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Abstract

Automatic modulation classification (AMC) is one of the most critical technologies for non-cooperative communication systems.

Recently, deep learning (DL) based AMC (DL-AMC) methods have attracted significant attention due to their preferable

performance. However, the study of most of DL-AMC methods are concentrated in the single-input and single-output (SISO)

systems, while there are only a few works on DL-based AMC methods in multiple-input and multiple-output (MIMO) systems.

Therefore, we propose in this work a convolutional neural network (CNN) based zero-forcing (ZF) equalization AMC (CNN/ZF-

AMC) method for MIMO systems. Simulation results demonstrate that the CNN/ZF-AMC method achieves better performance

than the artificial neural network (ANN) with high order cumulants (HOC)-based AMC method under the condition of the

perfect channel state information (CSI). Moreover, we also explore the impact of the imperfect CSI on the performance of

the CNN/ZF-AMC method. Simulation results demonstrated that the classification performance is not only influenced by the

imperfect CSI, but also associated with the number of the transmit and receive antennas.
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Abstract—Automatic modulation classification (AMC) is one of
the most critical technologies for non-cooperative communication
systems. Recently, deep learning (DL) based AMC (DL-AMC)
methods have attracted significant attention due to their
preferable performance. However, the study of most of DL-AMC
methods are concentrated in the single-input and single-output
(SISO) systems, while there are only a few works on DL-based
AMC methods in multiple-input and multiple-output (MIMO)
systems. Therefore, we propose in this work a convolutional
neural network (CNN) based zero-forcing (ZF) equalization AMC
(CNN/ZF-AMC) method for MIMO systems. Simulation results
demonstrate that the CNN/ZF-AMC method achieves better
performance than the artificial neural network (ANN) with high
order cumulants (HOC)-based AMC method under the condition
of the perfect channel state information (CSI). Moreover, we also
explore the impact of the imperfect CSI on the performance of the
CNN/ZF-AMC method. Simulation results demonstrated that the
classification performance is not only influenced by the imperfect
CSI, but also associated with the number of the transmit and
receive antennas.

Index Terms—Automatic modulation classification, deep learn-
ing, zero-forcing equalization, channel statement information,
multiple-input and multiple-output systems.

I. INTRODUCTION

Automatic modulation classification (AMC) is one of the
most critical techniques for non-cooperative communication
for analyzing the unauthorized users [1], [2]. AMC is
generically modeled as a pattern recognition problem, and
the traditional AMC methods are based on efficient classifier
designs [3]. Specifically, signal features are extracted from
the signal, and then apply support vector machine (SVM)
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or traditional artificial neural network (ANN) to classify the
modulation types [4]. In addition, these features can represent
different modulation types. The modern features includes high
order cumulants (HOC), instantaneous frequency features,
wavelet transformation (WT) features, and so on. The most
common combination of the traditional AMC method is ANN
with HOC [4], [5], which is applied into both single-input and
single-output (SISO) systems and multiple-input and multiple-
output (MIMO) systems.

Recently, deep learning (DL) has emerged as one of the
most powerful tools for classification [6]–[10]. Thus, DL has
been applied into various communication technologies [11]–
[13], e. g., beam management [14], resource allocation [15],
[16], non-orthogonal multiple access (NOMA) [17], traffic
control [18]–[20], to enhance physical layer and network layer
communication [21]. DL can be divided in two different
categories. The first one is based on the in-phase and
quadrature (IQ) components of signals. T. J. Oshea et al.,
firstly proposed a convolutional neuron network (CNN)-based
AMC method, trained on a large number of IQ samples, and
achieved outstanding performances [22]. Then, various neural
networks, such as long short-term memory network (LSTM)
[24] and convolutional long short-term deep neural networks
(CLDNN) [23], were proposed for AMC under various noise
conditions. The other is the constellation diagram-based AMC
methods, where the trimmed CNN-based supervised AMC
method and generative adversarial network (GAN)-based
semi-supervised AMC method have been proposed [25], [26],
respectively.

In this correspondence, we propose a CNN-based zero-
forcing (ZF) equalization AMC (CNN/ZF-AMC) method for
MIMO systems. The ZF equalization technology is adopted to
enhance the classification performance under the perfect CSI
and the imperfect CSI. In the former case, we compare the
perfect CSI-aided CNN/ZF-AMC method with the traditional
methods. Our results reveal the huge advantage of the
CNN/ZF-AMC method. In the latter case, the imperfect CSI
is generated by the channel error model rather than the
estimated CSI to study the factors affecting the classification
performance.

II. SYSTEM MODEL

Assuming that the MIMO channel is a time-invariant
complex-valued MIMO channel, the received signal at the n-th



2

sampling time can be presented as follows.

R(n) = HT (n) + G(n), (1)

where H is the MIMO channel matrix of size Nr ×
Nt, (Nr ≥ Nt), and it obeys the circular symmetric
complex normal distribution with zero mean and unit
variance; R(n) = [R1(n), R2(n), ..., RNr (n)]T is the (Nr ×
1) received signal vector, obtained perfectly by Nyquist
sampling without phase offset and frequency offset; T (n) =
[T1(n), T2(n), ..., TNt

(n)]T is the (Nt × 1) transmitted signal
vector, and E[T (n)TH(n)] = ET INt

, where [·]H is the
conjugate transpose operation; G(n) is the additive white
Gaussian noise (AWGN), the element of which obeys the
circular symmetric complex normal distribution with zero
mean and EG variance.

Equalization is applied to reveal the ambiguity of the
received signal sequence [4], and ZF equalization is
considered. The received signal via ZF equalization can be
written as

R̂(n) = ZF (Ĥ)R(n), (2)

where ZF (Ĥ) = Ĥ† = (ĤHĤ)−1ĤH is the equalization
matrix, where (ĤHĤ)−1ĤH is denoted as the pseudo
inverse operation of Ĥ . In addition, Ĥ is the estimated
channel matrix. In this paper, we consider perfect CSI case
(Ĥ = H) and imperfect CSI case (Ĥ 6= H).

Assuming the perfect CSI, our proposed CNN/ZF-AMC
method is compared with other AMC methods, while we adopt
a channel error model to generate the channel matrix as the
imperfect CSI. There are two typical channel error models,
which are shown as

Ĥ1 =
√

1− σeH +
√
σeD, Ĥ2 = H +

√
σeD, (3)

where σe is the channel error coefficient, and D is the error
matrix, which is independent of H and each element obeys
the zero-mean and unit-variance circular symmetric complex
normal distribution. Below, we choose Ĥ1 rather than Ĥ2 as
Ĥ by analyzing four metrics for the channel error models,
which are mean µ, variance σ2, normalized mean square
error (NMSE) NMSEĤ,H and correction coefficient between
the actual channel and the estimated channel ρĤ,H [27]. In
addition to the common metrics of µ and σ2, the other two
are given by

NMSEĤ,H =
E(|hij − ĥij |2)

E(|hij |2)
, (4)

ρĤ,H =
E(hij ĥ

∗
ij)√

E(|hij |2)E(|ĥij |2)
, (5)

where hij and ĥij are the (i, j)-th element of H and Ĥ ,
respectively. The four metrics are related with σe, and their
theoretical values are listed in Tab. I.

The same characteristics of these two channel error
models are the NMSE and the channel correction coefficient.
Specifically, according to Taylor expansion when σe � 1,
the absolute difference of two channel error models about
NMSEĤ,H and ρĤ,H is approximately equal to σ2

e/4 +

TABLE I
THE THEORETICAL VALUES OF THE FOUR METRICS.

Metrics
Model

Ĥ1 Ĥ2

µ 0 0
σ2 1 1 + σe

NMSEĤ,H 2− 2
√
1− σe σe

= σe + σ2
e/4 + o(σ2

e)
ρĤ,H

√
1− σe = 1− σe/2 1/

√
1 + σe = 1− σe/2

−σ2
e/8 + o(σ2

e) −3σ2
e/8 + o(σ2

e)

o(σ2
e), which can be ignored. It means that Ĥ1 and Ĥ2 can

be considered to be almost independent from the aspects of
the NMSE and the channel correction coefficient. In addition,
their means are also the same as the mean of H .

The variance of Ĥ1 is consistent with that of H , but the
variance of the Ĥ2 is changed. Thus, Ĥ1 is applied to analyze
the influence for the CNN/ZF-AMC method under different
channel estimation errors, though the different between these
two models is too limited, and Ĥ refers to Ĥ1 in the
remaining content.

III. THE PROPOSED CNN/ZF-AMC METHOD

In this section, we introduce the CNN/ZF-AMC method,
whose structure is shown in Fig. 1(a). The CNN/ZF-AMC
method consists of three main parts: channel estimation, ZF
equalizer, and CNN applied for identifying modulation types.
In order to make understanding easier, we mainly introduce
the part from three aspects: dataset generation, CNN for the
ZF-AMC method, and ANN and HOC for the traditional AMC
method.
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Conv (128, 16)
Conv (64, 8)

FC (256) FC (128)
FC (4)

Feature extraction module Classification module

(b)

Fig. 1. The structure of the CNN/ZF-AMC method with the specified
structure of CNN, where “Conv” is the convolutional layer and “FC”
represents the fully-connected layer.
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A. Dataset Generation

Here, a complex-baseband equivalent multi-antenna system
model is considered and the process of dataset generation
is shown in Fig. 2. Specifically, random data are modulated
with different modulation types, including binary phase shift
keying (BPSK), quadrature phase shift keying (QPSK), eight
phase shift keying (8PSK), and sixteen quadrature amplitude
modulation (16QAM). The modulation signal vector can be
denoted as X , the size of which is 1 × N (N is the
number of symbols, and here N=128). In addition, for a
fair comparison, X is normalized with unit power, i. e.,
||X||22 = 1. Then, X is reshaped into a Nt × N/Nt matrix,
and it can be represented as [T1;T2; · · · ;TNt ], where Ti =
[Ti(1), Ti(2), · · · , Ti(N/Nt)], i ∈ [1, Nt] is the transmitted
signal vector at the i-th antenna.

When passing through the MIMO channel, the received
signal vector at the j-th receive antenna is denoted as
[R1;R2; ...;RNr

] with size Nr × N/Nt, and Rj =
[Rj(1), Rj(2), · · · , Rj(N/Nt)], j ∈ [1, Nr]. Next, the re-
ceived signal matrix can be equalized by ZF equalizer, and the
equalized signal sequence is [R̂1, R̂2, · · · , R̂Nt

]T with size
Nt ×N/Nt, which is vectorized into a 1×N vector R̂.

The training and test samples are extracted from R̂.
Specifically, the real part and imaginary part of R̂: R(R̂) and
I(R̂) are separated and then they are combined into a 2×N
matrix [R(R̂); I(R̂)], which is a sample for training or test.
It is noted that we prepare 20000 samples for training, and
10000 samples for testing for each SNR value.

B. The Proposed CNN/ZF-AMC Method

1) CNN structure: In this correspondence, we adopt a
simple CNN with one feature extraction module with two
convolutional layers and one classification module with three
fully-connected layers, the structure of which is shown in
Fig. 1(b). What’s more, rectified linear unit (ReLU), batch
normalization (BN), and dropout follow behind each available
layer except the last fully-connected layer, and the former
one is as activation function, while the latter two are to
prevent overfitting and slightly accelerate the training process.
In addition, Softmax is chosen as the activation function of
the last layer.
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Fig. 2. The process of dataset generation.

2) Training and Test Phase: Before training, the training
dataset is divided into training part and validation part for
cross-validation, which are applied to update the trainable

TABLE II
THE THEORETICAL VALUES OF C4 [3], [4].

C4k

Type BPSK QPSK 8SPK 16QAM

C40 –2 –1 0 –0.68
C41 –2 0 0 0
C42 –2 –1 –1 –0.68

parameters of CNN, and choose the best trained model or
parameters, respectively. We choose an adaptive learning rate
optimizer of ADAM [28], and select the classification cross
entropy function as the object function. Other parameters,
including the maximum epoch, early-stopping epoch, batch
size are set as 100, 20 and 500, respectively. After training,
the test samples are fed into the trained CNN for the predicted
labels.

C. Review of Traditional AMC Method

Here, ANN and HOC-based traditional AMC method,
which is a classical combination of classifier and feature [4], is
as a comparison for highlighting the superior performance of
the CNN/ZF-AMC method. The structure of the traditional
method is similar to the CNN/ZF-AMC methods in Fig.
1(a), “CNN” in the CNN/ZF-AMC method is replaced with
“ANN+HOC” in the traditional AMC method. Specifically, the
fourth order HOC features are applied, which is denoted as C4

and is shown in Tab. II, and the feature vector is extracted from
the dataset for CNN in the CNN/ZF-AMC method. In addition,
the ANN structure has the same structure as the classification
module in Fig. 1(b).

IV. RESULTS AND DISCUSSIONS

In this section, we show two sets of simulation results which
are respectively in the perfect CSI and imperfect CSI cases.
In the former case, the CNN/ZF-AMC method and the ANN
and HOC-based traditional AMC method are compared, while
the impact of the channel estimation error on the classification
performance is investigated in the latter case. Here, the correct
classification probability is adopted as the evaluation metric,
and it can be represented as Pcc = Sc/S × 100%, where Sc
is the number of correctly classified samples, and S is the
number of the total samples for the given SNR.

A. Performance Comparison in the Perfect CSI Case

The classification performances are shown in Fig. 3. It can
be obviously observed that the CNN/ZF-AMC method has
a great advantage over the ANN and HOC-based traditional
AMC-method, where “CNN (Nr, Nt)” represents the former
one and “ANN with C4 (Nr, Nt)” is the latter one. In addition,
the fewer transmitter antennas, the better performance, when
the number of the receive antennas is fixed. For explaining
this result, we perform some analysis as follows.

The received signal sequence via ZF equalization with
perfect CSI can be written as follows.

R̂(n) = ZF (H)R(n) = T (n) + H†G(n), (6)
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and the post-processing noise can be represented as Ĝ(n) =
Ĥ†G(n). Thus, the post-processing SNR [4] can be written
as

γ̃i =

[
E[T (n)TH(n)]

E(Ĝ(n)ĜH(n))

]
ii

=
ET

EG[H†(H†)H ]ii
,

=
γ

[(HHH)−1]ii
, i ∈ [1, Nt],

(7)

where [·]ii is the i-th diagonal element of a matrix, and γ =
ET /EG is actual SNR. In addition, 1/[(HHH)−1]ii is known
as a chi-quare distributed random variable with 2(Nr−Nt+1)
degrees of freedom [27], i. e., 1/[(HHH)−1]ii ∼ χ2[2(Nr −
Nt + 1)]. The exception of γ̃k is

E[γ̃i] = 2(Nr −Nt + 1)γ = 2(∆ + 1)γ, (8)

and the SNR gain is determined by the difference, ∆ = Nr−
Nt between the number of the receive antennas and that of the
transmit antennas ∆ = Nr −Nt, which means that the larger
∆, the more performance improvement, but the performance
gap with different transmit antennas in the CNN/ZF-AMC
method is more limited than that in the traditional method.

 

Fig. 3. The performance comparison between the the proposed CNN/ZF-
AMC method and the ANN-based traditional AMC method.

B. Performance Comparison vs. Channel Error Coefficient

The perfect CSI is hardly obtained in the actual communi-
cation systems. Thus, we focus on the CNN/ZF-AMC method
in the imperfect CSI case. It can be observed that with the
increasing of σe, the classification performance is gradually
decreasing, which is shown in Fig. 4. However, there is a huge
differences in the classification performance for a different
combination of receive and transmit antennas, when σe is the
same. Specifically, when σe = 0.2 and SNR = 10 dB, the
correct classification probability of the MIMO system with
Nr = 4 and Nt = 1 can reach up to nearly 100%, but that
of the MIMO system with Nr = 4 and Nt = 4 barely exceed
50%, which are shown in Fig. 4(a) and Fig. 4(c). We give
some analysis for the detailed factors that lead to the above
performance difference, which are shown as follows.

 

(a) Nr = 4, Nt = 1

 

(b) Nr = 4, Nt = 2

 

(c) Nr = 4, Nt = 4

Fig. 4. The classification performances of the ZF-AMC method with different
antennas under different σe ∈ {0, 0.05, 0.1, 0.2}.

Based on the channel error model Ĥ , the ZF equalization-
based received signal can be given by

R̂(n) = ZF (Ĥ)R(n) = Ĥ†[HT (n) + G(n)], (9)

where Ĥ† = (
√

1− σeH +
√
σeD)†, which can be

approximated to 1√
1−σe

H†(INr −
√

σe

1−σe
DH†) by Taylor
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expansion when σe � 1. Thus, (9) can be approximated as

R̂(n) ≈ 1√
1− σe

[T (n) + H†G(n)

−
√

σe
1− σe

H†DT (n)−
√

σe
1− σe

H†DH†G(n)],

(10)
and the post-processing transmitted signal and noise can
be represented by T̂ (n) = T (n)/

√
1− σe, and Ĝ(n) =

1√
1−σe

H†G(n) −
√
σe

1−σe
H†DT (n) −

√
σe

1−σe
H†DH†G(n),

respectively. Then, the post-processing SNR can be expressed
as

γ̃i =

[
E[T̂ (n)T̂H(n)]

E([Ĝ(n)ĜH(n)]

]
ii

=
γ

[1 + σe

1−σe
Ntγ + σe

1−σe
tr((HHH)−1)][(HHH)−1]ii

,

(11)
where i ∈ [1, Nt] and tr(·) is the matrix trace operation, and
tr((HHH)−1) can be ignored [27]. The exception of γ̃i is

E(γ̃i) =
2(Nr −Nt + 1)γ

1 + σe

1−σe
Ntγ

=
2(∆ + 1)γ

1 + σe

1−σe
Ntγ

, (12)

when γ is very high (e.g., γ →∞), (12) can be approximated
by E(γ̃i) → 2(∆ + 1)/(Ntσe/(1− σe)). It is obvious that
the classification performances of the CNN/ZF-AMC method
depend not only on σe, but also on ∆ for the given value of
Nr. Hence, when σe and Nr are fixed, the more transmitted
antennas will lead to the worse identification performances.

V. CONCLUSION

In this correspondence, we proposed an effective CNN/ZF-
AMC method for MIMO systems. Specifically, ZF equaliza-
tion technique was applied to reveal the ambiguity of the
received signal with the aid of CSI for the improvement of
various AMC methods. We considered the perfect CSI and
the imperfect one. In the perfect CSI case, the CNN/ZF-
AMC method can achieve much better performances than
the traditional ANN and HOC-based AMC method. We also
explored the classification performances of the CNN/ZF-AMC
method in the case the imperfect CSI. Then, we demonstrated
that the classification performance of the proposed method
is not only influenced by channel error coefficient, but also
related to the number of the transmit antennas and receive
antennas. The proposed CNN/ZF-AMC method in the MIMO
systems with more transmit antennas has worse classification
performance under the same receive antennas and error
coefficient, and vice versa.
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