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Abstract

Automatic modulation classification (AMC) is an promising technology for non-cooperative communication systems in both

military and civilian scenarios. Recently, deep learning (DL) based AMC methods have been proposed with outstanding perfor-

mances. However, both high computing cost and large model sizes are the biggest hinders for deployment of the conventional DL

based methods, particularly in the application of internet-of-things (IoT) networks and unmanned aerial vehicle (UAV)-aided

systems. In this correspondence, a novel DL based lightweight AMC (LightAMC) method is proposed with smaller model sizes

and faster computational speed. We first introduce a scaling factor for each neuron in convolutional neural network (CNN) and

enforce scaling factors sparsity via compressive sensing. It can give an assist to screen out redundant neurons and then these

neurons are pruned. Experimental results show that the proposed LightAMC method can effectively reduce model sizes and

accelerate computation with the slight performance loss.
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Abstract—Automatic modulation classification (AMC) is an
promising technology for non-cooperative communication sys-
tems in both military and civilian scenarios. Recently, deep
learning (DL) based AMC methods have been proposed with out-
standing performances. However, both high computing cost and
large model sizes are the biggest hinders for deployment of the
conventional DL based methods, particularly in the application
of internet-of-things (IoT) networks and unmanned aerial vehicle
(UAV)-aided systems. In this correspondence, a novel DL based
lightweight AMC (LightAMC) method is proposed with smaller
model sizes and faster computational speed. We first introduce a
scaling factor for each neuron in convolutional neural network
(CNN) and enforce scaling factors sparsity via compressive
sensing. It can give an assist to screen out redundant neurons and
then these neurons are pruned. Experimental results show that
the proposed LightAMC method can effectively reduce model
sizes and accelerate computation with the slight performance
loss.

Index Terms—Lightweight automatic modulation classification
(LightAMC), convolutional neural network (CNN), neuron prun-
ing, compressive sensing.

I. INTRODUCTION

Automatic modulation classification (AMC) is a novel and
promising technology in the non-cooperative communication
scenarios with neither agreement nor authorization between
the transmitters and the receivers. The AMC methods have
various applications in military and civilian fields, including
intercepted signal recovering or spectrum monitoring [1]–[3].
There are two typical AMC methods based on features and
likelihood functions, respectively. This paper focuses on the
feature-based AMC method, which can be modeled as a pat-
tern recognition problem based on extracted features without
any prior information. Typical manmade features include high
order statistical features, wavelet transform-based features and
so on.

In recent years, deep learning (DL) has been considered
one of the most effective tools to solve various problems
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in wireless communications [4]–[14], because of its powerful
feature extraction capability, especially confronting with high-
dimensional data. At the same time, many DL-based AMC
methods were proposed for the higher classification perfor-
mances. T. O’Shea et al. proposed a convolutional neural
network (CNN)-based AMC method using the in-phase and
quadrature (IQ) component of signals [15]. S. Rajendran et
al. proposed a novel data-driven automatic modulation classi-
fication based on the long short term memory (LSTM) [16].
What’ more, S. Hu, et al. [17] demonstrated the robustness
of DL-based AMC method in more complex noise conditions,
including white non-Gaussian noise and time-correlated non-
Gaussian noise. However, DL models generally have large
model sizes and slow computation speed. Thus, it is difficult
to apply these methods into the edge devices [18]–[21],
such as internet-of-thing (IoT) devices and unmanned aerial
vehicle (UAV), which are equipped with the limited device
memories and computation capability. Hence, the compression
and acceleration of DL models are necessary in the future
development of the DL-based wireless communications.

In this paper, we propose a compressive sensing (CS)-based
neuron pruning technology to implement the lightweight AMC
(LightAMC) method. Specifically, the proposed method is
implemented by pruning redundant neurons via `1 regulariza-
tion on the fundament of the mixed dataset-based AMC (M-
AMC) method. Experimental results are given to confirm the
proposed method in terms of the model sizes, the computation
time as well as the classification performance.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider that the received signal y = {y(k)}Kk=1 is a
complex-valued baseband signal, and its sampling strictly
follows Nyquist criterion. The signal in the k-th sampling
moment can be expressed by

y(k) = Aejϕs(k) + w(k), (1)

where s(k) is a modulation signal, and the energy of modula-
tion signal is normalized for the fair classification of different
modulation types, i.e.,

∑K
k=1 |s(k)|2 = 1; w(k) is zero-mean

additive white Gaussian noise (AWGN). In addition, A and ϕ
are the channel gain and the phase offset, respectively. These
two parameters are constant under the assumption of the flat
fading and time-invariant channel.
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Based on the signal model, two independent datasets are
prepared for the training and testing of the CNN. The sam-
ple in the datasets consists of the in-phase and quadrature
(IQ) component of the received signal. The IQ component
also represents real part and imaginary part of the received
signal, respectively. Thus, I = {real[y(k)]}Kk=1, and Q =
{imag[y(k)]}Kk=1. Then, the IQ sample can be written as

IQ =

{
real[y(k)]

imag[y(k)]

}K
k=1

, (2)

and it is a 2 × K real-valued matrix. Then, we specifically
describe the problem of AMC. AMC is a technique to blindly
identify modulation types in the range of a limited modulation
type candidate pool Θ = {θi}Mi=1, where θi is one of
the modulation types. According to the maximum-a-posterior
(MAP) criterion, this problem can be described as

θi = arg max
θi∈Θ

P (θi|y), (3)

where P (θi|y) is the probability distribution function (PDF)
of θi under the condition of the received signal y. Without the
loss of generality, we consider two modulation type candidate
pools, i. e., Θ1 = {BPSK, QPSK, 8PSK} [22], [23] and Θ2 =
{BPSK, QPSK, 8PSK, 16QAM} [1], [17].

III. EXISTING AMC METHODS

A. Traditional AMC Method Based on HOC and SVM

The architecture of the traditional method is depicted in
Fig. 1. It consists of pre-processing, feature extraction, clas-
sifier, and SNR estimation. Pre-processing contains signal
conversion, frequency and phase synchronization and so on.
Feature extraction is the core step of the AMC method and
we consider the fourth order cumulants as features [22]. For
the received baseband complex signal y = {y(k)}Kk=1, the i-
th order moment is defined as Mij = E[yi−jy∗j ]. Then, the
fourth-order cumulants [22] are defined as

C40 = M40 − 3M2
20, (4)

C41 = M41 − 3M21M20, (5)

C42 = M42 − |M20|2 − 2M2
21. (6)

In the actual applications, the number of the sampling points
for the received signal y is limited. Hence, the estimation value
of i-th order moments M̂ij = 1

K

∑K
k=1[yi−j(k)y∗j(k)] is ap-

plied to replace the theoretical value. Similarly, the estimation
value of fourth-order cumulants Ĉ4j , j ∈ {0, 1, 2} can be
obtained by replacing Mij in (4–6) with M̂ij . Considering the
scale problem, the estimation value of fourth-order cumulants
is generally normalized, and the normalized value of fourth-
order cumulants [23] is

C̃4j =
Ĉ4j

1
K (
∑K
k=1 |y(k)|2)2

,where j ∈ {0, 1, 2}, (7)

and {C̃4j}2j=0 is a feature vector for training SVM to classify
different modulation signals. In addition, SVM is applied for
the module “Classification”, and multiple SVM models must
be prepared for the varying SNR conditions. What’s more, it is

TABLE I
THE STRUCTURE OF CNN, INCLUDING LAYER NUMBER, LAYER TYPE AND

LAYER STRUCTURE.

NO. Type Structure
- - Input (IQ samples, labels)
1 Conv Conv2D (u1, 1× 8) + BN + ReLU + Dropout (0.05)
2 Conv Conv2D (u2, 2× 4) + BN + ReLU + Dropout (0.05)
3 FC Dense (u3) + BN + ReLU + Dropout (0.5)
4 FC Dense (u4) + BN + ReLU + Dropout (0.5)
5 FC Dense (M ) + Softmax

Tips: “Conv” represents the convolutional layer and ”FC” is the fully-
connected layer.

necessary to estimate the real-time SNR via the module “SNR
estimation” to choose the suitable SVM model from multiple
SVM models for the correct classification.

 

Unknown 

Signal

SNR 

estimation

Modulation 

Type

Pre-

processing

Choose classifier model with 

corresponding SNR

Feature 

Extraction
Classification

Fig. 1. The architecture of feature-based AMC method. The key steps of
AMC method are feature extraction and classification. In the traditional AMC
method, HOC is applied to characterize the difference of various modulation
types, while SVM is as a classifier. In the F-AMC method, CNN is both the
feature extractor and classifier. What’s more, SNR estimation gives an assist
to choose corresponding SVMs or CNNs, because SVM or CNN in these
previously proposed methods is trained on the IQ samples with the fixed
SNR, and they can just be adopted into the corresponding SNR.

B. CNN-based F-AMC Methods

CNN-based AMC methods have the similar architecture
with the traditional AMC method, and the only difference
is that HOC and SVM is replaced by CNN. Existing CNN-
based AMC methods consider the training CNN model on
fixed samples with single SNR. Here, it is referred as the
F-AMC method. The architecture of the F-AMC method is
shown in Fig. 1, where CNN is applied to replace the modules
of “Feature Extraction” and “Classification”.

IV. THE PROPOSED LIGHTAMC METHOD

Our proposed CNN-based LightAMC method is introduced
in this section. A novel neuron pruning technology based on `1
regularization is applied to realize the LightAMC method. The
implementation of the LightAMC method consists of training,
pruning and finetuning.

A. CNN Training for M-AMC Method

Training is to train a CNN, designed by the artificial
experiences, to classify the modulation signals. In the F-AMC
methods [1], [15], [17], CNN is trained on the fixed SNR, and
they are only useful for the IQ samples with the corresponding
SNR. It means that the SNR estimation is necessary for the
choice of the suitable CNN model, which is shown in Fig.
1. In addition, the F-AMC methods have the weak robustness
under varying noise condition.
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Unlike the F-AMC methods, the M-AMC method is pro-
posed with the capability to confront with the varying noise
condition without the assist of the SNR estimation. Because
M-AMC method is trained on the mixed datasets with multiple
SNRs, and the CNN can extract more robust and general
features from mixed dataset. Assuming that SNR is from -10
dB to 10 dB, we use multiple IQ samples with different SNRs
(it ranges from -10 dB to 10 dB with 2 dB as an interval) and
mix them equally to create the mixed dataset for training.

In addition, for the fair comparison of the F-AMC and M-
AMC method, we consider to apply the same CNN structure
into both F-AMC and M-AMC method, which is shown in
Tab. I. This CNN has five layers, containing two convolutional
layers and three fully-connected layers. In first four layers,
the numbers of neurons are denoted as {ul}4l=1, which is
equal to {128, 64, 256, 128}, and rectified linear unit (ReLU )
fReLU (·) = max(·, 0) is as the activation function for these
four layers. The number of neurons in the last layer is decided
by the number of modulation types M , and Softmax is the
activation function for the last layer.
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Fig. 2. The principle of neuron pruning based on `1 regularization.

B. Neuron Pruning via `1 Regularization

Pruning is to cut down unimportant neurons, and how to
measure the importance of neurons is critical. Inspired by [24]
[25], we introduce a learnable metrics α = {αl}4l=1 based on
`1 regularization for this problem. α represents the scaling
factor, and it is multiplied by the output of each neuron in the
first four layers of CNN. Hence, the output of one of the first
four layers in CNN can be represented by

xl+1 = αl ·max{γl ·BNµl,σl,εl(W
l ∗ xl) + βl, 0}, (8)

where xl and xl+1 is the input and output, and W l, γl and
βl are the trainable weight. In addition, BNµl,σl,εl(zin) =
zin−µl√
(σl)2+εl

, where µl = E(zin), (σl)2 = V ar(zin) and εl is a

minimum value to prevent that σl is zero.
Then, we jointly train trainable parameters: W = {W l}5l=1,

γ = {γl}4l=1 and β = {βl}4l=1, and scaling factor α =
{αl}4l=1 with sparsity constraint. Finally, we prune the neu-
rons, whose scaling factor is smaller than threshold λthre.
please notice that λthre = {λlthre}4l=1 is layered, and we
usually set the 80% of the average value of all elements as the

threshold [24], but the detailed threshold is chosen by many
trying and testing on the validation samples as few neurons and
as low validation performance loss as possible. The principle
of neuron pruning is shown in Fig. 2. It is noted that the loss
function is different and it is give as

arg max
W,γ,β,α

∑
(x,y)

l(f(x;W,γ, β), y) + λ

4∑
l=1

||αl||1, (9)

where (x, y) is training sample and label. The first term in
(9) represents experience loss and we apply cross entropy loss
function as this term. The second term is sparsity-inducing
penalty, and we choose `1 regularization, which is widely
applied into achieve sparsity [26]. In addition, λ is utilized
to balance the two terms.

We train a CNN with λ ∈ {0.001, 0.005, 0.01} for M-
AMC method on Θ1, and the distribution of α3 (it is the
scaling factor following behind the first fully-connected layer)
is shown in Fig. 3. It is obvious that the larger λ generally
leads to the higher sparsity. However, too large λ will cause
instability of the algorithm (9). Correct classification proba-
bility of λ = 0.005 and 0.001 can reach up to nearly 100% at
SNR = 10 dB, while that of λ = 0.01 only has 67%.

 

(a)
 

(b)
 

(c)

Fig. 3. The distribution of α3 in the CNNs of the M-AMC method under
the different values of λ, which are trained on θ1. The values of λ are equal
to 0.001, 0.005 and 0.01 in (a), (b) and (c), respectively. With the increase of
the value of λ, the sparse degree is increasing gradually, but when the value
of λ is equal to 0.01, the correct classification probability at the high SNR is
greatly decreased.

C. Finetuning in Short Epochs

Although the scaling factor with `1 regularization can
give an assist for us to correctly distinguish the unimportant
neurons, it is inevitable to bring the performance loss with
neuron pruning technology. Thus, finetuning is a critical
step to recover the classification performance by retraining
the trimmed CNN. Specifically, finetuning is to retrain the
trimmed CNN in the short epochs, after loading the weights
of saved neurons and setting λ=0. Hence, the performance loss
is limited with the step of finetuning.

V. EXPERIMENTAL RESULTS

In this section, the effectiveness of the LightAMC method
is empirically demonstrated on Θ1 and Θ2, which are inde-
pendent from the training datasets and contains 6000 IQ sam-
ples per modulation type per SNR. Our proposed LightAMC
method is evaluated in terms of three aspects of model size,
computation time and classification performance.
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Algorithm 1 The proposed LightAMC method.
Input: IQ samples with SNRs ranging from −10 dB to 10 dB with

1 dB as an interval, and 6000 IQ samples per modulation type
per SNR;

Output: The CNN for LightAMC;
1: Choose IQ samples with SNR = {−10,−8, · · · , 8, 10} dB and

mix these samples proportionally;
2: Divide randomly the mixed samples into training samples and

validation samples by 7 : 3;
3: Construct CNN according to Tab. I and introduce scaling factor
{αl}4l=1 multiplied by the output of each neurons in the first four
layers in CNN;

4: Set a proper λ (λ = 0.005 for Θ1 and λ = 0.006 for Θ2),
choose stochastic gradient descent (SGD) as optimizer and train
CNN to minimize loss function (9);

5: Set a proper threshold λthre for each layer, and cut down
neurons, whose corresponding scaling factor is smaller than
threshold;

6: Set five retraining epochs, load the weights of the unpruned
neurons and retrain the trimmed CNN on training samples to
recover its performance;

7: return CNN.

TABLE II
STRUCTURES AND MODEL SIZES OF THREE CNN-BASED METHODS IN Θ1 .

Method {ul}4l=1 Model size (MB)
F-AMC {128,64,256,128} 15.5×21
M-AMC {128,64,256,128} 15.5

Traditional AMC - -
LightAMC (Proposed) {77,18,49,44} 1.0 (93.5% ↓)

A. Model Size and Device Memory

The most obvious improvement of the LightAMC method
is that it has smaller sizes and requires fewer device memories
than F-AMC method, which is shown in Tabs. II–III. The
improvement is beneficial from not only the application of M-
AMC method but also the implementation of neuron pruning
technology. When SNR ranges from −10 dB to 10 dB with 1
dB as an interval, we need to train twenty-one CNN models
for F-AMC method, but only one CNN model is required in
M-AMC method, benefitting from the application of mixed
datasets. So, considering that the same CNN structure is
applied into F-AMC and M-AMC method, CNN model sizes
are same, but required device memories for M-AMC are only
1/21 of that for F-AMC method.

One the basis of M-AMC method, LightAMC method is
to prune unimportant neurons of CNN. The trimmed CNN
structure is shown in Tabs. II–III, and the number of neurons
for each layer, especially two fully-connected layers, has been
reduced greatly. With the reduction of neurons, the CNN mod-
el sizes and the required device memories are also declining
sharply. Specifically, CNN model sizes of LightAMC method
only has 6.5% of that of M-AMC method in Θ1, and the ratio
is 8.4% in Θ2. In addition, we do not compare CNN-based
AMC method with traditional AMC method, because the SVM
in traditional AMC method is “Scikit-learn” as backend and
the CNN is based on “Keras”. Hence, it is meaningless to
compare these two kinds of AMC methods in the model sizes.

TABLE III
STRUCTURES AND MODEL SIZES OF THREE CNN-BASED METHODS IN Θ2 .

Method {ui}4l=1 Model size (MB)
F-AMC {128,64,256,128} 15.5×21
M-AMC {128,64,256,128} 15.5

Traditional AMC - -
LightAMC (Proposed) {81, 19, 63, 49} 1.3 (91.6% ↓)

B. Computation Time

The computation time of different AMC methods is depicted
in Fig. 4. For the fair comparison, we test the computation time
on the same device equipped with i7-8750H and GTX1080Ti,
and coding is based on python. It can be observed that
the LightAMC method is faster than F-AMC and M-AMC
method, because pruning the redundant neurons leads to the
reduction of the redundant computation. Since F-AMC and M-
AMC method have the same structure, hence the computation
time of which are 44.2 µs per sample. While the computation
time of the LightAMC method decreases by almost 24%,
which is 33.2 µs per sample in Θ1 and 33.6 µs per sample in
Θ2. Unlike these CNN-based methods, it is difficult to run
traditional AMC method on GPU. Hence, the computation
time of traditional AMC method is running on CPU, and it is
obviously slower than these CNN-based methods.

Fig. 4. The average computation time of per sample in the different AMC
methods.

C. Classification Performance

Correct classification probability (Pcc = {P icc}10
i=−10) is

applied to measure performance and it is given as

P icc =
Sicorrect
Stotal

, (10)

where Sicorrect is the number of correctly classified samples
under SNR = i dB and Stotal is 18000 in Θ1 or 24000 in Θ2.
The curve of Pcc is shown in Fig. 5.

While compressing model size and reducing the compu-
tation time, the pruned LightAMC method has almost 10%
performance gap with other CNN-based AMC methods, and its
performance is still higher than the traditional AMC method.
However, after a short term finetuning, the gap is extremely
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reduced. The finetuned LightAMC method has the similar
performance with the M-AMC method, and it has the limited
performance loss, compared with the F-AMC method.

(a)

 

(b)

Fig. 5. The classification performance of different AMC methods. (a) is the
performance in Θ1, (b) is the performance in Θ2.

VI. CONCLUDING REMARKS

In this correspondence, we have proposed an effective
LightAMC method using CNN and compressive sensing under
varying noise regimes. The proposed LightAMC method is
based on the M-AMC method that is trained on mixed dataset
with multiple SNRs. Then, `1 regularization-based neuron
pruning technology is applied to cut down redundant neurons
in the CNN for the M-AMC method. Hence, the proposed
LightAMC method requires fewer device memories and has
faster computational speed under the limited performance loss.
Simulation results also demonstrate the superiority of the Ligh-
tAMC method. In the future work, we will consider iterative
shrinkage-thresholding algorithm (ISTA) as the optimizer to
replace SGD for LightAMC method with `1 regularization,
and we expect that ISTA-based LightAMC method can achieve
the better performance.
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