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Abstract—In this paper, we propose the simple method to
optimize the datasets noise under the uncertainty applied to
many applications in industry. Specifically, we use firstly the
deep learning module at transfer learning based on using the
mask-recnn to detect the objects and segmentation effectively,
then return the contours only. After that we address the shortest
path for reduce the noise in order to increasing the high-
speed in industrial applications. We illustrate adaptive many
applications web applications such as mobile application where
power computer is limited a source.
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I. INTRODUCTION

Deep learning is currently a resolution in many applications
such as YOLO3 [11] which is a module illustrates the very
high speed in real-time tracking and object detection while
Mask-RCNN [3] approach shows convenient way for rep-
resenting the objects masking with the robust segmentation.
It is recently one of the most challenge in computer vision
and image processing nowadays. Most of autonomous robotic
systems [10], motion planning [10], [5] , [18] and human-robot
interaction [4], [1]) is need to clearly position and orientation
(poses) to interact with unknown environment. However, there
are many constraints to apply in robot applications.

Transfer learning is currently one of most approach applying
in the industry. For instance, COCO dataset [6] is used to train
most of experiments in efficient way. Hence, Mask-RCNN [3]
is inherited to use as transfer training as supervised learning
approaches based on COCO, ImageNet [14]. In this case,
it will be token many time for pre-processing data such as
labelling, data augrumentation [15]. In order to solve it, there
are currently three solutions to improve active contour features
and uncertainty problem. Firstly, we need to label carefully
the object expectation based on representing the particular
characteristic features. Secondly, we will need to change the
network. For instance, we need to change the Resnet such as
ResNet 50, 101, and 152, respectively. Finally, we can apply
the shortest distance to predict quickly in order to improve the
accuracy.

Bounding box 15did not any care from any researcher,
most of them focusing on deep network design and data
science to make efficient, and effectively it is impact precisely
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to most applications such as human-robot interaction, grasp
and manipulation, autonomous self-driving []. Unfortunately,
there is very limited on research to focus on contour feature
extraction [12], and [19]. Hence, we are proposal a simplest
way to correct the contour features based on predicting from
bounding box and masking result from Mask-RCNN module.
It is probably only applied to Mask-RCNN, where we can
get the contour feature based on resulting from detection and
segmentation that there are no module can be applied other
deep learning modules like [11], [20], [22] (previous module
of Mask-RCNN), etc.

In this paper, we extended our performance by representing
the Contours Features attribution to improve the bounding box
applying the deep learning in order to apply robot applications,
(e.g. human-robot interaction [4], [1]). Firstly, we will explore
our Mask-RCNN framework based on upgrading the network
structure by using the Resnet 152 to improve our performance.
Secondly, we use the shortest path by the correctness to modify
the bounding box. Additionally, we also illustrate the Video
Detection and Segmentation to improve our accuracy effetely.

In structure of paper, section I are already covered the
introduction. Next, we will discuss about uncertainty based on
representation. And then, we will discuss distance path based
on describing the improvement both bounding box and contour
feature in section 3. After that, it is addressed for experiments
based on robot and mask-rcnn for detection and segmentation.

II. UNCERTAINTY REPRESENTATION

From raw data, the line extraction can create features.
Firstly, Features are much more compact than raw data, and
can reflect physical or abstract objects. Moreover, it is rich in
information and can be able to assess accuracy of feature

A. Line Segment Extraction

While line extraction needs to estimate the line parameters
by given points belong to lines, the segmentation problem is
to be answering both many lines and data points in lines for
solving the line extraction problems.

Let consider a problem by given describing in Figure 2
a given set of points by a measurement vector of tuples. In
this case, it is a set of bounding box, and formalized by
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Fig. 1: Mask-RCNN Object Detection and Segmentation:
(LEFT) Object Segmentation and Bounding Box Problems;
(RIGHT) error localization and bounding box based on feature
extraction.

2 ¢

Fig. 2: Example of a raw data mapping from Sensor.

xi(pi, 0;), with ¢ = 1--- | N. Others, we need to define two
angles « and 6; according to given Figure: 3

There is a constraint for applying the linear equation based
on the measurements.

picos(0; — a)r (1)

But in the real world, there are many noisy by the measure-
ments updating, thereby set of points will be simplify to the
distance d; given by the line:

x;=(p;, 6)
d-

(a) Problem

(b) A Solution

Fig. 3: Line Segment Extraction [17]

x;=(p» 6;)

(a) Problem (b) A Solution

Fig. 4: Line Segment Extraction [17]
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It represents as a solution called Minimize Sum of Squared
Errors (MSSE). Generally, we can find to minimize the error
function by formalization:

S = Zwidg = Z(picos(ei —a)—r)? 3)
i i

It shows the solution on Figure: ?? by the derivative of
equation separately with respective to each parameter, includ-

ing « and r. So, it will be equal:
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Another parameter will be given by:
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There are two cases in this situation. It usually called as
unweighted Least Square Error. On the other hand, according
to each measurement, there is the way by using the associated
error variance function illustrated better results. And the result
of o and 7 is:
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Let to consider two conditions below:

pi~ N (51, 52) ©)

and

0~ N (6:,33,) (10)

The covariance matrix shows the uncertainty based on the
line by given two parameter above:

Cor = FpgCrF (11)
It must be to define the Jacobian as:
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If there is independent between p; and 6, we can define the
function for ¢,

20 0 0
0 &2 0 0
c - diag(%) 0 B . .
v 0 diag(@ﬁ) - :
0 3.0
0 0 0 8,
(14)

B. Shortest Distance Algorithms

There are currently we used to two approaches for solving
the correctness contour problems given by Figure

1) Split-and-Merge Algorithms: 1t is used to the recursive
procedure of fitting and splitting function. Detail about pseu-
docode of algorithms is described in Agl: 1

C. RANSAC

We can determine the number of iterations in RANSAC by
formulizing equation:

~ log(1—p)

= — 15
log(1 —w? (1)
Where: w = is the percentages of inliers
Types Commplexity | Speed Accuracy
Spit-and-Merge | n log n 1500 (Hz) | 90 %
RANSAC snk 30 (Hz) 10%
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Fig. 5: Sample for Noise Datasets based on resulting from
Mask-RCNN Object Detection and Segmentation

D. Faster R-CNN and Mask R-CNN
E. Figures and Tables

a) Positioning Figures and Tables: Place figures and
tables at the top and bottom of columns. Avoid placing them
in the middle of columns. Large figures and tables may span
across both columns. Figure captions should be below the
figures; table heads should appear above the tables. Insert
figures and tables after they are cited in the text. Use the
abbreviation “Fig. ??”, even at the beginning of a sentence.



Fig. 6: Split-and-Merge: There are examples of iterative end
point for solving contour feature

Algorithm 1: Splitting-and-Merging()

1 begin
2 Initial set s; consists of N points;
3 Fitting a line to the next set s; in L ;
4 Detect point P with maximum distance d, to the line
if d, < threshold then
5 L continue (go to step 2);
6 else
7 Splitting s; at P into s;; and s;7;
8 Replace s; in L by s;; and s;7;
9 Continue (go to 2);
10 while T'rue do
11 /+ Calculate the path distance «/
12 while all sets (segments) in L have been checked
do

13 L merge col-linear segments;
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Fig. 7: RANSAC for Line Segment Extraction.
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Fig. 8: Comparison of Line Segment Extraction.

III. OBJECT SEGMENTATION WITH MASK-RCNN

In this section, we focus on describing Mask R-CNN
architecture and how it performs object segmentation. Prior to
that, we also discuss Faster R-CNN, a neural network object
detector from which Mask R-CNN stems. Objects in general
can be things in various shapes, depending on what type of
dataset is fed to train the neural network model.

RolPool / RolAlign
. Bounding box

regression

Faster
Feature Fixed size R-CNN

map feature map Classification

L

Fig. 9: Mask R-CNN architecture.

Mask
branch

A. Faster R-CNN

Faster R-CNN is a deep neural network designed for multi-
class object detection and introduced by Ren et al. [20]. It
consists of two main modules: a Region Proposal Network
(RPN) followed by the Fast R-CNN [22]. The region proposal
module is a convolutional network fed with an image from
which it extracts features and returns locations where the
object lies. These areas will be further analyzed by the Fast
R-CNN detector to determine object type (classification) and
to adjust rectangular bounding boxes (regression) to better fit
the object shape. The system loss function £ is a combined
loss of classification L.;; and regression Ly, :

L= £cls + Ebow

Thanks to the share of convolutional feature map at classifica-
tion, regression and RPN stage, the Faster R-CNN is faster
than Fast R-CNN and therefore it requires less computational
effort.

B. Mask R-CNN

Mask R-CNN [2] is extended from Faster R-CNN. Besides
the class label and the bounding box offset, the Mask R-
CNN is able to detect shape of objects, called object mask.

(16)



This information is useful for designing high-precision robotic
systems, specially autonomous robotics grasping and manipu-
lation applications. The general loss function £ considers the
mask loss L,,qsk:

L= ﬁcls + [/boa; + Emask

Additionally, the Mask R-CNN can achieve a high pixel-
level accuracy by replacing RolIPool [22] with RolAlign. The
RolAlign is an operation for extracting a small feature map
while aligning the extracted features with the input by using
bi-linear interpolation. Reader may refer to the paper [3] for
further detail. To train the detector, we reuse a Mask R-CNN
implementation available at [2].

a7

IV. EXPERIMENTS

There are many approaches we are using to test our per-
formance increasingly. To apply in robotics applications, it is
explained more in [4], and [1] that based on given architecture
describing in Figure:??.

A. Training Strategies

We intend to change our experiments by concentrating the
pre-processing datasets, based on focusing supervised learning
method. By the way, we using data argumentation for

B. Mask-RCNN for Video Detection and Segmentation

In this work we expend our experiments by demonstrating
the Video based on Cat and Dog problems.

C. Visualization

Visualization for understanding deep learning is currently
the challenge in research activities. One of the problems is
the overfitting, and it is difficult to handle and manage. In this
paper, we tryied to understand our dataset by using precision.
Figure: 13 as an example which is visualized result by taking
from 7200 image with respect to around 17 class

More visualization is explained by this paper [1].

For Contour feature extration, we have visualized in Figure:

In summary, we need to integrate currently three approaches
proposed together because deep learning still have problems
with segmentation due to noise datasets from prediction. For
instance, we expect to detect and segment many tiny objects
and quit similar features.

RESNET Types | Accurccy | Loss | Summary
RESNET 50 80-95 % 0.06 | Not refered.
RESNET 101 94 -99 % | 0.05 | Refer to used.
RESNET 152 94-99 % 0.04 | Not refered.

Table above shows that there are not much different by using
ResNet 101 and 215. Hence, we are referred to Resnet 101
used to training our model. Basically different here, ResNet
215 usually expended the size, and implied to slightly low
when we implement in any API applications or Robotics
system.

« ResNet 50: It is very poor result on object segmentation
when we increase the complexity of the datasets.

Fig. 10: Top and Middle: There are existed errors from
masking. Bottom: Contour Feature is correct by an extraction
using Flitting-and-Merging Algorithm



Algorithm 2: RANSAC()

1 begin
2 Given: Point cloud P and model estiamation routine;
3 Output:Model M which was rated best amongst all
interations ;
4 Detect point P with maximum distance d, to the line
5 while maxIterationsnotreached do
6 sample k point;
7 estimate a model M;
8 compute model inliers;
9 while contraint c in contraints do
10 if d, < threshold then
11 update maxInterations;
12 L continue;
13 if M is better than bestModel then
14 save M as bestModel;
15 update maxInterations;
16 update iterations;
17 return bestModel;
0.8 B ks
s
0.6 W e
B o=
W e
B o
04 os
W -
IM\
W -
10 mo
0

Fig. 11: Generative Training: Total loss is decreased by using
epoch 1000. And we totally got minimum for our model
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Fig. 12: Mask-RCNN Object Detection and Segmentation
for Video Tracking: Object Segmentation and Bounding Box
Solution .

Fig. 13: Visualization for Activation Function based on 7200
images.
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Fig. 14: Histograms for Object Segmentation .

e ResNet 101: It is good result in average by comparing
with other remain ResNets, even the total loss is greater
than ResNet 152.

o ResNet 150: The good thing here it contains smallest loss
parameter. However, it is heavy the sizes since it take
slow speed to integrate to robot applications.
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Fig. 15: Contour extraction after correctness. It can be cor-
rected around 90-99 %.



V. CONCLUSION

In this paper, we address the uncertainty which is illustrated
in deep learning approaches, and Mask-RCNN module is
probably suitable solutions for human-robot interaction and
grasp manipulator systems. It shows that integration between
bounding box and masking can be able to increase the ac-
curacy of bbox that in never applying to any deep learning
modules without mask. We also conclude that RANSAC were
not suitable our situation which is determine the distance path,
and it must be replaced by

In the future work, we would to extend to our semi-
supervised and unsupervised learning for improvement the
object segmentation. It will be able to solve the moving objects
and increase the segmentation.
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