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Abstract

Automatic modulation classification (AMC) is an critical step to identify signal modulation types so as to enable more accurate

demodulation in the non-cooperative scenarios. Convolutional neural network (CNN)-based AMC is believed as one of the most

promising methods with great classification accuracy. However, the conventional CNN-based methods are lack of generality

capabilities under time-varying signal-to-noise ratio (SNR) conditions, because these methods are merely trained on specific

datasets and can only work at the corresponding condition. In this paper, a novel CNN-based generalized AMC method

is proposed, and a more realistic scenario is considered, including white non-Gaussian noise and synchronization error. Its

generalization capability stems from the mixed datasets under varying noise scenarios, and the CNN can extract common features

from these datasets. Simulation results show that our proposed architecture can achieve higher robustness and generalization

than the conventional ones.
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Abstract—Automatic modulation classification (AMC) is an
critical step to identify signal modulation types so as to enable
more accurate demodulation in the non-cooperative scenarios.
Convolutional neural network (CNN)-based AMC is believed
as one of the most promising methods with great classification
accuracy. However, the conventional CNN-based methods are
lack of generality capabilities under time-varying signal-to-noise
ratio (SNR) conditions, because these methods are merely trained
on specific datasets and can only work at the corresponding
condition. In this paper, a novel CNN-based generalized AMC
method is proposed, and a more realistic scenario is considered,
including white non-Gaussian noise and synchronization error.
Its generalization capability stems from the mixed datasets under
varying noise scenarios, and the CNN can extract common
features from these datasets. Simulation results show that our
proposed architecture can achieve higher robustness and gener-
alization than the conventional ones.

Index Terms—Automatic modulation classification, convolu-
tional neural network, generalization, white non-Gaussian noise,
synchronization error.

I. INTRODUCTION

Automatic modulation classification (AMC) is an essential
technology in non-cooperative communication systems for
demodulation tasks of unknown signals [1]–[4]. It has various
applications, such as intercepted enemy signal recovery, adap-
tive modulator [5], and spectrum sensing [6], in both military
and civilian strategies. In recent years, various methods were
proposed for AMC, and they can be classified into two
common AMC methods that are based on likelihood functions
and features [7], respectively.

In the likelihood-based methods, AMC can be formulated
as a hypothesis testing problem [8]. It is necessary to design
a correct likelihood function to evaluate likelihood for each
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modulation type within hypothesis pool. Then, the likelihoods
of each modulation type are compared to make a final decision.
However, the likelihood-based AMC methods excessively de-
pend on channel state information (CSI) of wireless channels.

In the feature-based methods, AMC is modeled as a
pattern recognition problem and it consists of three steps:
pre-processing, feature extraction, and classifier design [9].
Various AMC methods have been developed using instan-
taneous features (or signal spectral-based features), wavelet
transform-based features, high-order statistics-based features,
cyclic spectrum analysis-based features, and so on. To realize
modulation type classification by extracted features, they usu-
ally adopt classifiers, such as support vector machine (SVM),
decision tree (DT), k-nearest neighbor (KNN) and multilayer
perceptron (MLP).

In recent years, deep learning (DL) is considered as a
powerful tool, because it is expert in automatic feature ex-
traction from huge amounts of data, instead of the complex
and difficult design of manmade features [10], [11]. For
this reason, DL has been successfully applied in wireless
communications [12]–[16] and Internet-of-Things [18]–[24].

In addition, DL has been applied in multiple-input and
multiple-output (MIMO) [17], non-orthogonal multiple-access
(NOMA), and cognitive radio (CR). For example, H. Huang,
et al. [25], [26] proposed a fast beam forming technology for
downlink MIMO based on unsupervised learning. G. Gui, et
al. [27] applied a long short-term memory (LSTM) network
into a typical NOMA system for enhancing spectral efficiency.
M. Liu, et al. [28], [29] introduced DL into resource allocation
in CR.

Moreover, state-of-the-art DL-based AMC methods have
been developed in recent two years. T. OShea and J. Hoydis
[30] proposed a convolutional neural network (CNN)-based
AMC, which is realized by training CNN on the in-phase
and quadrature (IQ) components of signals. B. Tang, et al.
[31] transformed the modulated signals into constellation
diagrams, and then generative adversarial network(GAN) was
applied to distinguish these constellation diagrams. Y. Tu, et
al. [33] proposed a lightweight and fast CNN-based AMC
method for edge devices on their previous works [32], [33]. Y.
Wang, et al. [34] proposed combined IQ sample-based CNN
and constellation diagram-based CNN method to recognize
different modulation types.

Although these CNN-based AMC methods have been pro-
posed to demonstrate better performance than traditional meth-
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Wireless 
channel + Demodulator

Transmitter ReceiverNoise

AMC 
method

Demodulated
sequence

Fig. 1. The AMC-based receiver in a non-cooperative communication system. There are no agreement and authentication between receivers and transmitters
in this system. The demodulation relies on the “AMC method” module to correctly and fast identify modulation types, and then it has possibility to demodulate
the received signals.

ods, most of them are trained by dataset with single signal-to-
noise ratio (SNR). It means that these CNNs can just achieve
satisfying performance at the corresponding single SNR rather
than all SNR scenarios. These independent CNNs are hard to
be generalized. If we adopt these CNNs in practical applica-
tions, we must train various CNNs with dataset collected from
different SNR conditions, and choose correct CNN-models
according to actual communication environments, which is not
convenient.

In this paper, a CNN-based robust generalized AMC method
with higher generality capability under varying noise con-
ditions is proposed, considering a more practical scenario,
characterized by white non-Gaussian noise (WNGN) and non-
ideal synchronization, i. e., frequency offset or phase offset.
The proposed AMC method has more powerful recognition
capability than the traditional feature-based AMC method, and
it achieves higher robustness for actual applications at a slight
performance loss. Compared with other CNN-based AMC
methods, our proposed method has two obvious advantages,
which are listed as follows:

Undesired time-varying SNR estimation: Other CNN-
based AMC methods rely on a precise SNR estimation,
because CNNs are trained on samples with single SNR. For
multiple CNNs-based solution [7], [9], [30], [32]–[34], a pre-
cise SNR estimation is essential to assist systems in selecting
correct CNN model from trained models. If SNR cannot be
estimated precisely, these methods may be ineffective. Unlike
these conventional methods, CNN in our proposed method is
trained on a mixed dataset containing different signals with
SNR ∈ {-5 dB, 0 dB, 5 dB}. Unknown signals with SNR
ranging from -5 dB to 5 dB can be recognized by the same
CNN, and SNR estimation is unwanted.

Less device memory: When SNR is ranging from -5 dB
to 5 dB with an interval 1 dB, far more than one CNN
model should be trained for responding to different SNR
conditions in other CNN-based AMC methods. However, our
proposed method just need to train one CNN model in actual
applications. In the case of the same network structures, our
method just requires less device memory than other CNN-
based AMC methods.

The rest of this paper is organized as follows. Section II
includes the system model, the signal model, and dataset.
In Section III, we propose a CNN-based generalized AMC
(GAMC) methods. In Section IV, various simulation results are
provided to compare their performance, respectively. Finally,
we conclude this paper.

II. SYSTEM MODEL AND SIGNAL MODEL

A. System Model

A typical non-cooperative communication system is con-
sidered, where transmitters transmit digital modulation signals
through wireless channel, and the receiver does not get a priori
information about modulation types, symbol rates, and so on.

After receiving these digital modulation signals, the system
makes preprocessing, including down conversion, low pass
filtering, and analog-to-digital conversion and so on. After
preprocessing, we can get baseband signals, which are fed
into an AMC module to identify modulation types. The AMC-
based receiver is shown in Fig. 1.

In this paper, we focus on the feature-based AMC methods,
and they generally consist of three steps: processing, feature
extraction, and classification [9]. In traditional AMC methods,
the most difficult part is the design of effective manmade
features, and classifiers are usually based on machine learning
or simple threshold detection, which is shown in Fig. 2(a).

Unlike the traditional methods, DL methods, e. g., CNN or
recurrent neural network (RNN), can simultaneously achieve
feature extraction and classification. Moreover, the DL-based
AMC method can get rid of complex and difficult manmade
feature design. The framework of the DL-based AMC method
is depicted as Fig. 2(b).

 

Manmade 

Feature 

Extraction

Classifier
(SVM/DT/…)
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Fig. 2. Two feature-based AMC methods: (a) The structure of a traditional
AMC method. (b) The structure of a DL-based AMC method. The modules
“Manmade Feature Extraction” and “Classifier” in the traditional AMC
method is replaced by the neural network in DL-based AMC method, and
the DL-based AMC method can throw away the complex and difficult step
of the manmade feature design, because DL algorithms have the powerful
capabilities to automatically extract effective features.
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B. Signal Model

Assuming that the received complex-valued baseband equiv-
alent signal r(n) is sampled at the Nyquist rate, it is given as
follows.

r(n) = αej(∆θ+2π∆f nN )x(n) + w(n), n = 1, 2, ..., N, (1)

where α, ∆θ, ∆f , and N represent attenuation factor, carrier
phase offset (CPO) caused by wireless channels [7], normal-
ized carrier frequency offset (CFO), and the number of sam-
pling points in an independent observation phase, respectively.
In this paper, we consider a flat fading and time invariant
channel, so α, ∆θ, and ∆f are constant in each observation
phase.

In addition, {x(n)}Nn=1 is the symbol sequence, and three
modulation types of frequency shift keying (FSK), phase shift
keying (PSK), and quadrature amplitude modulation (QAM)
are considered in this paper; w(n) represents additive noise.
In this paper, we mainly consider WNGN based on Gaussian
mixture model (GMM) with K components [35]. GMM-based
WNGN consists of K independent noise obeying complex
Gaussian distributions. Its probability density function (PDF)
is given as

f(w(n)) =

K∑
k=1

λk√
πσ2

k

e
−|w(n)|2

σ2
k , (2)

and it consists of K independent noise obeying complex
Gaussian distributions. λk is the ratio of each component, and∑K
k=1 λk = 1 and 0 < λk < 1.
In this paper, we consider a classical GMM-based WNGN

with two components of w0(n) and w1(n), and w(n) =
λ0w0(n) + λ1w1(n). w0(n) is just additive white Gaussian
noise (AWGN), i. e., w1(n) ∼ CN(0, σ2

0). w1(n) is impulsive
noise with zero mean and the variance of σ2

1 , where σ1 � σ0

[36].

III. AMC METHODS

In this section, a CNN-based generalized AMC (GAMC)
method is proposed with better generalization performance
under varying noise conditions. In contrast, previous proposed
CNN-based AMC method [7], [9], [30], [32]–[34] is denoted
as a fixed AMC (FAMC) method, and it does not equip with
powerful generalization capability. In addition, traditional AM-
C methods, based on classical manmade features and typical
machine learning-based classifiers, are firstly introduced as a
comparison.

A. Traditional AMC Method

For the purpose of highlighting the performance of DL-
based AMC method, we adopt one of a traditional AMC
method as a comparison. The structure of the traditional AMC
method is shown in Fig. 2(a), where high-order cumulants
(HOC) [37] are classical manmade features, which are de-
scribed below.

In detail, the normalized fourth-order cumulants [38] are
applied, and they can be describe as:

C̃40 = M̃40 − 3M̃2
20, (3)

C̃41 = M̃41 − 3M̃21M̃20, (4)

C̃42 = M̃42 −
∣∣∣M̃20

∣∣∣2 − 2M̃2
21, (5)

where M̃mk represents the normalized moments. It can be
denoted as M̃mk =

∑N
n=1 r

m−k(n)r∗k(n)

(
∑N
n=1 |r(n)|2)m/2

, and r∗ (n) is the
conjugate of r (n).

Hence,
{
C̃40, C̃41, C̃42

}
works as a feature vector and SVM

acts as a clssifier.

B. CNN-based GAMC Method

Here, a CNN-based GAMC method is stated from dataset,
CNN structure, classifier, loss function, and training and test
strategies.

1) Dataset: Dataset, applied in this paper, contains multiple
in-phase and quadrature (IQ) samples, which is transformed
from the received complex signal sequence. The received
sequence is defined as R = {r(n)}Nn=1. To avoid the scaling
problem, the power of R should be normalized, and the
normalized received sequence R̃ is equal to R∑N

n=1 |r(n)|2 .

Then, we separate real part real
(
R̃
)

and imaginary part

imag
(
R̃
)

from the normalized received sequence. Next,

real
(
R̃
)

and imag
(
R̃
)

are combined into a matrix with
dimension 2×N , which is treated as one sample for training
or testing.

In addition, the real part and imaginary part are also in-
phase (I) component and quadrature (Q) component of signal,
respectively. So this training or test sample is also called as
IQ sample, which is shown in eq. (6).

IQ =

[
real(R̃)

imag(R̃)

]
. (6)

2) CNN structure: The CNN consists of four main part-
s: “Input”, “Output”, “Convolutional layer”, and “Fully-
connected layer”, and its structure is depicted in Fig. 3.

Firstly, “Input” is the dataset with IQ samples and their
corresponding labels. Then, “Convolutional Layer” is to auto-
matically extract features and contains two “Conv2D” layers.
In these “Conv2D” layers, the convolutional kernel sizes are
2× 4 and 1× 8, respectively, which are is designed according
to input data: IQ sample, the dimensionality of which is 2×N .

Next, “Fully-connected Layer” is fundamentally a classifier
with three “Dense” layers, and its output is a probability
distribution, which contains the possibility of each modulation
type. Finally, “Output” is the predicted modulation type, and it
is given by the maximum a posteriori (MAP) classifier based
on probability distribution of the last “Dense” layer.

Besides, rectified linear unit (ReLU) plays the role of the
activation function in each layer except the last dense layer,
where Softmax is applied. Assuming that xi is the output of
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Fig. 3. The CNN structure with four parts: 1) Input: IQ samples and corresponding modulation types as labels; 2) Convolutional Layer: two Conv2D
layers for feature extraction; 3) Fully-connected Layer: three Dense layers to give predicted probability distribution; 4) Output: a MAP classifier to classify
modulation types according to the predicted probability distribution.

the i-th neuron in a certain layer, the function of ReLU and
Softmax can be described as follows.

fReLU (xi) = max (0, xi) , fSoftmax (xi) =
exi∑
j e
xj
. (7)

In addition, batch normalization (BN) and dropout, after
each activation function (except in the last fully-connected
layer), are applied to accelerate training, improve performance
slightly and avoid overfitting. They can be considered as two
implicit regularization terms. BN is to normalize the output of
each layer in each batch and can be represented as

BN(Oi) = γ · Oi −Mean(Ominibacth)√
V ar(Ominibacth) + ε

+ β, (8)

where Mean(Ominibacth) and V ar(Ominibacth) are the mean
and variance of the output of mini-batch data, respectively;
γ and β are trainable parameters [39], and ε is a minimum
value to prevent denominators from being zero. In addition,
Dropout is to temporarily disable partial neurons with a certain
probability in the training process.

It is noted that the same CNN structure is applied into both
FAMC and GAMC.

3) MAP classifier: AMC is to identify modulation types in
a limited modulation type candidate pool. Assuming that the
modulation type candidate pool is M = {mi}

Ntype
i=1 , where mi

represents a certain modulation type and this pool contains
Ntype different modulation types, MAP criterion in CNN-
based AMC [36] can be described as:

m̂i = arg max
mi∈M

p(mi, fmodel,Θ|IQ), (9)

where m̂i is the predicted modulation type; fmodel represents
model structure, and Θ = {Θtrainable,Θuntrainable} is the
model parameters, which contains massive trainable parame-
ters and a few untrainable parameters; p(·) is a PDF that refers
to the output of Softmax function in the last fully-connected
layer.

4) Loss function: In this paper, the categorical cross entropy
(CCE) function is applied as data loss function (or experience
loss function), considering that AMC is essentially a multi-
class classification task.

Suppose the dataset T = {(si, li)}Nsi=1 is applied for the
training of CNN, where si, li and Ns represents IQ sample,
ground truth sample label through one-hot encoding, and
the number of training samples, respectively. The CCE loss
function is given as follows.

LCCE(T ; fmodel,Θ) = −
Ns∑
i=1

lilog(fmodel (si; Θ)). (10)

However, the final loss function contains not only the data
loss function but also the structure loss function, and it can be
written as follows.

L(T ; fmodel,Θ) =
1

Ns
LCCE(T ; fmodel,Θ)

+ λmodelJ(fmodel,Θ),
(11)

where J(·) is just the structure loss function (or regularization
term), which is to avoid overfitting, and λmodel is applied
to balance these two loss functions. In this paper, BN and
dropout are as the components of the structure loss function,
which have been introduced above.

5) Training and test strategies: Training optimizer, training
process, and test process are introduced in this part. The
same training optimizer is adopted in both GAMC and FAMC
method, and their main difference focuses on the training and
test process between our proposed GAMC method and FAMC
method.

Training optimizer: stochastic gradient descent (SGD) is
introduced as an optimizer to minimize the function (11)
by iteratively optimizing and updating trainable parameters
Θtrainable in Θ. The optimizing rule is written as follows.

Θnew
trainable =Θnow

trainable

− η ∂L(T ; fmodel,Θ
now
trainable,Θuntrainable)

∂Θnow
trainbale

,

(12)

where η is referred to as a learning rate to control scale of
parameter adjustment.

Training process: The training processes of GAMC and
FAMC are shown in Fig. 4. From Fig. 4(a) and Fig. 4(b),
it can be observed that GAMC differs from FAMC in the
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IQ dataset for training. CNN in GAMC is trianed on mixed
dataset, while CNN in FAMC is fed with single dataset for
training.

When training CNN in GAMC, three datasets with SNRs
of -5 dB, 0 dB and 5 dB are proportionally mixed. Then, the
mixed dataset is divided into training dataset and validation
dataset by 7:3 in random. Training dataset is fed into CNN
for training and validation dataset is applied to measure the
performance of trained CNN after each epoch. The trained
CNN can be employed into modulation type recognition of
unknown signals with SNR ranging from -5 dB to 5 dB.
However, CNN in FAMC is trained on IQ samples with fixed
SNR = i dB, and this CNN just can be employed to identify
received signals with SNR = i dB.

Powerful generalization performances of GAMC under
varying SNR conditions originate from the mixed datasets.
CNN in GAMC can extract features from various dataset with
different SNRs simultaneously. Then, CNN has the ability to
filter out common or similar features to classify modulation
types. Hence, these extracted features are universally suitable
and more roust under varying noise conditions.

For training GAMC, we choose IQ dataset with different
SNRs by sampling SNRs = [-5, 5] dB at an equal interval,
i. e., datasets’ SNRs = {-5 dB, 0 dB and 5 dB}, and this
approach can reduce the amount of dataset used for training.

 

CNN (i dB)

IQ samples (i dB)

MAP classifier

(a)

 

CNN

IQ samples

(5 dB)

MAP classifier

IQ samples

(0 dB)

IQ samples

(-5 dB)

Mixed dataset

(b)

Fig. 4. Training Processes: (a) FAMC; (b) GAMC. FAMC is trained on
the dataset with a single SNR, and GAMC is fed with a mixed dataset.
Specifically, “CNN (i dB)” in FAMC is trained on “IQ sample (i dB)”, and
there are eleven CNN models that must be independently trained on their own
datasets in FAMC. However, GAMC is trained on the dataset containing three
IQ samples with SNRs = {-5, 0, 5} dB, and we just need to train one CNN
model and the model can be confronted with arbitrary IQ samples with SNRs
ranging from -5 dB to 5 dB.

Test process: In the test process, signal samples in test
dataset are fed into the trained CNN. Then CNN will give a
predicted probability distribution, and the MAP classifier is
applied to identify modulation type. In the test phase, CNN
just contains feed forward propagation.

There is a great deal of differences between test processes of
GAMC and FAMC, and their test processes are shown in Fig.
5. In the FAMC-aided communication system, multiple CNN
models are trained on different IQ samples with fixed SNRs.
Hence, it is fundamental to equip with the SNR estimation
for the choice of a correct CNN model under varying SNR
conditions.

From the test process, the differences between FAMC and
GAMC can be easily observed from two aspects. On the one

hand, the SNR estimation technique is removed in GAMC-
based system, because there is just one CNN model and
GAMC is independent of the SNR estimation technique to
obtain the estimated SNR for the next CNN model choice.
However, FAMC contains multiple CNN models, in order
to confront the varying SNR conditions, and it rely on the
estimated SNR to choose a corresponding and correct model.

On the other hand, for the testing of IQ samples with SNRs
= [-5, 5] dB, FAMC must prepare eleven CNN models and
GAMC just needs one CNN models. It means that GAMC
only requires 1/11 device memories of FAMC, and the size
of CNN model in GAMC is 23.3 MB, while that in FAMC
exceeds 256 MB. Moreover, it is noted that FAMC and GAMC
has the same computation complexity, because of the same
CNN structure in these two AMC methods.
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Fig. 5. Test processes: (a) FAMC; (b) GAMC. Training process of FAMC
is simpler than that of GAMC, however, it is on the contrary in their
test processes. The GAMC’s test process is extremely simple, and the test
results can be given by CNN, after inputting pre-processed samples without
other operations. However, pre-processing and SNR estimation should be
implemented at the same time in FAMC, and the latter operation is applied to
choose a correct model, such as “CNN (j dB)”, from multiple CNN models.
Then, the pre-processed IQ samples are fed into “CNN (j dB)” to give the
predicted modulation types.

IV. EXPERIMENTAL RESULTS

In this section, simulation results will be given to evaluate
performances of various AMC methods. The detailed param-
eters and their corresponding values for simulation are given
in Table I. It is noted that the amount of training samples
in GAMC is 20000 samples per type per SNR, but GAMC
applies three datasets for training, and there are 60000 samples
fed into CNN in total. Thus, for fair comparison, 60000
samples per type per SNR are created for the training of CNN
in FAMC.
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TABLE I
EXPERIMENT PARAMETERS

Parameter Value
Modulation type M={FSK, PSK, QAM},
candidate pool Ntype = 3

WNGN λ0 = 0.9, λ1 = 0.1,
(λ0, λ1, σ0, σ1) σ2

1/σ
2
0 = 100

CPO ∆θ ∆θ ∼ U(0, φ], φ ∈
{

2iπ
16

}4

i=0

CFO ∆f ∆f ∈ {0.1 + 0.2i}4i=0
The number of sampling N = 128

points N
The number of training 20000 samples/type/SNR

samples for GAMC (SNRs = {-5, 0, 5} dB)
The number of training 60000 samples/type/SNR

samples for FAMC (SNRs = [-5, 5] dB)
The number of test 30000 samples/type/SNR

samples Ntest (SNRs = [-5, 5] dB and NSNR = 11)
Maximum training epochs 200

Batch sizes 500
Learning rate η η = 0.001

TABLE II
COMPUTATION TIME OF FAMC, GAMC, AND TRADITIONAL AMC.

Method
Time (µs/sample) SNR (dB)

-5 0 5

FAMC/GAMC (GPU) 37.71
FAMC/GAMC (CPU) 698.20

Traditional AMC (CPU) 2346.60 2225.19 1807.83
* Considering that FAMC and GAMC have the same CNN structure, and

if ignoring calculation error, they have the same degree of computation
complex, i. e., the same unit computation time.

The simulation requires powerful computing resources, so
it is conducted on the platform with one Intel i7-8750H CPU
and one NVIDIA GTX 1080Ti GPU. The implementation of
neural networks relies on Keras 2.2.2 with Tensorflow 1.10 and
Python 3.6.5 as the backend. SVM is carried out in Sklearn-
Python library. Moreover, Matlab R2018a is applied to build
our datasets.

Here, three metrics are applied to evaluate classification
performances, and The former two metrics are correct clas-
sification probability (CCP) at SNR= i dB: P icc and average
correct classification probability (AveCCP): Pcc, which are
shown as follows.

P icc =
N i
cc

Ntest ×Ntype
× 100%, i ∈ {−5,−4, ..., 4, 5} , (13)

Pcc =

∑5
i=−5N

i
cc

Ntest ×Ntype ×NSNR
× 100%, (14)

where N i
cc, Ntest, and NSNR represent the number of cor-

rectly recognized samples at SNR= i dB, the amount of test
samples at each type and SNR, and the amount of sampling
SNRs, respectively. P icc appears with the format of graphs and
Pcc is shown as table format.

For the visualization of the specific classification perfor-
mance for each modulation type in various AMC methods,
the third metric, applied in this paper, is the confusion matrix
with dimension 3× 3.

 

Fig. 6. The classification performance of FAMC, GAMC, and traditional
AMC with the condition of CFO and CPO. It can be observed that FAMC
and GAMC have perfect and similar CCP at each SNR, and the classification
accuracy of FAMC is slightly higher than that of GAMC, but traditional AMC
has far weaker performance than these two CNN-based AMC methods.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Confusion matrices of FAMC and GAMC without the consideration
of CFO and CPO. FAMC: (a) -5 dB; (b) 0 dB; (c) 5 dB. GAMC: (d) -5 dB;
(e) 0 dB; (f) 5 dB.

A. Classification performance and computation complexity of
FAMC, GAMC and traditional AMC

The specifies of various AMC methods under WNGN con-
dition and without CFO and CPO are depicted in Fig. 6. From
these experimental results, we can observe that the traditional
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(a)

 

(b)

Fig. 9. The classification performance of GAMC considering different CFOs and CPOs. With the increase of the normalized CFO, the classification
performance of GAMC is slightly affected. However, the increasing CPO leads to the sharp performance degradation, while it has the limited performance
decline at high SNR, such as 5 dB.

 

Fig. 8. The specific classification performance of FAMC and GAMC with
the considering of CFO (∆f = 0.9) and CPO (φ = π), respectively. FAMC
and GAMC with the consideration of CPO have lower P icc than that without
the consideration of CPO or with the consideration of CFO. In addition, there
is the limited performance gap between FAMC and its corresponding GAMC.

TABLE III
THE AVERAGE CORRECT CLASSIFICATION PROBABILITY OF DIFFERENT

AMC METHODS.

Methods Pcc (%)
FAMC (Benchmark) 86.55

GAMC 85.79
Traditonal AMC 42.85

FAMC (∆f = 0.9, φ = 0) 85.69
GAMC (∆f = 0.9, φ = 0) 84.86
FAMC (∆f = 0, φ = π) 82.14
GAMC (∆f = 0, φ = π) 81.13

AMC method, based on SVM and HOC, has unsatisfactory
performances, compared with the CNN-based AMC methods.
P icc of GAMC is similar with that of FAMC, and their

maximum gap of P icc only can reach up to 1.22% at SNR
= 2 dB or -5 dB. It means that GAMC and FAMC has few
performance gap. In addition, this phenomenon also appears
in the other metric: Pcc, and their performance gap of Pcc is
less than 1%, which is shown in Table III.

The confusion matrices of FAMC and GAMC at three SNRs
are given in Fig. 7. Compared with the confusion matrices

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Confusion matrices of FAMC and GAMC with the consideration
of CFO and ∆f = 0.9. The confusion matrices of FAMC at SNRs = -5, 0, 5
dB are given in (a), (b), and (c). Corresponding confusion matrices of GAMC
are shown in (d), (e), and (f).

of FAMC and GAMC at the same SNR, they are extremely
similar. At low SNR, both FAMC and GAMC can barely
identify PSK and QAM, but their classification performances
are gradually improved, as SNR increases. However, FSK
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Confusion matrices of FAMC and GAMC with the consideration
of CPO and φ = π. (a) FAMC at SNR = -5 dB; (b) FAMC at SNR = 0 dB;
(c) FAMC at SNR = 5 dB; (d) GAMC at SNR = -5 dB; (e) GAMC at SNR
= 0 dB; (f) GAMC at SNR = 5 dB.

can be precisely distinguished from other modulation types
in these two AMC methods, even at low SNR, such as -5 dB.

Besides, computation cost or computation complex is an-
other metric to measure AMC methods. In this paper, unit
computation time is applied as a metric for the evaluation
of three methods, which are shown in Table II. The time
represents the average computation time of single IQ sample
after testing a large number of samples, and it is calculated in
the same platform listed in the head of this section.

From Table II, it can be observed that FAMC and GAMC
not only on GPU but also on CPU have far higher compu-
tation speed than traditional AMC. These results demonstrate
that the CNN-based AMC methods are more efficient than
the traditional AMC, particularly in communication systems
equipped with GPU.

B. Classification performance of FAMC and GAMC consider-
ing CFO and CPO

In this section, the traditional AMC is not considered,
because of the weak classification performance and slow
computation speed. The influence of CFO and CPO for the
classification performances of the CNN-based AMC method
is shown in Fig. 8 and Table III. It is noted that the normalized

TABLE IV
THE AVERAGE CORRECT

CLASSIFICATION PROBABILITY
OF GAMC CONSIDERING

DIFFERENT CFOS.

∆f Pcc (%)
0 85.79

0.1 85.83
0.3 85.21
0.5 85.08
0.7 84.89
0.9 84.86

TABLE V
THE AVERAGE CORRECT

CLASSIFICATION PROBABILITY
OF GAMC CONSIDERING

DIFFERENT CPOS.

φ Pcc (%)
0 85.79

π/16 85.45
π/8 83.99
π/4 82.64
π/2 82.10
π 81.13

CFO has few effect on FAMC and GAMC, while their
identification capabilities are both worse under the influence
of CPO.

What’s more there are almost no expansion of the classifi-
cation performance gap between FAMC and GAMC, because
their Pcc gap of FAMC and GAMC are within or slightly
higher than 1%. In addition, their maximum P icc gap is 1.01%
with the consideration of CFO, while the value just reaches up
to 1.49%, when considering CPO. The confusion matrices in
Fig. 10 and Fig. 11 also illustrates that FAMC and GAMC have
similar performances under any circumstances in this paper.

Then, the classification performances of GAMC under the
condition of different CFOs and CPOs is considered, and their
experimental results are shown in Fig. 9, Table IV and Table
V. As mentioned before, P icc and Pcc of GAMC is almost
unaffected by normalized CFO.

As is shown in Fig. 9(b) and Table V, the influence of CPO
is weak at φ = π

16 or high SNR, such as 5 dB. However,
the influence of CPO is gradually getting strong with the
increase of the value of φ. Phase offset correction algorithms
should be considered to aid CNN-based AMC methods for
the improvement of classification performances, when φ is too
large.

C. Generalization capabilities under varying SNR conditions

In the former sections, the specific classification perfor-
mances of FAMC and GAMC have been introduced carefully
through three metrics, and it can be concluded that there
are extremely weak performance gaps between FAMC and
GAMC. In this section, it is illustrated that GAMC has more
powerful generalization capabilities than FAMC at the expense
of the slight performance loss. What’s more, we give two sets
of simulation results for generalization capabilities. The one
set of results is tested within the ranges of training SNRs, i.
e., SNRs = [-5, 5] dB, and the other set is out of the ranges,
including SNRs = [-15, -6] dB and [6, 15] dB.

1) Within the range of training SNRs: To compare the
generalization capabilities between FAMC and GAMC under
varying noise conditions, we depict three curves of CNN (j
dB) in FAMC trained at different SNRs (i. e., j = -5, 0, 5) in
Fig. 12, and we tested them at SNRs ranging from -5 dB to
5 dB.

The CNN (j dB) in FAMC performs well when testing
SNRs are close to j dB (1 dB error can be allowed), but
its performance gets worse at other SNRs, which means that
the FAMC does not have higher robustness and generalization
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(a)

 

(b)

 

(c)

Fig. 12. Generalization capability of FAMC and GAMC. (a) is just under
WNGN condition without the consideration of CFO and CPO; (b) and (C)
are under WNGN condition considering CFO and CPO, respectively.

capabilities. On the contrary, Fig. 12 demonstrates that GAMC
can work well at all the testing SNRs, whether or not CFO
and CPO are considered.

2) Out of the scope of training SNRs: In order to make the
future compare the generalization capabilities of FAMC and
GAMC, we present the simulation results for SNRs outside
the range of training SNRs in Fig. 13. In Fig. 13(a), the CCPs
of GAMC at SNRs, which is higher than 5 dB, is far beyond
that of FAMC. The similar simulation results also appear in
Fig. 13(b), when SNR is lower than -5 dB.

It is demonstrated that GAMC can extract more robust
features from the mixed datasets than FAMC, and GAMC
has more powerful generalization capabilities than FAMC. In
addition, we only prepare eleven trained CNN models, i. e.,
CNN (i dB) and i ∈ {−5,−4, ..., 4, 5}. So we have to apply
CNN (−5 dB) or CNN (5 dB) into noise conditions with SNRs
= [-15, -6] dB or [6, 15] dB.

 

(a)

 

(b)

Fig. 13. Generalization capabilities of FAMC and GAMC out of the range
of training SNRs.

V. CONCLUSION

In this paper, we have proposed a CNN-based GAMC
method with better robustness under varying noise conditions.
Compared with the traditional AMC method, the classification
accuracy of GAMC is far beyond. Besides, GAMC is more
robust than FAMC at the cost of negligible performance loss,
because the CNN in GAMC is trained by a mixed IQ dataset
containing received signals with SNRs of -5 dB, 0 dB and 5
dB, and it can be applied to recognize modulation types of
signals with uncertain SNR from -5 dB to 5 dB. Moreover,
our proposed GAMC method is more practical than the CNN-
based FAMC methods, because we just have to train one
CNN model in GAMC rather than many CNN models in
FAMC, which means less device memory assumption. In
addition, precise SNR estimation is unnecessary for GAMC
to choose suitable CNN models. Hence, our proposed CNN-
based GAMC method is meaningful for practical applications.
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What’s more, the CNN in FAMC works perfectly, yet this
CNN can also be applied into GAMC with more complex
mixed dataset. It is demonstrated by experimental results that
the CNN in GAMC has the capability to extract universal and
robust features from mixed dataset with different SNRs. It also
illustrates that the CNN, designed by human experience here,
has massive redundancy and its operation speed is also limited.
Thus, our future work will focus on finding more effective and
streamlined neural network model, such as network slimming
algorithm [40] and neural architecture search (NAS) [41].
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