the (cardinalized) PHD filters which propagate moments (and
cardinality distributions), the MB filter propagates the pa-
rameters of a MB distribution that approximate the posterior
multitarget density by maintaining over time a number of
Bernoulli components (BCs), each corresponding to a potential
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target. It has the same complexity as the PHD filter, which
scales linearly in the number of measurements.

When a sensor network is involved, a significant scientific
problem arises as known as multisensor data fusion of which
the key challenges are twofold. First, information correlation
between sensors is ubiquitous which are often unknown and
rules out the Bayesian optimal solution [14], [15]. Second,
the update process of the Bayes-optimal multisensor RFS
filters involves partitioning all of the sensor measurements
into disjoint subsets and are computationally intractable even
for a few sensors; see the analysis given in [5, Ch.10] [16].
Overload of fusion computation will lead to a delay to local
filters and is therefore practically unaffordable in real-time
filter implementations.

Both problems become more complicated with the increase
of the network size as more sensors typically indicate more
complicated internode cross-correlation and higher computa-
tion requirement. Simply, more is different. A method works
for a few sensors may not necessarily work for massive
sensors. Instead of making further efforts to approach the
actually impossible Bayes-optimal fusion, it is of high realistic
significance to resort to a fusion rule that is

• Real-time: computationally efficient or able to be per-
formed in parallel to the filtering calculation [17], [18],

• Distributed: scalable with regard to the addition or re-
movement of sensors and insensitive to the failure/fault
of any single sensor, and

• Conservative: immune to the unknown, perhaps time-
varying, internode cross-correlation [19], [20].

These requirements give rise to the use of average consensus
approaches [21]–[24] for distributed information fusion over
large scale sensor networks and has been proven robust,
promising in various applications. The two most well-known
types of “average” are the linear arithmetic average (AA) and
the log-linear geometric average (GA) [25].

The combination of the average consensus approach with
the RFS filters originates from the log-linear GA fusion,
namely generalized covariance intersection [26]–[28] and ex-
ponential mixture density [29], [30] approach. However, the
GA fusion has been observed suffering from a delay in
detecting new targets [31], [32] and cardinality inconsistency
[30] (e.g., underestimating the number of targets [33]), prone
to missed detections [20], [25], [32], [34], [35] and vulnerable
to non-overlapping fields of view [25], [36], [37]. In particular,
the GA fusion may degrade [17], [25], [34], [35] with the
increase of the number of fusing sensors and then does not
suit large number sensor networks (LNSNs).
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In contrast to the GA fusion, attempts have also been
made to apply the AA fusion in multisensor RFS filters
since [38] which suggested multitarget likelihood averaging
but gave no validation. It is, however, recently observed that
the AA fusion (realized with appropriate mixture reduction
or resampling operations) outperforms the GA fusion in the
context of PHD fusion [17], [32], [37], [39]–[41], cardinalized
PHD fusion [34], [35] and Bernoulli fusion [42], in addition
to its much higher computing efficiency. The advantage of
the AA fusion over the GA fusion has also been observed in
the context of joint sensor localization and target tracking [43]
and of non-RFS particle filtering [44]. Among these nontrivial
comparisons are those from the research groups that make
significant contribution on GA RFS fusion.

AA fusion complies with the law of “majority preference”
(namely, minority is subordinate to majority) [17], [25], [32],
[45] and is suitable for LNSNs. It is therefore interesting to
see how the AA fusion rule should be extended for MB fusion
and how it performs over the challenging LNSNs. Aiming
exactly at the distributed, unknown-correlated LNSNs, the
main contribution of this work is as follows

1) We prove that both GA and AA fusion rules are able to
avoid double counting any information, but also dilute
(count less than unit) the non-common information.

2) We point out that both AA and GA are Fréchet mean
[46], [47], presenting more general analysis of the prop-
erty of these two specific Fréchet means.

3) We propose the “target-wise fusion principle” to extend
the AA fusion for fusing MBs, which divides the MB fu-
sion problem into parallel Bernoulli-to-Bernoulli (B2B)
fusion subproblems, each resolved by exact Bernoulli-
AA fusion [42]. This result is significantly different from
the existing MB-GA fusion [48]–[50] and also from
existing AA fusion [17], [32], [34], [35], [37], [40].

4) We investigate both the average consensus [21], [22] and
flooding [51] algorithms for internode communication,
proposing accordingly two multidimensional assignment
(MDA) approaches for B2B association based on either
pairwise set matching or multi-sensor data clustering.

5) We extend the AA-fusion based cardinality consensus
(CC) approach [39], [41] for MB fusion, proposing two
communicatively and computationally efficient distribut-
ed MB filters, which merely disseminate and fuse infor-
mation regarding target existence probabilities among
local MB filters, but yield good results too.

This paper is organized as follows. Preliminaries are given
in Section II. Properties of the AA and GA fusion are analyzed
in Section III. The proposed B2B-AA-fusion-based distributed
MB filters are presented in Section IV. Simulation results are
given in Section V. We conclude in Section VI.

II. PRELIMINARIES

A. RFS Modeling of MTDT

The realization of an RFS of the multitarget states is a set
X =

{
x1, . . . ,xn

}
, where n ≥ 0 is the number of targets

which is random and xi ∈ X ⊂ Rd is the state vector of the
i-th target. The cardinality of an RFS X which indicates the

number of elements is denoted with |X|. The random nature
of RFS X is captured by its probability density π(X).

Target births follow an MB RFS independent of target
survivals. Each target evolves and generates measurements
independently. At time k − 1, the target with state xk−1 will
either die with probability 1 − ps

k or persist at time k with
survival probability ps

k and attains a new state xk according
to a Markov transition probability density function (PDF)
fk|k−1(xk|xk−1).

Considering a sensor network composed of sensors i =
1, . . . , S, we denote by Si the set of neighbor sensors of sensor
i. Given target with state xk, sensor i either detects it with
probability pd

i,k and generates a measurement zi,k ∈ Zi,k with
likelihood gi,k(zi,k|xk) or fails to detect it with probability
1 − pd

i,k, where Zi,k denotes the RFS of the measurements
received at time k by sensor i. The clutter follows a Poisson
RFS, independent of target measurements.

B. Cardinality and PHD
Denote the set of all finite subsets of X is with F(X). For a

function f : F(X) → R, the set integral in space χ is defined
as [4, Ch. 11.3.3.1]∫
χ

f(X)δX = f(∅)+
∞∑

n=1

1

n!

∫
χn

f({x1, . . . ,xn})dx1 . . . dxn .

The cardinality distribution ρ(n) of the RFS X is given as

ρ(n) =

∫
|X|=n

f(X)δX

=
1

n!

∫
χn

f({x1, . . . ,xn})dx1 . . . dxn . (1)

The probability generating functional (PGFl) is an equiva-
lent form of the multitarget process. By introducing a unitless
test function h : X → [0, 1], the PGFl of RFS X is defined as

G[h] =

∫
χ

hXf(X)δX, (2)

where the multitarget exponential notation is defined as hX =∏
x∈X

h(x) with h∅ = 1 and 0 ≤ h(x) ≤ 1.

The PHD D(x) of the multitarget density is computed by
taking the functional derivative of G[h] in the direction of the
Dirac delta density δx ( [4]) as follows

D(x) =
δG

δx
[h]

∣∣∣∣
h(x)=1

. (3)

C. Bernoulli RFS
The existence and non-existence of a single target can be

modelled by a Bernoulli RFS. The cardinality distribution ρ(n)
of Bernoulli RFS X is Bernoulli, for which X can either be
empty (with probability 1 − r) or have one element (with
probability r), distributed over the state space according to
PDF p(x) [4]. That is, the FISST PDF of the Bernoulli RFS
is given by

f(X) =


1− r, if X = ∅ ,
rp(x), if X = {x} ,
0, otherwise .

(4)
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Lemma 1. Given S Bernoulli RFSs with respective target
existence probabilities ri and state PDFs pi(x), i = 1, . . . , S,
and a nonnegative weight vector W = {w1, . . . , wS} subject
to

∑S
i=1 wiri ≤ 1, their linear fusion is a Bernoulli RFS with

target existence probability r̄ and state PDF p̄(x) as follows

r̄ =

S∑
i=1

wiri, (5)

p̄(x) =
1∑S

i=1 wiri

S∑
i=1

wiripi(x). (6)

Proof. This lemma is an extension of Lemma 1 of [42] by
relaxing the constraint from

∑S
i=1 wi = 1 to

∑S
i=1 wiri ≤ 1.

This relaxation does not matter the proof and so the proof
given in [42] still holds.

D. MB RFS

An MB RFS X is the union of M independent Bernoulli
RFSs X(ℓ), namely, X =

∪M
ℓ=1 X

(ℓ), which is completely
characterized by a set of parameter pairs {(r(ℓ), p(ℓ)(x))}Mℓ=1,
where r(ℓ), p(ℓ)(x) denote the target existence probability and
state density of the ℓ-th BC or to say potential target X(ℓ),
respectively.

The multitarget density of an MB RFS is given by

π({x1, . . . ,xn}) = π(∅)
∑

1≤i1 ̸=...̸=in≤M

n∏
j=1

r(i
j)p(i

j)(xj)

1− r(ij)
,

where n = {1, · · · ,M} and π(∅) =
∏M

j=1(1− r(i
j)).

The PGFl of the above MB RFS is [4, pp.660]

G[h] =

M∏
ℓ=1

(
1− r(ℓ) + r(ℓ)⟨p(ℓ),h⟩

)
, (7)

from which the PHD D(x) can be calculated according to (3),
yielding

D(x) =

M∑
ℓ=1

r(ℓ) p(ℓ)(x) . (8)

E. Fréchet-p-mean

The Fréchet mean is a statistic used to characterize the
central tendency of a distribution in arbitrary metric spaces
[46], [47]. For a metric space

(
z, d(·, ·)

)
, the Fréchet p-mean

µ of a probability distribution f is defined by

µp(f) , argmin
ν∈z

∫
z
dp(ν, x)f(x)dx, (9)

where dp(ν, x) is a given metric on the distance between ν
and x at the power p and the content to be minimized, namely∫
z dp(ν, x)f(x)dx, is called the Fréchet function.

The discrete analogue, the Fréchet p-mean of a data set
Z = {z1, . . . , zS} with respect to a nonnegative weight vector
W = {w1, . . . , wS}, is defined by

µp(Z,W ) , argmin
ν∈z

S∑
i=1

wid
p(ν, zi) . (10)

Clearly, the existence, possible uniqueness and values of the
Fréchet p-mean depend on the metric d(·, ·). For real numbers,
the AA is a Fréchet mean (p = 2) using the Euclidean distance
as the metric (i.e., the Fréchet function gives the mean square
error), while for positive real numbers, the GA is a Fréchet
mean (p = 2) using the following distance function

d2(x, ν) = || log(x)− log(ν)||2 . (11)

III. PROPERTIES AND REASONING FOR AA AND GA

For fusing probability distributions fi(X) and fusing
weights wi ≥ 0, i = 1, . . . , S, subject to

∑S
i=1 wi = 1, the

AA and GA are respectively given by

fAA(X) ,
S∑

i=1

wifi(X) , (12)

fGA(X) , C−1
S∏

i=1

(fi(X))
wi , (13)

where C =
∫ ∏S

i=1 (fi(X))
wiδX is the normalized constant.

A. Conservativeness

Lemma 2. Both AA and GA avoid double counting any
information in the fusing sources

Proof. Double counting if any can only occur to the common
information that is owned by multiple fusing sources. This is
simply because any non-common information that does not
belong to the other fusing sources will be counted less than
unit in whether multiplication or power-calculation as long as
the fusing weights are smaller than one. On one hand, if a
fusion rule can avoid double counting in the extreme case of
identical fusing sources in which the information of all fusing
sources are identical, it must be able to avoid double counting
in any other cases. This is simply because compared to the
identical case, any other cases can be equally taken as that a
part of the common information has been substituted by non-
common information in different fusing sources. Simply, this
substitution will not cause double counting any information.
On the other hand, in the identical fusion source case, the
AA and GA become the same, identical to that of the fusing
sources for which there is no information double counting.
Combining these two sides, the lemma is proved.

More insights about the conservativeness of both fusion
algorithms can be found in [20]. From the above reasoning, it
can be seen that both average fusion rules deal with the un-
known cross-correlation in an “extremely conservative” means
(as they are able to resolve the worst case: all information are
common). This is, however, more or less over conservative
when there are non-common information which will be diluted
in the convex fusing, i.e., counted less than unit.

B. Fréchet Function (Fusion Divergence) Minimization

As long as we can extend the Euclidean distance and the
distance as defined in (11) from real numbers x ∈ R to real-
valued functions f : F(X) → R, it can seen that both the AA
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as in (12) and the GA as in (13) are Fréchet p-mean. To be
more specific, we have

fAA(X) = argmin
g(X)

S∑
i=1

wi||fi(X)− g(X)||2 , (14)

fGA(X) = argmin
g(X)

S∑
i=1

wi||logfi(X)− logg(X)||2 . (15)

Indeed, L2-distance has been used as a measure of the quality
of the consensus [41], [42], [52], i.e., how much the consensus
has been reached.

To note, the Fréchet function corresponding to a specific
Fréchet mean may not be unique. Relevantly, as pointed out in
[25], [53] and more formally w.r.t. RFS in [35], [45], the AA
and GA fusion rules symmetrically minimizes the weighted
sum of the directed Kullback-Leibler divergences between the
fusing densities and the fused result, i.e.,

fAA(X) = argmin
g(X)

S∑
i=1

wiDKL
(
fi(X)||g(X)

)
, (16)

fGA(X) = argmin
g(X)

S∑
i=1

wiDKL
(
g(X)||fi(X)

)
. (17)

The Fréchet function minimization property indicates that
all fusing sources make the last change to reach an agreement
[43], which, however, is irrelevant with the the filter accuracy.
A consensus is required or is just the goal for fusion in
some cases like “aggregation” [53], [54] but not necessary
the case for multisensor filtering. The reasoning or motivation
for consensus or for aggregation cannot be taken as granted
in the context of distributed filtering.

In addition to the popular AA and GA, there are various
Fréchet means such as the known Harmonic mean, power
mean and quasi-AA [47] as well as Kendall/Footrule optimal
aggregation [54]. In fact, one can easily define a Fréchet mean.
Let us say, for a derivable metric ϵ(f, fi) between probability
measures f and fi in the metric space (z, ϵ(·, ·)), suppose that
its functional derivative with regard to f is

Φ(f, fi) =
δϵ(f, fi)

δf
, (18)

and setting
∑S

i=1 wiΦ(f
∗, fi) = 0 yields

f∗ = Ψ({fi}Si=1; {wi}Si=1) . (19)

We may refer to such a metric ϵ(f, fi) as simple metric.
Clearly, (19) provides a fusion of {fi}Si=1 using fusion weights
{wi}Si=1, which yields a Fréchet mean, i.e.,

f∗ = argmin
f∈z

S∑
i=1

wiϵ(f, fi) . (20)

C. Empirical Reasoning for AA fusion

As addressed so far, the conservativeness and Fréchet mean
properties of the AA fusion cannot explain why we need a
particular average fusion rule like AA. More insights about
this simple, linear fusion rule are needed.

1) Accuracy in time series: The AA fusion, carried out in
the means of aggregating information and re-weighting them,
preserves all information obtained by local fusing sensors. As a
result, misdetection is greatly avoided at the price of increased
risk for causing false alarms. To address the false alarm risk,
the partial consensus approach [17], [32] that carries out
fusion only on partial information which are more likely of
targets and therefore reduces the involvement of false alarms is
proven practically useful. More importantly, in the time series
view, false alarms that by accident pass such an information
censoring will easily be terminated in the subsequent filtering
iterations. Furthermore, an additional step that is usually taken
with the density-AA fusion is mixture reduction such as
mixture merging and pruning [32], [39], which reduces the size
of the mixture. When target state-estimates are extracted from
the modes/peaks of the components, merging the components
that likely represent the same target will get a more accurate
mode/peak in general. However, we note that as proved in
the Appendix of this paper, the standard Gaussian merging
scheme [8], [55] does not change the mean and variance of
the underlying distribution. Therefore, more benefit can be
expected from advanced merging schemes that properly reduce
the variance, e.g., [32]. There is still much space for further
investigation in this regard.

2) Robustness to local errors/faults: Faults/errors in data
such as misdetection, failure, clutter are common and form the
key challenge to real MTDT applications. One of the key goals
of multi-sensor collaboration is just to solve or compensate
for the local sensor errors/faults. For this purpose, the AA
fusion that follows a “majority preference” (i.e., minority is
subordinate to majority), has obvious advantages in identi-
fying and resolving local random errors; see the argument
given in [32, Sec.III.B], [17, Sec.4] and also [25]. Further,
recall that the AA fusion is more or less over-conservative
unless the fusing densities are fully identical as explained in
Section III-A. This “over-conservativeness” actually adds to
the robustness of the filter to deal with model mismatching and
disturbance when the estimator can easily be unbiased. These
properties become increasingly prominent with the increase
of the number of fusing sensors involved for which the risks
of various fault/error increase too and for which many fusion
approaches including the GA fusion may just degrade; see the
experimental studies given in [17], [25], [34], [35].

3) Online fusion: Most RFS filters require either Gaussian
mixture (GM) or particle filters for approximate calculation.
As the result, the posterior is represented by either Gaussian
components (GCs) or particles. The AA fusion admits exact
calculation for either GM or particle implementation and is
insensitive to the applying order of the sensors. In fact, as
shown in (12), the AA fusion imposes mainly re-weighting
calculation which is computationally very efficient. This is an
important advantage since the filters cannot afford much extra
time for internode communication and fusion calculation in
real-time distributed tracking applications, unless they can be
performed in parallel to the filtering calculation [17], [18].

The above properties and advantages render the AA fusion
attractive and promising to the challenging LNSNs.
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IV. PROPOSED TARGET-WISE AA-MB FUSION

At each sensor i = 1, . . . , S, the local MB filter recursively
propagates and updates over time the MB posterior πi(X)

which factories into BCs
{
(r

(ℓ)
i,k , p

(ℓ)
i,k(x))

}Mi,k

ℓ=1
. For the detail

of the classic single sensor MB filter, the reader is kindly
referred to [10]. We hereafter address the proposed MB-
AA fusion algorithm based on the GM implementation. The
approach can be extended to the particle implementation.

Given fusing MB densities πi(X) and fusing weights wi ≥
0, i ∈ S ⊆ {1, . . . , S}, subject to

∑
i∈S wi = 1, their

straightforward AA fusion is given by

π̄(X) =
∑

i∈S
wiπi(X) . (21)

This, however, is problematic in two aspects:
1) the result is no longer a MB density [45] and will

therefore undermine the necessary MB-recursion if used.
2) this fusion disregards the individual BC information

contained in the MB process, which is an advantageous
feature of the MB filter as compared with the PHD filter.

Instead, we adopt a “divide and conquer” strategy, i.e., the
target-like BCs in each sensor are associated with those in
the neighbor sensors representing the same target (namely
MDA for B2B association) to allow closed-form Bernoulli-AA
fusion as addressed in Lemma 1, while the BCs that are more
like false alarms will be excluded from the fusion. This choice
is appropriate as it complies with the herein proposed “target-
wise fusion principle”: Fusion should be carried out with
respect to the information of the same target and excludes false
alarms. This is simply because it lacks physical significance
to fuse the information of different targets or between targets
and false alarms.

A. MB Factorization and Partial Consensus

Considering the GM implementation of the MB posterior,
each BC

(
r
(ℓ)
i,k , p

(ℓ)
i,k(x)

)
of sensor i at time k is represented by

J
(ℓ)
i,k GCs weighted by ω

(ℓ,j)
i,k ≥ 0, j = 1, . . . , J

(ℓ)
i,k , i.e.,

p
(ℓ)
i,k(x) ≈

J
(ℓ)
i,k∑

j=1

ω
(ℓ,j)
i,k N

(
x;µ

(ℓ,j)
i,k ,Σ

(ℓ,j)
i,k

)
, (22)

where N
(
x;µ,Σ

)
denotes a Gaussian PDF with mean vector

µ and covariance matrix Σ and
∑J

(ℓ)
i,k

j=1 ω
(ℓ,j)
i,k = 1.

Clearly, the distribution of each BC p
(ℓ)
i,k(x) is determined by

the parameter set G(ℓ)
i,k ,

{(
ω
(ℓ,j)
i,k ,µ

(ℓ,j)
i,k ,Σ

(ℓ,j)
i,k

)}
j=1,...,J

(ℓ)
i,k

from which we have
• The PHD is approximated as a set of GMs as follows

Di(x) ≈
Mi,k∑
ℓ=1

r
(ℓ)
i,k

J
(ℓ)
i,k∑

j=1

ω
(ℓ,j)
i,k N

(
x;µ

(ℓ,j)
i,k ,Σ

(ℓ,j)
i,k

)
. (23)

• The Euclidean-mean-state of the ℓ-th BC as expressed in
(22) is calculated as follows

µ̄
(ℓ)
i,k =

J
(ℓ)
i,k∑

j=1

ω
(ℓ,j)
i,k µ

(ℓ,j)
i,k . (24)

• By integrating the PHD, the number of targets, namely
the cardinality of the MB RFS, is estimated as

N̂i,k =

Mi,k∑
ℓ=1

r
(ℓ)
i,k . (25)

Abiding by the partial consensus approach [32], only target-
like BCs (hereafter referred to as T-BCs) are disseminated and
get involved in the B2B fusion while the false-alarm-like BCs
(FA-BCs) do not change1. This has also been proved very
necessary for PHD-AA fusion [17], [32], [37].

Following the suggestion given in [32, Sec.III.A], we adopt
two alternative rules to determine the T-BCs:

• Rank rule: Specify the number of T-BCs as equal to the
estimated number of targets at each sensor, or slightly
larger, and then take those with the largest target existence
probabilities as the T-BCs.

• Threshold rule: Specify a threshold rgate, and then only
the BCs with target existence probability greater than that
threshold are identified as the T-BCs2.

Without loss of generality, assume that BCs ℓ = 1, . . . ,mi,k

at sensor i are T-BCs while the rest ℓ = mi,k + 1, . . . ,Mi,k

are FA-BCs. In what follows, we will address the B2B fusion
in detail based on the consensus [21], [22] and flooding
[51] schemes, respectively. Both are distributed algorithms
in which all local sensors perform similar peer-to-peer (P2P)
communication and fusion operations, in parallel. They have
different communication/computation costs and convergence
rates [17], [32], [42], and necessitate different B2B association
methods as to be addressed below. In either case, the distance
between two BCs is given by the L2 distance between their
mean states µ̄

(ℓ)
i,k as calculated in (24) or between the states

of the respective greatest weighted GCs from the two BCs.
After B2B association, B2B fusion is performed for which
we present three propositions that inherits from Lemma 1 and
therefore need no proofs.

The procedures of both algorithms as to be detailed in the
next two subsections are summarized in Algorithms 1 and 2,
respectively. The distributed MB filters are referred to as B2B-
AA-Flooding or B2B-AA-Consensus depending on whether the
flooding or consensus algorithm is used. To note, it is not only
the Output T-BCs of the fusion algorithm but also the unfused
local FA-BCs

{
r
(ℓ)
i,k ,G

(ℓ)
i,k

}Mi,k

ℓ=mi,k+1
that will be used in the

next filtering iteration k + 1.

B. MB B2B-Association and Fusion Based on Flooding
We first consider the distributed flooding scheme [51]. In

such a protocol, each local sensor equivalently serves as a
fusion center which collects the relevant information from
the other sensors via one or multiple P2P communication
iterations. Fusion only occurs at the end of the communication,
once in each filtering iteration.

1One may consider abandoning these FA-BCs, which, however, may cause
significant problem when any of the FA-BCs turn out to be real BCs.
According to our experimental studies, the result will almost surely become
worse if FA-BCs are abandoned.

2Setting rgate = 0 amounts to not applying partial consensus. However, as
we found, the fusion result will degrade significantly if rgate is too small (e.g.,
< 0.1). This indicates that the partial consensus approach is necessary.
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Algorithm 1 Distributed MB Fusion via B2B-AA-Flooding

Input:
{
r
(ℓ)
i,k,G

(ℓ)
i,k

}mi,k

ℓ=1
, i = 1, . . . , S

Output:
{
r̄
(c)
i,k , Ḡ

(c)
i,k

}m̂
[T ]
i,k

c=1 , i = 1, . . . , S
1: for a specific number T of P2P iterations do
2: Each sensor exchanges its own or newly-received T-BCs with

its neighbors.
3: end for
4: for each sensor i = 1, . . . , S do
5: Group T-BCs, resulting in m̂

[T ]
i,k clusters.

6: for each cluster c = 1, . . . , m̂
[T ]
i,k do

7: Calculate r̄
(c)
i,k via (26).

8: Re-weight GCs via (27).
9: Merge and prune the GM, resulting in Ḡ(c)

i,k .
10: end for
11: end for

1) BCs flooding and clustering: At communication itera-
tion t = 1, . . . , T , each sensor forwards all the T-BCs that have
never been sent before to its neighbors and receives theirs.
Let S [t]

i denote the set of sensors that are at most t hops
away from sensor i, including sensor i itself. Once flooding
is completed at iteration T , sensor i receives the parameter
set

{{
r
(ℓ)
v,k,G

(ℓ)
v,k

}mv,k

ℓ=1

}
v∈S[T ]

i

. Then, the BCs are grouped via{{
µ̄

(ℓ)
v,k

}mv,k

ℓ=1

}
v∈S[T ]

i

under two constraints:

• BCs from the same sensor should not be in the same
cluster because each target forms no more than one BC
at each sensor;

• the number of BCs in each cluster (namely the cluster
size) should be larger than ηd|S [T ]

i |, where 0 < ηd < 1 is
a factor to account for misdetection.

To this end, the constrained clustering method [56], [57] is
readily available; for simplicity, the first constraint may not
be strictly obeyed. We omit the detail here3.

Let us say, m̂
[T ]
i,k clusters are finally formed and there

are totally J
(c)
i,k BCs in cluster c = 1, . . . , m̂

[T ]
i,k formed

at sensor i at time k. Denote by S
(c)
i,k ⊆ S [T ]

i the set of
the sensors that contribute one BC to cluster c. We will
now use the same superscript c to refer to all the relevant
parameters belong to cluster c, i.e., ∀v ∈ S

(c)
i,k , j = 1, . . . , J

(c)
i,k ,(

r
(ℓ)
v,k, ω

(ℓ,j)
v,k ,µ

(ℓ,j)
v,k ,Σ

(ℓ,j)
v,k

)
that are grouped to cluster c will be

re-denoted as
(
r
(c)
v,k, ω

(c,j)
v,k ,µ

(c,j)
v,k ,Σ

(c,j)
v,k

)
, respectively. Then,

within each cluster AA-Bernoulli fusion is carried out.
2) B2B AA fusion within clusters: To realize Lemma 1 by

treating all sensors equally (i.e., using uniform fusion weights),
a new BC is generated in cluster c = 1, . . . , m̂

[T ]
i,k as follows,

Proposition 1. The mean target existence probability is
given as follows

r̄
(c)
i,k =

1

|S(c)
i,k |

∑
v∈S

(c)
i,k

r
(c)
v,k . (26)

3The Matlab codes of the flooding-and-then-clustering algorithm can be
found in the URL: sites.google.com/site/tianchengli85/matlab-codes/c4f, for
which the corresponding simulation setup was given in [56].

Algorithm 2 Distributed MB Fusion via B2B-AA-Consensus

Input:
{
r
(ℓ)
i,k,G

(ℓ)
i,k

}mi,k

ℓ=1
, i = 1, . . . , S

Output:
{
r̄
(ℓ)
i,k, Ḡ

(ℓ)
i,k

}mi,k

ℓ=1
, i = 1, . . . , S

1: for a specific number T of P2P iterations do
2: for each sensor i = 1, . . . , S do
3: Sensor i exchanges its T-BCs with its neighbors.
4: for each sensor v ∈ Si do
5: Calculate ϕi,v via (31) for associating T-BCs.
6: end for
7: for each T-BC ℓ = 1, . . . ,mi,k do
8: Combine with its assigned T-BCs as in (32) and (33).
9: Re-normalize GCs as in (34).

10: Merge and prune the GM, resulting in Ḡ(ℓ)
i,k .

11: end for
12: end for
13: end for

Further, all the GCs in cluster c of sensor i will be re-
normalized (without changing their means and covariances)
as follows, ∀v ∈ S

(c)
i,k , j = 1, . . . , J

(c)
v,k,

ω̄
(c,j)
v,k = C−1r

(c)
v,kω

(c,j)
v,k , (27)

with the normalization factor C =
∑

v∈S
(c)
i,k

∑J
(c)
v,k

j=1 r
(c)
v,kω

(c,j)
v,k .

The above local GM set union and reweighting operations
result in an arithmetically averaged BC state density

p̄
(c)
i,k(x) =

1∑
v∈S[T ]

i
r
(c)
v,k

∑
v∈S[T ]

i

r
(c)
v,kp

(c)
v,k(x) . (28)

This, together with (26), constitute the AA-Bernoulli fusion
[42, Sec.III]. After this, GM merging, capping and pruning [8,
Sec.III.C] are applied to each cluster for reducing the number
of GCs, which result in the final AA-fused GM parameters,
denoted as Ḡ(c)

i,k ,
{(

ω̄
(c,j)
i,k ,µ

(c,j)
i,k ,Σ

(c,j)
i,k

)}
j=1,...,J̃

(c)
i,k

.
Finally, to ensure the sum of the existence probabilities of all

BCs at sensor i equal to the mean cardinality, namely flooding-
based CC [32], [41], given by

ˆ̄Ni,k =
1

|S [T ]
i |

∑
v∈S[T ]

i

N̂v,k

=
1

|S [T ]
i |

∑
v∈S[T ]

i

Mv,k∑
ℓ=1

r
(ℓ)
v,k , (29)

normalization is needed to be applied to both {r̄(c)i,k}
m̂

[T ]
i,k

c=1 and
{r(ℓ)i,k}

Mi,k

ℓ=mi,k+1 by multiplying the following factor

αi,k ,
ˆ̄Ni,k∑m̂

[T ]
i,k

c=1 r̄
(c)
i,k +

∑Mi,k

ℓ=mi,k+1 r
(ℓ)
i,k

. (30)

C. MB B2B-Association and Fusion Based on Consensus

This section addresses the consensus algorithm [21], [22] for
internode P2P communication. Here, BCs of neighbor sensors
need to be associated, which is a NP-hard MDA problem when
more than two sensors are involved. To solve this problem, we
decompose the MDA problem into a sequence of 2D/pairwise
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B2B association sub-problems, each resolved by the Munkres’
method [58] (a.k.a. the Hungary algorithm) in polynomial
time. We first mentioned such an idea in [45].

1) B2B association: To associate the T-BCs from sensor i
and its neighbor v ∈ Si, a mi,k ×mv,k distance matrix Di,v

(if mi,k ≤ mv,k otherwise transpose the matrix) is constructed
with element dℓ,ℓ′ , ∥µ̄(ℓ)

i,k − µ̄
(ℓ′)
v,k ∥2, where ℓ = 1, . . . ,mi,k,

ℓ′ = 1, . . . ,mv,k. The Munkres’ assignment results in the
optimal assignment (ℓ, ϕi,v(ℓ)), ℓ = 1, . . . ,mi,k as follows

ϕi,v = argmin
ϕ∈Πmv,k

mi,k∑
ℓ=1

dℓ,ℓ′ , (31)

where Πm denotes the set of all permutations on {1, . . . ,m}
for any positive integer m. For simplicity, we use the shorthand
notation ℓvi = ϕi,v(ℓ) and so ℓii = ℓ.

Before the fusion is carried out, an extra step is required
to refine the assignments so that only the assigned pairs that
are close enough to each other will be further considered; any
assignment that does not meet the gating is considered as weak
association and will be unassigned. These unassigned T-BCs,
as same as the FA-BCs, will not be involved in fusion. Overall,
this BC assignment procedure is analogous to what we have
proposed for GC assignment [32, Sec.IV.C].

2) B2B Fusion: Let S̃(ℓ)
i ⊆ {i,Si} denote all the sensors

that have one T-BC match and be assigned with BC ℓ at sensor
i. For each ℓ = 1, . . . ,mi,k, the AA-Bernoulli fusion is given
by the following proposition.

Proposition 2. Assigned BCs from neighbor sensors v′ ∈
S̃(ℓ)
i are averaged to a single BC at sensor i as follows

r̄
(ℓ)

S̃(ℓ)
i ,k

=

∑
v′∈S̃(ℓ)

i
wi,v′r

(ℓv
′

i )
v′,k∑

v′∈S̃(ℓ)
i

wi,v′
, (32)

p̄
(ℓ)

S̃(ℓ)
i ,k

=

∑
v′∈S̃(ℓ)

i

wi,v′r
(ℓv

′
i )

v′,k p
(ℓv

′
i )

v′,k∑
v′∈S̃(ℓ)

i
wi,v′r

(ℓv
′

i )
v′,k

, (33)

where the fusing weights wi,v′ are given by the Metropolis
weights [21], [22] for fast convergence.

To implement (33), the relevant GCs from sensor v′ ∈ S̃(ℓ)
i

need to be re-weighted and normalized (without changing their
means and covariances), respectively, as follows

ω
(ℓv

′
i ,j)

v′,k = C−1wi,v′r
(ℓv

′
i )

v′,k ω
(ℓv

′
i ,j)

v′,k , (34)

with C =
∑

v′∈Si

∑J
(ℓv

′
i )

v′,k
j=1 wi,v′r

(ℓv
′

i )
v′,k ω

(ℓv
′

i ,j)
v′,k .

Clearly, if S̃(ℓ)
i = {i,Si}, we have

∑
v′∈S̃(ℓ)

i
wi,v′ = 1. This

leads to the ideal case that, all BCs corresponding to the same
target ℓ from different sensors in {i,Si} are correctly assigned
and fused in the AA fusion as follows

r̄
(ℓ)
i,k = wi,ir

(ℓ)
i,k +

∑
v∈Si

wi,vr
(ℓvi )
v,k , (35)

p̄
(ℓ)
i,k =

wi,ir
(ℓ)
i,kp

(ℓ)
i,k +

∑
v∈Si

wi,vr
(ℓvi )
v,k p

(ℓvi )
v,k

r̄
(ℓ)
i,k

. (36)

Otherwise, we only have r̄
(ℓ)

S̃(ℓ)
i ,k

≈ r̄
(ℓ)
i,k , p̄

(ℓ)

S̃(ℓ)
i ,k

≈ p̄
(ℓ)
i,k.

To reduce the size of the combined GM for each BC, GM
merging and pruning may be applied. Furthermore, for MB
RFS CC, the target existence probabilities may be finally re-
scaled as addressed in the following Proposition 3, which
can be performed in parallel to the B2B fusion. With some
notational abuse, we denote the final Mi,k BCs (including both
fused BCs and the BCs that do not take a part in fusion) at
sensor i at time k, with target existence probabilities r̄

(ℓ)
i,k and

GM parameters Ḡ(ℓ)
i,k , ℓ = 1, . . . ,Mi,k.

D. Cardinality-only Consensus

It is seen from Lemma 1 that, the fusion of r
(ℓ)
i,k

is independent of pi(x). Therefore, we can disseminate{(
r
(ℓ)
i,k , µ̄

(ℓ)
i,k

)}mi,k

ℓ=1
and fuse

{(
r
(ℓ)
i,k

)}mi,k

ℓ=1
merely. Then, only

operations related to B2B association and fusing
{(

r
(ℓ)
i,k

)}mi,k

ℓ=1
remain the same and operations related to fusing GM pa-
rameters are avoided. We refer to this approach as B2B-AA-
CC. Although this scheme can be implemented via either
flooding or the average consensus algorithm as addressed, we
investigate the consensus approach only in our simulation,
namely B2B-AA-CC-Consensus. To be more specific, in this
approach, only B2B association operation and calculations as
in (32) are required.

To further reduce the communication and to avoid the B2B
association operation, one may only disseminate the overall
estimate N̂i,k of the MB RFS cardinality as given in (25),
and average it with those from the neighbors sensors, leading
to a protocol same to the standard CC originally proposed
for PHD fusion [41]. Then, only a single real value needs to
be disseminated and fused per communication iteration. That
is, starting from N̂

[0]
i,k = N̂i,k, the following Proposition is

applied, as a partial realization of Lemma 1.
Proposition 3. In the consensus-based standard AA-CC

approach, the following recursion calculation is carried out
among each sensor i and its neighbor sensors at communica-
tion iteration t = 1, · · · , T ,

N̂
[t]
i,k =

∑
v′∈{i,Si}

wi,v′N̂
[t−1]
v′,k . (37)

At the end of communication iteration T in each filtering
iteration k, the result N̂ [T ]

i,k is used to scale all target existence
probabilities as follows, ∀i = 1, . . . ,Mi,k,

r̄
(ℓ)
i,k =

r
(ℓ)
i,k∑Mi,k

ℓ=1 r
(ℓ)
i,k

N̂
[T ]
i,k . (38)

E. Realization of MDA

Convergence analysis and experimental comparison be-
tween the consensus and flooding algorithms are available in
[51] and [17], [32], [41], [42]. However, in the context of B2B
fusion based on MDA, they have new features due to the use
of the clustering or 2D assignment algorithms. As shown next
in our simulation, they lead to greatly different results.

The number of BCs remains the same in the consensus-
based B2B fusion, i.e., each original BC will either be un-
changed or be averaged with those received from the other
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sensors. No new BC is created. In contrast, the final number
of BCs obtained in the flooding-based B2B-AA fusion depends
on the clustering scheme and may be somehow different from
the original number of BCs. The clustering algorithm can
generate new BCs that are totally missed by a local sensor
and therefore can better compensate for the locally missed
detection as compared with the B2B-AA consensus algorithm.
This capacity is important for MTDT.

Most clustering methods enjoy good performance for rich
data but also suffers from the greatly increased computation
due to the increased data size. As such, it can be expected
that the flooding-based B2B-AA fusion which complies with
data clustering is suitable for LNSNs, for which, however, the
computation and communication cost will also be high.

V. SIMULATION RESULTS

We considered the region of interest (ROI) given by
[−2km, 2km] × [−2km, 2km]. The target state is denot-
ed as xk = [xk ẋk yk ẏk ωk]

T with planar position
[xk yk]

T, velocity [ẋk ẏk]
T and turn rate ωk. The num-

ber of objects is time varying due to random births and
deaths. The target birth is an MB process described with
parameters {r(ℓ)B,k, p

(ℓ)
B,k(x)}4ℓ=1, where r

(1)
B,k = r

(2)
B,k = 0.02,

r
(3)
B,k = r

(4)
B,k = 0.03, and p

(ℓ)
B,k(x) = N (x;µ

(ℓ)
B ,ΣB) with

µ
(1)
B = [−1500, 0, 250, 0, 0]T, µ

(2)
B = [−250, 0, 1000, 0, 0]T,

µ
(3)
B = [250, 0, 750, 0, 0]T, µ

(4)
B = [1000, 0, 1500, 0, 0]T,

ΣB = diag([50, 50, 50, 50, 6(π/180)]T)2.
The probability of target survival is P S

k = 0.98. The
survival single-target movement follows a coordinated turn
(CT) model with a sampling period of 1s and transition density
fk|k−1(xk|xk−1) = N (xk;F (ωk)xk,Q), where

F (ω) =


1 sinω

ω 0 −1−cosω
ω 0

0 cosω 0 − sinω 0

0 1−cosω
ω 1 sinω

ω 0

0 sinω 0 cosω 0

0 0 0 0 1

,
and Q = diag([G,G, σ2

u]) with

G =

 σ2
w

4
σ2
w

2
σ2
w

2 σ2
w

,
and σw = 5m/s2, and σu = (π/180)rad/s.

We considered the following observation model. Each sen-
sor i has a target detection probability 0.9 and a nonlinear
range-bearing measurement model given as follows

zi,k =

[√
(xk−x(i))2 + (yk−y(i))2

tan−1
(

xk−x(i)

yk−y(i)

) ]
+

[
v
(1)
i,k

v
(2)
i,k

]
,

where x(i) and y(i) are the coordinates of sensor i, v
(1)
s,k

and v
(2)
i,k are, individually, independent identical distributed

zero-mean Gaussian with standard deviation σ1 = 10m and
σ2 = (π/90) rad, respectively. The field of view of the
nonlinear sensors is a disk of radius 5km centered at the
sensor position; this disk always covers the entire ROI. The

clutter measurements of different sensors are independent
which uniformly distributed over each sensor’s field of view
with an average number of rc clutter measurements per time
step, or equivalently clutter intensity κk(zk) = rc/(2π ·5000).
We used rc=5 in our simulation.

We considered two scenarios. The first scenario is composed
of 5 targets of deterministic trajectories (which were generated
by the mentioned CT model without using process noises) and
50 sensors which are deployed and connected by 187 edges
as shown in Fig. 1. The second scenario is composed of 10
targets whose trajectories were generated by the mentioned
CT model using the random process noise Q and 15 sensors
which form a network topology of grids as shown in Fig 6.
The diameter of both networks is Dm = 6. For both scenarios,
we considered different numbers of communication iterations
T = 1, . . . , 6 to evaluate the performance of the filters under
different degrees of consensus. A larger T indicates a higher
degree of consensus. For the flooding scheme, the network
achieves complete consensus when T = Dm [51].

The local GM-MB filters employ the unscented approach to
deal with the nonlinearity [10]. Each local filter uses at most 20
BCs and each BC comprises at most 10 GCs to keep the filter
computationally efficient, prune the BCs with target existence
probability lower than 0.01, prune GCs with weights below
0.001 and merge those with Mahalanobis distance below 4.
The T-BCs are identified by using the threshold rule with
threshold rgate = 0.3 as addressed in Section.IV.A. We use
the factor ηd = 0.5 in the clustering algorithm with the B2B-
AA-Flooding approach. We reiterate that the partial consensus
approach and the target-wise fusion principle are crucial for
the AA fusion. Following the advice of [10, Sec.III.D], the
number of targets is estimated from the posterior cardinality
distribution by taking its mode and the target state is estimated
from the individual modes from confirmed T-BC densities.

The proposed B2B-AA-Flooding, B2B-AA-Consensus, B2B-
AA-CC and Standard AA-CC were compared with the non-
cooperative approach that does not carry out any internode
communication and fusion. At first, we considered the GA-
MB approach [49], [50] but it turned out that they (based on
our implementation) are computationally intensive and do not
work well with so many sensors as we consider here; indeed
the GA fusion demonstrated degradation [17], [25], [34], [35]
with the increase of the number of fusing sensors.

Filter performance is evaluated by the optimal subpattern
assignment (OSPA) error with cut-off c=2km and order ρ=2
[59]. 50 simulation runs are performed with 100 time steps
each run. Specifically, the average of the OSPA errors obtained
by all the sensors is referred to as network OSPA error (in short
N-OSPA) and the average of the N-OSPAs over all the 100
time steps is referred to as time-averaged network OSPA error
(TN-OSPA). We also consider the average communication
cost (ACC) of the various filters by the number of real
values broadcast by a sensor to its neighbors during all the
dissemination iterations performed in one filtering iteration,
averaged over all the sensors, time steps, and simulation runs.
Note that each 1D r

(ℓ)
i,k , 2D position components of µ̄

(ℓ)
v,k,

1D ω
(ℓ,j)
i,k , 5D µ

(ℓ,j)
i,k , 5D symmetric matrix Σ

(ℓ,j)
i,k take the
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communication of 1, 2, 1, 5, 15 real values, respectively.
The results are shown for the two scenarios as follows:

Fig. 2 and Fig. 7 show the averaged estimate of the number
of targets and N-OSPA of different distributed MB filters
and the non-cooperative MB filter, versus filtering time k.
To better illustrate the result, target position estimates of the
noncooperative filter and the B2B-AA-Flooding (when T = 6)
filter at a single sensor are given in Fig. 1 and Fig. 6. Fig. 3
and Fig. 8 show the TN-OSPA of different filters over time.
Fig. 4 and Fig. 9 show the ACC of different distributed MB
filters versus the total number T of communication iterations.
Fig. 5 and Fig. 10 show the computing time for each filtering
iteration of different distributed MB filters versus the total
number T of communication iterations.

In brief, the proposed four fusion approaches: Standard AA-
CC, B2B-AA-CC, B2B-AA-Consensus and B2B-AA-Flooding
improve the estimation accuracy of the number and states of
the targets in an ascending order, while their costs in com-
munication and computation are also ranked in an ascending
order. We highlight the following findings:

• The performance of B2B-AA-Flooding is significantly
the best in all, although its cost in communication and
computation is high and increases unsurprisingly fast with
the increase of T . Both the strengths and weaknesses are
due to the clustering algorithm; see our analysis given
in Sec.IV-E. Outstanding performance of the clustering
method for target detection has also been recently vali-
dated in [56], [60]. However, when T = 1 (like “diffu-
sion” [61], only direct neighbors exchange information
with each other and no further communication occurs
at each filtering iteration), the communication cost and
computing time of the flooding based B2B approach
are close to those of the consensus-based algorithm,
but its OSPA reduction is much more significant. For
further improvement, communication saving approaches
and faster clustering are to be developed.

• Compared to B2B-AA-CC, the gain due to B2B-AA-
Consensus is not so significant, although its communi-
cation and computation costs are much higher. B2B-AA-
Consensus is composed of two types of operations for
revising the MB posterior: 1) re-weight the BCs (referred
to as “cardinality fusion”), 2) add new GCs to each T-BC
and re-normalize all GCs within each fused BC (“PDF
fusion”). B2B-AA-CC has the same “cardinality fusion”
operation but no “PDF fusion”. In the current B2B-AA-
Consensus implementation, the B2B-MDA problem is re-
solved in an means of iterative pairwise B2B association.
Disregarding the computational efficiency, accuracy im-
provement may be obtained by directly solving the MDA
problem using approximate Lagrangian relaxation [62]
or stochastic sampling approach [63] or by introducing a
scheme to compensate for local missed detection.

• The standard AA-CC approach performs good in the first
scenario considering that its communication and compu-
tation cost is extremely small. But its gain in the second
scenario is smaller and is unstable (even degrading with
the increase of the number of communication iterations
from T = 2 to T = 4). There is probably because the

-2000 -1500 -1000 -500 0 500 1000 1500 2000
x [m]

-2000

-1500

-1000

-500

0

500

1000

1500

2000

y 
[m

]

Real trajectory
Noncooperative
B2B-AA-Flooding

Fig. 1. ROI of the 1st simulation scenario consisting of 50 sensors (positioned
at black circles) connected by 187 communication links (given by black
dashed lines) and 5 targets of smooth trajectories (red lines). Green and blue
points are estimates of the target positions at different times in a single run
achieved by the non-cooperative and B2B-AA-flooding (when T = 6) filters,
respectively, at the same sensor.

number of targets is underestimated somehow in time
interval k ∈ [40, 100]s by almost all filters (as shown
in the upper sub-figure of Fig. 7), i.e., missed detection
is frequent. In such a case, the accuracy gain of the AA
fusion cannot be guaranteed. Further, we note that in our
implementation the number of targets is estimated from
the posterior cardinality distribution by taking its mode,
not its mean and so the original estimate of the number
of targets is not unbiased.

• In almost all distributed algorithms, both the gain in
reducing the OSPA and the communication cost increase
slower while their computation time costs increase lin-
early with the increase of T , after T = 2. The reduction
of the OSPA is the most significant from T = 0 to
T = 1. That means, more iterations of communication
and fusion do not benefit the filter much after T = 2.
This is consistent to the findings shown in the AA-
PHD/Bernoulli fusion [17], [32], [41], [42].

VI. CONCLUSION

While the arithmetic average (AA) fusion is simple, fun-
damental and widely used in many fields, it is only in the
last several years that its performance has been investigated
in-depth in the context of RFS fusion. We point out that it,
as well as the geometric average, is a Fréchet mean. New
insights and discussion are provided based on a comprehensive
literature study in this paper. A significant extension of the
cutting edge AA-RFS fusion is made for accommodating the
MB filter based on the target-wise fusion principle. Imple-
mentation details are provided for four various AA-fusion
based distributed MB filters that have different computation
and communicative costs. Simulations have demonstrated their
effectiveness, computing efficiency and accuracy performance
under a series of numbers of communication iterations in two
different scenarios. It is our future work to extend the AA
fusion and the proposed B2B association algorithms to the
labelled RFS fusion framework [64], [65].
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Fig. 2. Average estimated number of targets and N-OSPA of different filters
over time in the 1st scenario.
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Fig. 3. TN-OSPAs of different filters over time for different numbers T of
communication iterations in the 1st scenario.
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Fig. 5. Computing time for each filtering iteration of different filters for
different numbers T of communication iterations in the 1st scenario.
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Fig. 6. ROI of the 2nd scenario consisting of 15 sensors connected by 22
communication links and 10 targets with various trajectories. Green and blue
points are estimates of the target positions at different times in a single run
achieved by the non-cooperative and B2B-AA-flooding (when T = 6) filters,
respectively, at the same sensor.
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Fig. 7. Average estimated number of targets and N-OSPA of different filters
over time in the 2nd scenario.
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communication iterations in the 2nd scenario.
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Fig. 10. Computing time for each filtering iteration of different filters for
different numbers T of communication iterations in the 2nd scenario.

APPENDIX

Given two GCs (x̂i,Σi) weighted as ωi ≥ 0, i = 1, 2,
respectively, the mixture merging scheme [55] fuses them into
a single GC (x̂M,ΣM) with weight ωM, given by

ωM = ω1 + ω2 , (39)

x̂M =
ω1x̂1 + ω2x̂2

ω1 + ω2
, (40)

ΣM =
ω1Σ̃1 + ω2Σ̃2

ω1 + ω2
, (41)

with Σ̃i = Σi + (x̂M − x̂i)(x̂M − x̂i)
T.

Lemma 3. The above merging scheme does not change the
mean or variance of the concerning distribution.

Proof. We start by recalling that the mean and covariance of
a distribution function are defined as µ ,

∫
Rd x ν̄(x)dx and

Σ ,
∫
Rd (x−µ)(x−µ)T ν̄(x)dx, respectively, where ν̄(x) ,

ν(x)/
∫
Rd ν(x

′)dx′.
Consider a GM of two GCs ν1(x) = ω1N (x;µ1,Σ1) and

ν2(x) = ω2N (x;µ2,Σ2), whose joint distribution is simply
νGM(x) = ν1(x)+ν2(x), where ω1≥ 0 and ω2≥ 0. The mean
of νGM(x) is readily shown to be the weighted average of µ1

and µ2, i.e.,

µGM =
ω1µ1+ ω2µ2

ω1+ ω2
, (42)

and the covariance of νGM(x) is obtained as

ΣGM =
ω1(Σ1+µ1µ

T
1)+ ω2(Σ2 +µ2µ

T
2)

ω1+ ω2
− µGMµT

GM

=
ω1Σ1+ ω2Σ2

ω1+ ω2
+Σ∆(ω1, ω2) , (43)

with Σ∆(ω1, ω2) , ω1ω2

(ω1+ω2)2
(µ1−µ2)(µ1−µ2)

T.

On the other hand, applying the merging scheme as given
in (39),(40) and (41) to ν1(x) and ν2(x) yields a single GC
νM(x) = (ω1+ω2)N (x;µM,ΣM), whose mean (c.f. (40)) and
covariance (c.f. (41)) are given by, respectively,

µM =
ω1µ1+ ω2µ2

ω1+ ω2
, (44)

ΣM =
ω1(Σ1+ e1)+ ω2(Σ2+ e2)

ω1+ ω2
, (45)

where ei , (µi−µM)(µi−µM)T, i = 1, 2. It is easy to be
verified that, µM = µGM and ΣM = ΣGM.
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pp. 215–310, 1948.

[47] F. Nielsen and R. Bhatia, Matrix Information Geometry. Springer Berlin
Heidelberg, 2012.

[48] M. Jiang, W. Yi, R. Hoseinnezhad, and L. Kong, “Distributed multi-
sensor fusion using generalized multi-Bernoulli densities,” in Proc.
FUSION 2016, July 2016, pp. 1332–1339.

[49] B. Wang, W. Yi, R. Hoseinnezhad, S. Li, L. Kong, and X. Yang,
“Distributed fusion with multi-Bernoulli filter based on generalized
covariance intersection,” IEEE Trans. Signal Process., vol. 65, no. 1,
pp. 242–255, Jan. 2017.

[50] W. Yi, S. Li, B. Wang, R. Hoseinnezhad, and L. Kong, “Computationally
efficient distributed multi-sensor fusion with multi-Bernoulli filter,”
IEEE Trans. Signal Process., pp. 1–1, 2019.

[51] T. Li, J. Corchado, and J. Prieto, “Convergence of distributed flooding
and its application for distributed Bayesian filtering,” IEEE Trans. Signal
Inf. Process. Netw., vol. 3, no. 3, pp. 580–591, Sep. 2017.

[52] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,” J Parallel. Dist. Comput., vol. 67, no. 1,
pp. 33 – 46, 2007.

[53] A. E. Abbas, “A Kullback-Leibler view of linear and log-linear pools,”
Decision Analysis, vol. 6, no. 1, pp. 25–37, 2009.

[54] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the web,” in Proc. 10th ICWWW. New York, NY, USA:
ACM, 2001, pp. 613–622.

[55] D. J. Salmond, “Mixture reduction algorithms for target tracking in
clutter,” in Proc. SPIE, vol. 1305, 1990, pp. 434–445.

[56] T. Li, J. M. Corchado, and H. Chen, “Distributed flooding-then-
clustering: A lazy networking approach for distributed multiple target
tracking,” in Proc. FUSION 2018, Jul. 2018, pp. 2415–2422.

[57] T. Li, J. Prieto, H. Fan, and J. M. Corchado, “A robust multi-sensor PHD
filter based on multi-sensor measurement clustering,” IEEE Commun.
Lett., vol. 22, no. 10, pp. 2064–2067, Oct 2018.

[58] J. Munkres, “Algorithms for the assignment and transportation problem-
s,” J. Soc. Ind. Appl. Math., vol. 5, no. 1, pp. 32–38, 1957.

[59] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Trans. Signal
Process., vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

[60] A. De Freitas, L. Mihaylova, A. Gning, M. Schikora, M. Ulmke,
D. Angelova, and W. Koch, “A box particle filter method for tracking
multiple extended objects,” IEEE Trans. Aerosp. Electr. Syst., vol. 55,
no. 4, pp. 1640–1655, Aug. 2019.

[61] A. H. Sayed, P. M. Djuri, and F. Hlawatsch, “Chapter 6 - distributed
Kalman and particle filtering,” in Cooperative and Graph Signal Pro-
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