
P
os
te
d
on

15
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
16
03
51
4.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Real-Time Search-based Planning in Structure Environments

Than Le 1

1Universty of Bordeaux

October 30, 2023

Abstract

In this paper, we address the data sending and visualization in search-based planning using the open source software based
on motion planning problems. First, we explore the computing architecture of software where we can communicate with other
devices or sensors. It also is to understand the finding path problem by using the A-Start algorithm. By the way, it is

integrated to ROS (Robot Operation System) and implemented

in Nao Humanoid Robot based on solving the optimize the

trajectories.

1



Real-Time Search-based Planning in Structure
Environments

1,2Than D. Le
University of Bordeaux

Bordeaux, France
Email: than.ld@ieee.org

2Faculty of Information Technology
Ton Duc Thang University
Ho Chi Minh City, Vietnam

Abstract—In this paper, we address the data sending and
visualization in search-based planning using the open source soft-
ware based on motion planning problems. First, we explore the
computing architecture of software where we can communicate
with other devices or sensors. It also is to understand the finding
path problem by using the A-Start algorithm. By the way, it is
integrated to ROS (Robot Operation System) and implemented
in Nao Humanoid Robot based on solving the optimize the
trajectories.

Index Terms—motion planning, swarm mobile robotics, obsta-
cle avoidance, bug algorithms

I. INTRODUCTION

Search-based planning is recently implements in [1], [3],
[4]. Moreover, Footstep search-based planning [5] was used
to integrate in ROS (Robot Operating System) based on
understanding theoretical concepts.

In real-time applications of robotics and autonomous sys-
tems [2], there are precisely understanding the software cog-
nitive architect and linked sensor perception systems in order
to build a complete AI system.

In this paper, we propose the context of navigation for
software architecture and applied search-based planning for
solving the real-time by using humanoid robots.

II. THE ARCHITECTURE OF ROS AT FILE-SYSTEM LEVEL

A. Environment

The organization of ROS files is structured on the hard disk
in a certain way as an operating system. In this level, we can
see the structure of ROS data folder on the disk.

III. PATH-FINDING IN SEARCH-BASED PLANNING

One of the most basic requirement when operating a mobile
or humanoid robot is to be able to successfully navigate in the
map environment. The navigation problem includes 2 parts:
locomotion and path-finding. While locomotion is concerned
with the physical motion of a robot such as: control the joints,
the way robots interact with the environment ect., path-finding
is concerned with finding a valid route for the robot to go
from location to other location. In short, the path-finding is a
method of search that finds a route between two points in an
environment. There are many methods to find the valid route:
BellmanFord algorithm, Dijkstra’s algorithm, Floyd-Warshall
algorithm, etc. In this thesis, the A∗ Shortest Path Finding

Algorithm is used. In this chapter, we am going to talk about
some path-finding algorithms and the reason why we chose
A∗ Algorithms:

A. Dijkstra’s Algorithm and Best-First-Search

A common example of a graph-based path-finding algorithm
is Dijkstra’s algorithm. Dijkstra’s algorithm is a shortest path-
finding algorithm conceived by computer scientist Edsger W.
Dijkstra in 1956. It works by visiting a set of open nodes in
the graph starting with the starting node. It then repeatedly
examines the closest node with the lowest distance cost that
have not been examined , adding its to the set of Closed node
(nodes that have been examined). It expands outwards from
the starting point until it reaches the goal. If there are no
negative edge node (node with the negative distance cost),
Dijkstra’s algorithm is guaranteed to find a shortest path from
the starting point to the goal, since the lowest distance nodes
are examined first. In the following map, the star is the starting
point, the "X" is the goal, the white path is the calculated path
and the blue and area inside it is the areas Dijkstra’s algorithm
have scanned.

First, we create an open list and closed list. The open node
list start with the start node and contains all nodes that have not
yet been checked. The closed node list stores all node that have
been visited.(moved from the open node list). The algorithm
works by maintaining these two lists. The core loop of the
algorithm selects a node from the open list with the lowest
estimated cost (f) to reach the goal. If one of the selected
node is the goal, the search will be stopped. Else, it calculate
the node cost then push all the valid direction nodes(8 nodes
around the current node) into the open list. Then the checked
node is moved to the closed node list.The process repeats until
the path is generated.

A* Shortest Path Finding Algorithm Peter Hart was first
described by Nils Nilsson and Bertram Raphael of Stanford
Research Institute (now SRI International) in 1968. It is an
extension of Edsger Dijkstra’s 1959 algorithm. Since then, it
has become the leading path-finding algorithm. A* Algorithm
is widely used in map navigation and graph traversal, the pro-
cess of plotting an efficiently traversable path between multiple
nodes. A* is a best-first search algorithms, meaning that it will
choose the path considered as the best solution (least distance
traveler, shortest time, etc.) by searching among all possible



(a) A tiger

Fig. 1: [3] Left: Bug 1; Center: Bug 2; Right: Targent Bug;

paths to the target. As we have mentioned before, Dijkstra’s
Algorithm is accuracy to find the shortest path, but it wastes
time exploring in directions that aren’t promising while Greedy
Best First Search explores in promising directions but it may
return the longer path result. The A* algorithm calculates both
the actual distance from the start and the estimated distance to
the goal so it can guarantee to find shortest path while taking
much less time Dijkstra’s Algorithm. First, let’s define the cost
function:

First, we create an open list and closed list. The open node
list start with the start node and contains all nodes that have not
yet been checked. The closed node list stores all node that have
been visited.(moved from the open node list). The algorithm
works by maintaining these two lists. The core loop of the
algorithm selects a node from the open list with the lowest
estimated cost (f) to reach the goal. If one of the selected
node is the goal, the search will be stopped. Else, it calculate
the node cost then push all the valid direction nodes(8 nodes
around the current node) into the open list. Then the checked
node is moved to the closed node list.The process repeats until
the path is generated.

• Node: Each node has their own position on the map and
also has 3 cost values associated with it. A* Algorithms
will take these 3 cost values to decide which node to
consider first

– g score: The g score is the distance cost of moving
from the start node to this node.

– H score - the heuristic: this is an estimate cost
of the distance between each node and the goal.
The method we use to calculate H score is very
important, it decides how "good" your algorithm
is. The implementation of the H score can vary
depending on the situation you are working on, here
are some common heuristics.
∗ Manhattan distance: In Manhattan, the shortest

possible path between two points is not a straight
line. The green line is diagonal, straight-line dis-
tance. The red/blue/yellow lines are Manhattan
distances.

Fig. 2: Rviz shows only black blocks

∗ Euclidean distance: The Euclidean distance be-
tween points a and b is the length of the line
segment connecting them.

– f score: The f score is calculated by the equation:

f(n) = g(n) + h(n) (1)

This equation represents the total path distance cost
of the current node.



Fig. 3: Rviz shows only black blocks

Algorithm 1: AStar(sstart, sgoal)
Input : start node sstart, goal node sgoal
Output: shortest path P from sstart to sgoal.

1 begin
2 G = ∅ ; /* G-score look-up table */
3 T = ∅ ; /* Parent reference list */
4 F = ∅ ; /* F-score priority queue */
5 G[sstart] = 0;
6 T [sstart] = NULL;
7 F [sstart] = h(sstart, sgoal) +G[sstart];
8 s = sstart;
9 while F 6= ∅ or s 6= sgoal do

10 s = F.ExtractMin();
11 for node n in Neighbor(s) do
12 gnew = G[u] + cost(s, n);
13 if n /∈ T or gnew < G[n] then
14 T [n] = s;
15 G[n] = gnew;
16 F [n] = h(n, sgoal) +G[n];

17 P = ∅;
18 s = sgoal;
19 P.append(s);
20 while s 6= sstart do
21 s = T [s];
22 P.append(s);

23 P.reverse();
24 return P ;

IV. IMPLEMENTATION

A. Displaying NAO in RVIZ

After bring up all Nao drivers, we can display Nao in
RVIZ (Fig: ??) on MATLAB simulation engine according
to the diagram below. Our implementation depends heavily on
Curve Intersecting library, which is the underlying mechanism
of detecting discontinuities when objects present ahead in
simulation environment. At first, the simulator initialize the
map according to user input about position of obstacles,
initial robot pose and goal pose. After generating map and
displaying it, our program creates Range Sensor instance that
returns sensor lines data and analyses these data to gain
discontinuities. After that, these discontinuities are pushed into

Tangent Bug Algorithm to generate movement decision until
the goal is reached, the algorithm terminate. Otherwise, it will
report failure to reach goal.

We have experimented the simulation with different scenar-
ios, all the results are success that the algorithm terminates
correctly when the robot reaches the goal.

Fig. 4: Overview of Architecture System

The following content is the describtion of 3 metapackages
1) The nao_robot metapackage:: Contains the core func-

tionality libraries. With 3 packages inside and many useful
nodes to intergrate with Nao robot:

• nao_bringup: includes launch and configuration files
as a single-entry point for nao. We we execute the
nao_bringup launch files, all basic actuators and sensor
publishers in the robot specific configurations will start
to active.

• nao_description: Store the urdf model file of Nao robot
which contains all joints and links according to the
documentation by Aldebaran Robotics for V3 and V4
Naos. We can use robot_state_publisher launch file to
display the robot’s state of joint angles.

• nao_apps: This package stores a variety of application
nodes for NAO using the NAOqi API, included:
nao_alife, nao_behavior, nao_diagnostic_updater,
nao_footsteps, nao_leds, nao_speech, nao_tactile,
nao_walker (illustrated Fig. 4).

2) The naoqi_bridge metapackage: The nao extra meta-
package: This metapackage provides extra tools for the Nao
robot: teleoperation with a gamepad and path following.

• naoqi_driver_py: This pakage is a python implementation
of the driver package for the Nao robot. It provides
access to walking commands, joint angles, and sensor
data (odometry, IMU, ).

• naoqi_driver: It’s the same with the former python edition
naoqi driver py but It is the C++ implementation.

• naoqi_pose: This package contains nodes for
managing Nao’s poses, invloved: pose_manager and
pose_controller.

• naoqi_sensors_py: includes ROS driver for camera, sonar
sensors and microphone on NAO.

• naoqi_tools: Set of tools provided by Aldebaran to con-
vert Aldebaran files (URDF, blender...)



Fig. 5: Left: Simulated Nao on Rvizy; Right: Simulated Nao
on Rviz with extra axe and name shown

Fig. 6: Rviz shows only black blocks

3) The nao_extra metapackage: This metapackage provides
extra tools for the Nao robot: teleoperation with a gamepad
and path following.

• nao_path_follower: It enables a Nao Robot to either walk
to a target location (with localization feedback), or follow
a planned 2D path closely. The method is to send naoqi
msgs to the nao walker node in nao apps. However, this
node is not fully maintain and developed. No launch file
and config file is provided.

• nao_teleop: This package allows you to teleoperate Nao
using any joystick or gamepad configured in ROS with
omnidirectional velocities. You need to have nao_walker
and nao_controller node activated, which is impossible
to work with ROS Indigo. Simply because nao controller
node is the very old node, and not supported or included
on our driver package anymore. However, you can still
run this nao teleop node together with nao walker node
to control Nao walking direction.

B. Result

(a) A tiger

(b) A mouse

Fig. 7: Top: Visualize the real-time environment - (1) m-line:
is the linear and shortest distance between start point and final
goal point as the assumption. (2) Bottom:

The problem we faced while trying to show Nao on Rviz is
the Naop model not showing 3D meshes but only show black
blocks. The reason that lead to this problem is the Nao 3D
model is not installed probably. The solution is simple, just
type the following command, accept the licence argreement
and the problem will be solved.

In our case, the problem is solve, but not completely. We can
see the Nao meshes instead of the black blocks now (shown
6). However, the Nao meshes is on wrong position, it collides
with each others and cant receive the pose from the real Nao.



After searching the error, we found out that the problem is
cause because of the ROS installation was not setup carefully.
The solution for this problem is to setup ROS again, you can
see (ROS first-time installation). After that, catkin make your
catkin package again. Now the problem is gone.

V. CONCLUSION

This paper has successfully design and build a navigation
software. It’s the result of understanding ROS concepts, Nao
Robot hardware and based on search-based planning, we also
applied the Path Finding Algorithms. The Robot can follow
the 2D path generated by the software simulation in structure
environments, but somewhat inaccurate due to lack of feed
back from the robot.

In the future, these improvements can be made: (1) Applied
SLAM(Simultaneous Localization and Mapping) method so
we can scan the environment and build a map for Nao. (2)
Design a 3D map using Rviz or Webot. (3) Cross-compile
ROS directly on Nao, so we can control it using wifi. (4)
Design a feedback system for better control

REFERENCES

[1] Khiem N. Doan, An T. Le, Than D. Le, Nauth Peter, "Swarm Robots’
Communication and Cooperation in Motion Planning", Springer Interna-
tional Publishing, Page 191–205, 2017.

[2] Than D. Le, Le T. An, Duy T. Nguyen, Model-based Q-learning for
humanoid robots, 18th International Conference on Advanced Robotics
(ICAR), 2018.

[3] An T. Le and Than D. Le (December 20th 2017). Search-
Based Planning and Replanning in Robotics and Autonomous
Systems, Advanced Path Planning for Mobile Entities, Rastislav
Róka, IntechOpen, DOI: 10.5772/intechopen.71663. Available
from: https://www.intechopen.com/books/advanced-path-planning-
for-mobile-entities/search-based-planning-and-replanning-in-robotics-
and-autonomous-systems

[4] An T. Le, Minh Q. Bui, Than D. Le, Nauth Peter, D* Lite with Reset:
Improved Version of D* Lite for Complex Environment, The First IEEE
International Conference on Robotic Computing (IRC). 2017.

[5] Armin Hornung, Andrew Dornbush, Maxim Likhachev, Maren Ben-
newitz, Anytime search-based footstep planning with suboptimality
bounds


