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Abstract

In this paper, we use a series expansion to calculate the sum-capacity of a massive Multiple-Input MultipleOutput (MIMO)

system under propagation environment described by a dominant line-of-sight. The sum-capacity is written as Taylor’s series

where each term is a function of the mean trace of k-th power of the channel matrix W. We analytically derive the mean trace

of first, second, third, and fourth moments of W. Although the series is infinite, our numerical results show that only a few

terms can tightly approximate the exact sum capacity. Numerical results corroborate our analytical expressions.
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Sum-Capacity of Massive MIMO Systems Using
Vandermonde Matrices

Claudio F. Dias, Michelle S. P. Facina, Felipe A. P. de Figueiredo, Eduardo R. Lima, and Gustavo
Fraidenraich

Abstract—In this paper, we use a series expansion to calcu-
late the sum-capacity of a massive Multiple-Input Multiple-
Output (MIMO) system under propagation environment
described by a dominant line-of-sight. The sum-capacity is
written as Taylor’s series where each term is a function
of the mean trace of k-th power of the channel matrix
W. We analytically derive the mean trace of first, second,
third, and fourth moments of W. Although the series is
infinite, our numerical results show that only a few terms
can tightly approximate the exact sum capacity. Numerical
results corroborate our analytical expressions.

Index Terms—Massive MIMO, Line-of-sight, Sum-
capacity, Vandermonde Matrix.

I. INTRODUCTION

The industry and academia are struggling to give solu-
tions that can support various emerging applications for
smart devices such as ultra-high definition video stream-
ing, 3D virtual reality, and video conferencing that have
triggered unforeseen demand for higher data rates. The
massive Multiple-Input Multiple-Output (MIMO) has been
proposed as a promising technique and has attracted grow-
ing interests mainly because i) it provides the possibility
to vanish the uncorrelated noise effects and fast fading; ii)
it grants the throughput and the number of terminals to
be independent of the cell size; iii) it allows the spectral
efficiency to be independent of bandwidth, and; iv) it
reduces the required transmitted energy per bit [1].

A good ferature is that when applied at high frequencies
and taking advantage of the vast amount of frequencies
available in the range of 3 to 300 GHz [2], [3], massive
MIMO combines with the millimeter wave technology
and the classical Line-of-Sight (LoS) propagation becomes
more dominant as a consequence of the higher radiation
absorption and increased path loss [4]. Although its effi-
ciency in a rich scattering environment has already been
demonstrated, less is known about its performance under
this new scenario.

In the pioneering work [5], Telatar has found the point-
to-point average MIMO capacity and was able to analyt-
ically derive the joint eigenvalue density for a Wishart
matrix. However for massive MIMO, the metric of interest
is the uplink sum-capacity that can measure the maximum
throughput inside a cell composed by a base station
and many mobile units. In this case, when the channel
between each cell and the base station is modeled as pure
LoS, the corresponding channel matrix H boils down
to a Vandermonde matrix [6]. Unfortunately, the joint
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eigenvalue density function for this kind of structure is
unknown and alternative methods have to be developed to
compute the sum-capacity.

In many research fields, mainly in digital communica-
tions, channel like this can be modeled through random
matrices. When these matrices get large, free probability
theory is an invaluable tool for describing the asymptotic
behavior of systems [7].

From a mathematical point of view, Tucci et. al. obtain
capacity bounds of Vandermonde channel through empir-
ical probability densities of eigenvalues [8].

In this Letter, we present an accurate expression to
calculate the capacity of massive multiple-input multiple-
output systems under the assumption that the propagation
environment is likely to be better described as a dominant
LoS. Our approach expands the sum-capacity as Taylor’s
series where each term is a function of the trace of powers
of the channel matrix W.

The mathematical proofs that underlie our approach are
best detailed in [9]. The validity of our approximation is
extended not only to uniform user distribution but also
when the users are concentrated in a region cell. To the
best of author’s knowledge, no similar contributions have
been found in the literature.

The remaining of this paper is organized as follows:
Section II refers to the system model while Section III
presents the analytical expressions for massive MIMO
capacity. Section IV shows numerical simulations that con-
firm the accuracy of approximation. Finally, we close our
discussion in the Section V summarizing our conclusions.

A. Notation

Scalars are denoted by lower-case letters, vectors by
bold-face lower-case letters, and matrices by bold-face
upper-case letters. The identity matrix and the all-zero
matrix of appropriate dimensions are denoted as I and
0, respectively. For a matrix G of arbitrary size, GH

and GT denote its conjugate transpose and transpose,
respectively. The expectation operator is denoted as E. The
distribution of a circularly symmetric complex Gaussian
(CSCG) random vector with mean x and covariance matrix
Σ is denoted by CN (x,Σ).

II. MIMO SYSTEM MODEL

Consider the uplink of a single cellular network oc-
cupied by N users. It is assumed that the BSs hold a
determined number of antennas, M . For operation sim-
plicity, the Orthogonal Frequency Division Multiplexing
(OFDM)/Time Division Duplex (TDD) is used. In this
way, the channel becomes flat and exhibits a reciprocity
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behavior, reducing the overhead required for the acqui-
sition of Channel State Information (CSI) by means of
uplink training signals.

Then, the channel input-output relationship for the up-
link communication can be given as

y = Hx + n, (1)

where y ∈ CM×1 and x ∈ CN×1 are, respectively, the
user received and transmitted signals. H is an M × N
matrix that represents the frequency response of the chan-
nel between base station and users while n ∈ CM×1 is the
additive white Gaussian noise (AWGN) vector distributed
as CN(0, σ2I).

Under LOS propagation and considering an uniform
linear array (ULA) whose distance between the base
station antennas is dλ = λ

2 , we can model the MIMO
channel H as the following Vandermonde structure, with
unit magnitude complex entries

H = [1 e−i2π
dλ
λ θ · · · e−i(M−1)2π

dλ
λ θ]T

=
1√
MN


1 · · · 1

e−iπθ1 · · · e−iπθN
e−i2πθ1 · · · e−i2πθN

...
. . .

...
e−i(M−1)πθ1 · · · e−i(M−1)πθN

 ,
(2)

where i =
√
−1 is the complex symbol and θ =

[θ1 θ2 . . . θN ]T is a column vector whose n-th element is
an independent and identically distributed (i.i.d.) random
variable and can be written by

θn =

{
αn, αn ∈ [−1, 1]

sin(αn), αn ∈ [−π, π]
, (3)

in which αn is the angle of the n-th user with respect to
the base station. It can also be shown that we can distribute
the users uniformly in area and find an equivalent fixed
radius that represent the system.

Assuming that all users transmit at constant unitary
power, the capacity of a MIMO system described by (1)
becomes, [10]

C = log2|IM + ρHHH |
= log2|IN + ρHHH|.

(4)

where ρ is the average signal-to-interference ratio (SNR).
In the remainder of this paper, H is taken to be

normalized channel matrix, which implies that each el-
ement of H has unit average power. By requiring this
normalization we make the average SNR independent of
H. The eigenvalue decomposition of H in (4) leads to the
following alternative representation of the system capacity

C ≈
N∑
l=1

E [log2(1 + ρλl(θ))] bits/s/Hz, (5)

where λl(θ) is the l-th eigenvalue of W, defined as [5]

W =

{
HHH, M > N
HHH , M ≤ N. (6)

Note that we have explicitly used λl(θ) to clearly show
the dependency of the eigenvalues with respect to the

distribution of the users angles. Thus, the mean capacity
can also be represented a

C =

N∑
l=1

∫
log2(1 + ρλl)f(θ)dθ, (7)

where f(θ) is the joint probability density function (PDF)
of the random vector θ. Considering that all elements of θ
are independent and uniformly distributed between 0 and
2π, then f(θ) =

∏N
i=1 f (θi) =

(
1

2π

)N
.

III. CAPACITY AND MOMENTS

We can expand the term log2(1 + ρλl) in the eq. (7)
using the Taylor series [9] and then rewrite it as

C =

N∑
l=1

1

ln(2)

∞∑
k=1

(−1)k+1ρkλkl
∫
f(θ)dθ

k
. (8)

Since W is a symmetric matrix, the trace operator is
equal to the sum of its eigenvalues, ie., Tr[W] =

∑N
t=1 λt

[6]. In the same way, there is the averaged trace E[Tr(.)]
for N ×N random matrices whose elements are random
variables on some probability space Ω defined as

E[Tr(W)] =

N∑
l=1

E[λl] =

N∑
l=1

∫
Ω

λlf(θ)dθ, (9)

Therefore, we can rewrite (8) as

C =
1

ln(2)

∞∑
k=1

(−1)k+1ρk

k
E[Tr(Wk)]. (10)

From (10), it is possible to compute the mean sum
capacity using the mean of the trace of the moments of
W .

A. Derivation of Tr
[
Wk

]
The analytical expression for capacity is deduced from

the term E[Tr(Wk)] for k-th moment. Then, lets call each
term of matrix W as wij , in which the indexes i and j
refer to users, and θij is the difference between the angle
θn of two of them, i.e. θij = θi − θj . So,

wij =

(M−1)∑
m=0

eimπθij . (11)

Note that since the terms w11 = w22 = ... = wNN = 1,
we can write

Tr(W) =

N∑
i=1

wii = 1, (12)

Tr(W2) =

N∑
i=1

N∑
j=1

wijwij

=
1

MN
+ 2

N∑
i=1

N∑
i>j

wijw
†
ij ,

(13)

where (·)† is the conjugate operator. Since the distributive
product of wijw

†
ij produces

wijw
†
ij =1 + e−iπθij + ...+ e−i(M−1)πθij+

...+ eiπθij + 1 + e−iπθij + ...

+ ei(M−1)πθij + ...+ e−iπθij + 1,

(14)
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that has elements with conjugate symmetry, the difference
between imaginary symmetric terms vanishes and only real
cosine terms remain. Thus,

wijw
†
ij =

1

MN

M + 2

(M−1)∑
m=1

(M −m) cos(mπθij)

 .

(15)

Finally, (13) can be expressed as

Tr(W2) =
1

MN
+

4

MN

N∑
i1=1

N∑
i2>i1

(M−1)∑
m=0

(M −m) cos(mπθij).

(16)

On the other hand, the trace of W3 is

Tr(W3) =

N∑
i=1

N∑
j=1

wij

N∑
l=1

wliwjl. (17)

and it can be separated into the following summation terms

Tr(W3) =

N∑
i=1

w3
ii

+

N∑
i=1

wii

N∑
l 6=i

wliwil

+

N∑
i=1

N∑
j 6=i

wij

N∑
l=i

wliwjl

+

N∑
i=1

N∑
j 6=i

wij

N∑
l=j

wliwjl

+

N∑
i=1

N∑
j 6=i

wij

N∑
l 6=i,l 6=j

wliwjl,

(18)

in which the second and third ones resemble to the differ-
ence between imaginary symetric terms. In addition, since
W is hermitian, we can perform further simplifications
and (18) becomes

Tr(W3) =
1

(MN)2

+6

N∑
i=1

N∑
j>i

wij

N∑
l=i

wliwjl

+

N∑
i=1

N∑
j 6=i

wij

N∑
l 6=i,l 6=j

wliwjl. (19)

It is worth mentioning that we have tried to extend
our results to higher orders. However, the mathematical
complexity is prohibitive as the number of terms in the
expansion of Tr

[
W k

]
(k ≥ 4 grows exponentially. Fortu-

nately, as it will be shown in the numerical results section,
for a high number of antennas the first three terms of the
series provide a high accuracy to the exact result.

B. Computation of E[Tr
(
Wk

)
]

The calculation of (10) requires defining the k-moment
from two possible PDFs for the random variable αn.

1) αn ∼ U [−1, 1] and θn = αn: As αn is uniformly
distributed, the PDF of θn is f(θn) = 1/2 with θn ∈
[−1, 1]. The first moment is directly derived as m1 = 1.
In (16), the summation terms integrates to zero except for
m = 0. Then,

m2 = E
[
Tr(W2)

]
=

1

(MN)2

(
M2N +M

N !

(N − 2)!

)
(20)

as it also happens in (19) that results in

m3 = E
[
Tr(W3)

]
=

1

(MN)3

(
M3N + 3M2 N !

(N − 2)!
+M

N !

(N − 3)!

)
.

(21)

In its turn, we have that

m4 = E
[
Tr(W4)

]
=

1

(MN)4

(
M4N +

(M + 20M3)N !

3(N − 2)!

+ 6M2 N !

(N − 3)!
+M

)
.

(22)

2) αn ∼ U [−π, π] and θn = sin(αn): Again, αn is
uniformly distributed, but due to variable transformation,
the PDF of θn is f(θn) = 1

π
√

1−θ2n
and θn ∈ [−1, 1].

Then, the first moment is m1 = 1 while the second one
is given by

m2 =
1

(MN)2

(
M2N

+M
N !

(N − 2)!

+

M∑
m=1

2(M −m)J0(mπ)2 N !

(N − 2)!

)
,

(23)

where J0(·) is the Bessel function of the first kind.
Similarly, the third moment can be written as

m3 =
1

(MN)3

(
M3N + 3M2 N !

(N − 2)!
+M

N !

(N − 3)!

+

(M−1)∑
m=1

6M(M −m)J0(mπ)2 N !

(N − 2)!

+

(M−1)∑
m=1

6(N − 2)

2∏
k=0

(m+ k)J0 ((M −m)π)
2

+

M−1
2∑

m=1

6(N − 2)

2∏
k=0

(M − 2m+ k)J0 (mπ)
2
J0 (2mπ)

+

(M−1)∑
m=1

M−2m∑
l=1

u(M − 2m)6(N − 2)

×
2∏
k=0

(2(M − l − 1− 2(m− 1)) + k)

× J0 (mπ) J0 ((m+ l)π) J0 ((2m+ l)π)

)
,

(24)

where u(·) is a step function.
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Fig. 1. Comparison between the analytical and simulated capacity when
M = N and f(θn) = 1

2
.

Fig. 2. Comparison between the analytical and simulated capacity when
M = N and f(θ) = 1

π
√

1−θ2n
.

IV. NUMERICAL RESULTS

In this section, we present the numerical results com-
paring the approximation form of the capacity and simula-
tions for the two distributions described before. As many
applications involve large quantity of M and N, we have
performed simulations taking into account M = N and
M ranging from 64 to 256 antennas. For the plots, 104

samples were used to calculate the statistics.
Fig. 1 shows the analytical and simulated results, as-

suming f(θn) = 1
2 and the dimension of H as M × N .

The blue color is used for simulations while the green
color refers to the analytical results. In this case, the green

curves are obtained considering the approximated capacity
by until four moments at (10). It is evident the accuracy of
the presented method. For this PDF, the analytical results
are very close to the simulated ones, even for matrices of
reduced dimensions.

Similarly, Fig. 2 presents the analytical capacity calcu-
lated through (10). Considering now f(θn) = 1

π
√

1−θ2n
,

it is clear that the approximation fits well as long as the
number of antennas and k increases.

V. CONCLUSION

In this work, we investigated how the user arrangement
can influence the sum capacity of a massive MIMO system
under dominant LoS. We derived analytical expressions for
capacity that depend only on the parameters M (number
of antennas), and N (number of users). The results were
validated by numerical simulations and showed an excel-
lent agreement.

As future work, we intend to extend the approximation
also to uniform rectangular array.
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