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Abstract

Automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-

cooperative communication systems. Recently, it has been demonstrated that deep learning (DL)-based AMC method effectively

works in the single-input single-output (SISO) systems, but DL-based AMC method is scarcely explored in the multiple-input

multiple-output (MIMO) systems. In this correspondence, we propose a convolutional neural network (CNN)-based cooperative

AMC (Co-AMC) method for the MIMO systems, where the receiver equipped with multiple antennas cooperatively recognizes

the modulation types. Specifically, each received antenna gives their recognition sub-results via the CNN, respectively. Then,

the decision maker identifies the modulation types with the recognition sub-results and cooperative decision rules, such as direct

voting (DV), weighty voting (WV), direct averaging (DA) and weighty averaging (WA). The simulation results demonstrate

that the Co-AMC method, based on the CNN and WA, has the highest correct classification probability in the four cooperative

decision rules. In addition, the CNN-based Co-AMC method also performs better than the high order cumulants (HOC)-based

traditional AMC methods, which shows the effective feature extraction and powerful classification capabilities of the CNN.
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Abstract—Automatic modulation classification (AMC) is one
of the most essential algorithms to identify the modulation
types for the non-cooperative communication systems. Recently,
it has been demonstrated that deep learning (DL)-based
AMC method effectively works in the single-input single-
output (SISO) systems, but DL-based AMC method is scarcely
explored in the multiple-input multiple-output (MIMO) systems.
In this correspondence, we propose a convolutional neural
network (CNN)-based cooperative AMC (Co-AMC) method
for the MIMO systems, where the receiver equipped with
multiple antennas cooperatively recognizes the modulation types.
Specifically, each received antenna gives their recognition sub-
results via the CNN, respectively. Then, the decision maker
identifies the modulation types with the recognition sub-results
and cooperative decision rules, such as direct voting (DV),
weighty voting (WV), direct averaging (DA) and weighty
averaging (WA). The simulation results demonstrate that the
Co-AMC method, based on the CNN and WA, has the highest
correct classification probability in the four cooperative decision
rules. In addition, the CNN-based Co-AMC method also performs
better than the high order cumulants (HOC)-based traditional
AMC methods, which shows the effective feature extraction and
powerful classification capabilities of the CNN.

Index Terms—Automatic modulation classification, multiple-
input multiple-output (MIMO), deep learning (DL), convolutional
neural network (CNN), cooperative decision.

I. INTRODUCTION

Automatic modulation classification (AMC) is one the most
critical technologies in both non-cooperative communication
systems and cognitive radio (CR)-aided systems [1]–[3]. AMC
can strengthen the cognition capabilities of the communication
systems via identifying modulation types of unknown signals,
and it is widely applied into the military and civilian domains
[1]. Various AMC methods have been proposed for single-
input single-output (SISO) systems [4]–[10] and multiple-
input multiple-output (MIMO) systems [11]–[14]. These AMC
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methods can be classified into two categories, which are based
on decision theoretic and pattern recognition [11], respectively.
Decision theoretic-based AMC methods rely on the perfect
channel statement information (CSI) and the precise noise
variance [15].

However, pattern recognition-based AMC methods can get
rid of the restrictions of the prior information. These AMC
methods can be divided into two sub-methods of the feature
extraction and classification. In these methods, the common
artificial features includes high order statistics (HOS), cyclic
feature [9] and so on. The HOS is the one of the most
widely applied features for both SISO and MIMO systems
[10]–[14], because the HOS with the k-th (k ≥ 3) order can
effectively suppress additive white Gaussian noise (AWGN).
In addition, support vector machine (SVM), decision tree (DT)
and traditional artificial neural network (ANN) are generally
adopted as the classifier [11]–[14].

In recent years, deep learning (DL) has been combined with
various communication technologies, such as network traffic
control [16]–[18], non-orthogonal multiple access (NOMA)
[19], [20], beamforming [21] and AMC [2], [4], due to
the powerful classification and prediction capabilities of DL
[22]–[25]. However, DL-based AMC methods are designed
primarily for SISO systems. In [4], T. OShea and J. Hoydis
firstly proposed a CNN-based AMC methods for SISO systems
and achieve the far beyond performances than the traditional
AMC methods. B. Tang, et al. in [5] proposed a novel semi-
supervised AMC method via generative adversarial network
(GAN) and constellation diagrams for the single-antenna
point-to-point communication. What’s more, S. Hu et al. [6]
proposed a stacked long short-term memory (LSTM)-based
AMC method for the wireless communication systems with
non-Gaussian noise, and achieved greater performance than
the some previously proposed AMC methods.

There are few researches introducing deep neuron network,
such as CNN or LSTM, for the AMC in MIMO systems.
In this paper, the CNN and cooperative decision rules are
proposed for the cooperative AMC (Co-AMC) method in
the MIMO systems, different from [11], [12], where AMC
methods are based on HOC and ANN. In detail, the CNN
is trained on the dataset from all of the received antennas,
and then the CNN gives the recognition sub-results, based
on each received antennas. Combining the recognition sub-
results together, the decision maker identifies the modulation
types via the cooperative decision rules. Our simulation results
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demonstrate that the CNN-based Co-AMC method performs
better than the HOC and ANN-based AMC method. In
addition, we also compare different cooperative decision rules
of direct voting (DV), weighty voting (WV), direct averaging
(DA) and weighty averaging (WA), and the WA-based Co-
AMC method shows the best classification performances in
the four cooperative decision rules.

II. MIMO SIGNAL MODEL, DATASET AND AMC
DESCRIPTION

A. MIMO Signal Model

Here, a typical MIMO system is considered with Nt

transmitting antennas and Nr receiving antennas (Nr ≥
Nt). Assuming that the MIMO channel is a flat fading
and time-invariant channel, and the sampling in the receiver
strictly follows Nyquist sampling theorem without any carrier
frequency offset and phase offset, the received symbol vector
in the k-th observation moment can be written as follows,

yk =Hxk + nk, (1)

where yk = [yk(1), yk(2), · · · , yk(Nr)]
T represents the

received baseband symbol vector with dimension Nr×1; H is
the MIMO channel and it obeys circular symmetric complex
normal distribution with zero mean and unit variance, i. e.
H ∼ CN (0, INr×Nt

); xk = [xk(1), xk(2), · · · , xk(Nt)]
T is

the (Nt × 1) baseband modulation symbol vector.
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Fig. 1. The process of dataset generation which includes four steps in the
transmitter: random data generation, modulation, normalization, and reshape.

B. Dataset Generation

The specified dataset generation is shown in Fig. 1.
We generate a random data sequence for modulation, and
then the modulation complex-value baseband signal x,
whose dimension is 1 × N , is normalized to x̃ with
unit power, in order to fairly distinguish from the signals
with different modulation types. Next, x̃ is reshaped into
[x̃1, x̃2, · · · , x̃Nt ]T , with dimension Nt × N/Nt, and x̃i =
[x1(i), x2(i), · · · , xN/Nt

(i)]T , i ∈ [1, Nt]. It is noted that
x̃i represents the N/Nt continuous transmitted symbols at
the i-th transmitter antenna. When the transmitted symbols
pass through the MIMO channel, the received complex-
value baseband signal at the j-th transmitter antenna can
be presented by yj = [y1(j), y2(j), · · · , yN/Nt

(j)]T , j ∈
[1, Nr]. Then, we need to extract the real part and imaginary
part of yj and combine them together into a matrix with
dimension N/Nt × 2, which is the sample in the dataset for
the CNN.

TABLE I
THE STRUCTURE OF CNN, INCLUDING FIVE LAYERS: TWO

CONVOLUTIONAL LAYERS AND THREE FULLY-CONNECTED LAYERS.

Type Structure
Convolutional layer Conv1D (128, 8) + BN + ReLU + Dropout (0.5)
Convolutional layer Conv1D (64, 4) + BN + ReLU + Dropout (0.5)

Fully-connected layer Dense (256) + BN + ReLU + Dropout (0.5)
Fully-connected layer Dense (128) + BN + ReLU + Dropout (0.5)
Fully-connected layer Dense (|M|) + Softmax

C. AMC Description

AMC is modeled as a typical close-set classification
problem under maximum a posteriori (MAP) criterion and a
modulation candidate pool with the limited modulation types.
When receiving the yj at the j-th antenna, the AMC can be
described as follows,

m̂j
n = argmax

n∈[1,|M|]
P (mn|yj), j ∈ [1, Nr], (2)

where m̂j
n represents the predicted modulation type under the

received signal at the j-th antenna; mn and M = {mn}|M|n=1

are the real modulation type and the modulation candidate
pool, respectively, where |M| is the number of modulation
types in M; P j = {P (mn|yj)}|M|n=1, j ∈ [1, Nr] is the
probability distribution function (PDF) with the inputting of
yj , and it is also the output of the neural network, when
inputting yj . In this paper, we consider a classical modulation
candidate pool M = {BPSK, QPSK, 8PSK, 16QAM} [1],
[12].

III. THE PROPOSED CNN-BASED CO-AMC METHOD

A. CNN-based Co-AMC Method

The structure of the CNN-based Co-AMC method is shown
in Fig. 2. The CNN-based Co-AMC method contains two part:
the CNN and the decision maker. After the received signals
in each antenna are fed into the CNN in turn, the decision
maker cooperatively gives the final predicted modulation type
on the basis of the predicted PDFs {P j}Nr

j=1, which are given
by CNN.
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Fig. 2. The structure of CNN-based Co-AMC method, containing CNN and
a cooperative decision maker.

1) CNN structure and loss function: In this paper, a five-
layer CNN model is considered with two convolutional layers
and three fully-connected layers. The structure of CNN is
depicted in Tab. I, where “Conv1D” is a typical convolutional
layer and “Dense” is a general fully-connected layer. What’s
more, batch normalization (BN) is applied to accelerate the
training, and BN and dropout can also prevent overfitting.
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2) Training and loss function: The centralized training is
applied, which means that only one CNN is trained, based on
the mixed received signals from different received antennas,
rather than multiple CNNs are trained for the multiple
corresponding received antennas. Based on the training dataset
{si, li}Si=1, which contains S training samples with their
corresponding one-hot coded-labels, the loss function can be
described as

L(fCNN ,θ; {si, li}Si=1) =−
1

S

S∑
i=1

lilog(fCNN (θ; si))

+ λJ(fCNN ,θ),

(3)

where fCNN and θ are the mapping function and parameters
of the CNN, respectively, and fCNN (θ; ·) is actually
{P (mn|·)}|M|n=1; The first term of the final loss function is a
typical empirical loss function for the classification problem;
The second term is just the structural loss function to constrain
the model complexity, and BN and dropout can be considered
as the hidden structural loss function. In addition, λ is to
balance the two loss functions. Adaptive moment estimation
(Adam) as the optimizer is to minimize the loss function.

3) Test and various cooperative decision rules: Test is
divided into two phases: The trained CNN outputs the Nr

PDFs, based on the test samples from Nr received antennas,
and then these PDFs {P j}Nr

j=1 are fed into the decision maker,
relying on the cooperative decision rules, to cooperatively
decide the modulation type.

Here, we introduce two kinds of the cooperative decision
rules: voting method and averaging method. Voting method is
based on the decided modulation types, given by each antenna,
and obeys the rule of that the final decided modulation type
is the modulation type with the majority voting, while the
averaging method is to calculate the average of PDFs achieved
by all of the receiving antennas, and obeys the rule of that
the modulation type with the highest probability is the final
predicted modulation type.

In addition, each kind method is divided into two sub-kinds:
direct method and weighty method. In the direct method,
each antenna is fair, and the decision at each antenna is
equally important, but in the weighty method, each antenna
has a weight, and the weights are generally different. In this
paper, we apply the the normalized validation accuracy of each
antenna as each received antenna’s weight.

In detail, we test the trained CNN on the validation dataset,
and then calculate the each antenna’s accuracy based on their
corresponding validation dataset, which is denoted as accj ,
j ∈ [1, Nr]. Thus, the normalized validation accuracy ãccj =

accj∑Nr
i=1 acci

, j ∈ [1, Nr] is set as the corresponding weight of

each received antenna W j , j ∈ [1, Nr].
The specified descriptions of these methods are shown as

follows, where the direct voting (DV) method and the weighty
voting (WV) are listed in Algorithm 1, and the direct averaging
(DA) method and the weighty averaging (WA) are given in
Algorithm 2.

Algorithm 1 The Co-AMC based on the voting method.
Input: Test sample {yj}Nr

j=1 and the trained CNN;
Output: The predicted modulation type;
1: for j = 1 : Nr:

Give the m̂j
n by Eq. (2);

end
2: if choosing direct voting (DV) method,

M̂ = 1
Nr

∑Nr
i=1 m̂

j
n;

end
3: if choosing weighty voting (WV) method,

Calculate the validation accuracy at each receiver antenna accj ;
Set W j = accj∑Nr

i=1 acci
;

M̂ =
∑Nr

j=1 W
j · m̂j

n;
end

4: m̂V oting
n = argmaxn∈[1,|M|] M̂(n);

5: return The predicted modulation type m̂V oting
n .

Algorithm 2 The Co-AMC based on the averaging method.
Input: Test sample {yj}Nr

j=1 and the trained CNN;
Output: The predicted modulation type;
1: for j = 1 : Nr:

Give the P j = [P (m1|yj), P (m2|yj), ..., P (m|M||yj)];
end

2: if choosing direct average (DA) method,
P̂ = 1

Nr

∑Nr
j=1 P

j ;
end

3: if choosing weighty average (WA) method,
Calculate the validation accuracy at each receiver antenna accj ;
Set W j = accj∑Nr

i=1 acci
;

P̂ =
∑Nr

j=1 W
j · P j ;

end
4: m̂Averaging

n = argmaxn∈[1,|M|] P̂ (n);
5: return The predicted modulation type m̂Averaging

n .

B. Review of Traditional AMC Method

A traditional AMC method, based on high order cumulants
(HOC) and ANN [11], [12], is introduced for the comparison
of the CNN-based Co-AMC method, and its structure is shown
in Fig. 3. In this paper, the HOC of fourth order, C4k, k ∈
{0, 1, 2}, is considered, and its theoretical values are shown
in Tab. II. In addition, ANN is chosen as the classifier. The
traditional method also applies the centralized training and
cooperative decision, which are same with the CNN-based Co-
AMC method. For the fair comparison with the CNN-based
Co-AMC method, the ANN structure has three fully-connected
layers with the same parameters with the three fully-connected
layers in the CNN.

TABLE II
THE THEORETICAL VALUES OF THE FOURTH ORDER HOC [11], [12].

C4k

Type BPSK QPSK 8SPK 16QAM

C40 -2 -1 0 -0.68
C41 -2 0 0 0
C42 -2 -1 -1 -0.68
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Fig. 3. The structure of HOC and ANN-based traditional AMC method.

IV. SIMULATION RESULTS

Both CNN in the Co-AMC method and ANN in the
traditional AMC method are based on Keras and are trained on
the GPU. In addition, the simulation of MIMO system, MIMO
signal and HOC extraction are relied on Matlab. We prepare
20000 samples per SNR per type for training, which are
divided into two parts for training and validation by the ratio of
7:3, respectively, and 10000 samples per SNR per type for test.
In addition, There are two classification performance metrics
of the correct classification probability P snr

cc at snr dB, where
snr ∈ [−10, 10] dB and the average correct classification
probability P ave

cc . Hence they are defined as follows,

P snr
cc =

Ssnr
correct

Stest · |M|
× 100%, (4)

P ave
cc =

∑10
snr=−10 S

snr
correct

Stest · |M| ·Nsnr
× 100%, (5)

where Stest is the number of test samples of each type;
Ssnr
correct is the samples classified correctly at snr dB; Nsnr

are the number of SNR for test, and it is equal to eleven in
this paper.

A. Performance Comparison vs. Cooperative Rules
The performances of different cooperative rules-based Co-

AMC methods are shown in Fig. 4, where “AMC” is
the average correct correct classification probability of four
received antennas, and other other Co-AMC methods are based
on four cooperative decision rules, respectively. It can be
observed that the Co-AMC methods have higher classification
performance than AMC method without cooperative decision
rules. What’ more, the averaging method is always better than
the voting method, and the weighty method performs better
than the direct method, which can be also demonstrated with
P ave
cc in Tab. III.
In this paper, the weights in the weighty methods are

decided by the each validation accuracy of each antenna,
and the weight can describe the quality for the modulation
classification. It means that the high weights will be assigned
the antenna with the high validation accuracy, while the low
weights will be given to the antenna with the low validation
accuracy, which is different from the same-weight-assignment
method in the direct methods. Thus, the weighty methods has
the better performance.

Besides, it is noted that we consider that the number of the
received antennas is four, which means that decision maker has
four voter in the voting methods, but the number of modulation
types in M is also four. Thus, it is possible that multiple
modulation types have the maximum votes at the same time in
the DV method, and we have to randomly choose a modulation
type as the predicted modulation type.

 

(a)

 

(b)

 

(c)

Fig. 4. The classification performances of CNN-based Co-AMC method
under different cooperative decision rules. (a) Nr = 4, Nt = 1; (b) Nr = 4,
Nt = 2; (c) Nr = 4, Nt = 4;

B. Comparing with Traditional AMC Method

The WA-based Co-AMC method has the best performance
in four Co-AMC methods. Thus, we also consider to apply the
WA method into the HOC and ANN-based traditional AMC
method. The classification performances of Co-AMC method
and traditional AMC method under different transmitted
antennas and the same received antennas are shown in Fig.
5. Compared with the HOC and ANN-based traditional AMC
methods, the CNN-based Co-AMC methods have the better
classification performances under the different kinds of MIMO



5

TABLE III
THE AVERAGE CORRECT CLASSIFICATION PROBABILITY OF THE CO-AMC

METHOD UNDER VARIOUS COOPERATIVE DECISION RULES.

Method

Pave
cc (%) (Nr, Nt)

(4, 1) (4, 2) (4, 4)

AMC 67.59 63.07 58.58
Co-AMC (DV) 77.57 68.74 64.63
Co-AMC (WV) 83.55 74.25 68.74
Co-AMC (DA) 87.63 80.46 76.56
Co-AMC (WA) 87.79 80.82 77.00

Traditional AMC (WA) 83.62 71.54 70.41

 

Fig. 5. The comparison of the correct classification performances of CNN-
based Co-AMC method and HOC and ANN-based traditional AMC method.
These two methods are based on the decision maker with the WV method.

antennas. It is demonstrated that the CNN can effectively
modulation features for classification than the manmade
features, such as HOC features.

V. CONCLUSION

In this correspondence, we propose the CNN-based Co-
AMC methods for MIMO systems. Four cooperative decision
rules of direct voting (DV), weighty voting (WV), direct
averaging (DA), and weighty averaging (WA) methods are
applied for the multiple received antennas to cooperatively
decide the final modulation type. The simulation results
demonstrate that the voting methods has weaker performances
than the averaging methods in the CNN-based Co-AMC
method. Besides, the weighty methods, where the weights are
decided by the validation accuracy of each antenna, is better
than the direct methods, which assign the same weights for
each antenna. What’ more, the CNN-based Co-AMC method
performs better than the HOC and ANN-based traditional
AMC methods under the condition of the same cooperative
rule. The results shows that the CNN has the capability
to extract the more effective features for the modulation
classification than the traditional artificial feature designing
methods.
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