
P
os
te
d
on

7
F
eb

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
16
40
16
2.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Smart SDN Management of Fog Services

Piotr Frohlich 1, Erol Gelenbe 2, and Mateusz P. Nowak 1

1Affiliation not available
2Institute of Theoretical and Applied Informatics. Polish Academy of Sciences

October 30, 2023

Abstract

We present a smart Service Manager whose role is

to direct user requests (such as those coming from IoT devices)

at the edge towards appropriate servers where the services they

request can be satisfied, when services can be housed at different

Fog locations, and the system is subject to variations in workload.

The approach we propose is based on using an SDN controller as

a decision element, and to incorporate measurement data based

machine learning that uses Reinforcement Learning to make the

best choices. The system we have developed is illustrated with

experimental results on a test-bed in the presence of time-varying

loads at the servers. The experiments confirm the ability of the

system to adapt to significant changes in system load so as to

preserve the QoS perceived by end users.

1



Smart SDN Management of Fog Services
Piotr Fröhlich, Erol Gelenbe and Mateusz P. Nowak

Institute of Theoretical and Applied Informatics (IITIS-PAN)
Polish Academy of Sciences (PAN)

IITIS-PAN, ul. Baltycka 5
44100 Gliwice, Poland

Abstract—We present a smart Service Manager whose role is
to direct user requests (such as those coming from IoT devices)
at the edge towards appropriate servers where the services they
request can be satisfied, when services can be housed at different
Fog locations, and the system is subject to variations in workload.
The approach we propose is based on using an SDN controller as
a decision element, and to incorporate measurement data based
machine learning that uses Reinforcement Learning to make the
best choices. The system we have developed is illustrated with
experimental results on a test-bed in the presence of time-varying
loads at the servers. The experiments confirm the ability of the
system to adapt to significant changes in system load so as to
preserve the QoS perceived by end users.

Index Terms—QoS, Edge and Fog Computing, IoT, Software
Defined Networks, Machine Learning, Cognitive Packet Network,
Random Neural Networks

I. INTRODUCTION

Fog computing extends the concept of the Cloud [1] to allow
edge devices to take over substantial computation, storage
and networking activities, so as to facilitate the operation of
services between edge devices and Cloud data centers [2].
Therefore it is particularly suited as an approach to manage
services and tasks in the Internet of Things (IoT) [3], [4].

A high degree of service virtualization is a characteristic of
many computing platforms, and the Fog infrastructure will
have computing nodes at its disposal that run virtualized
services that satisfy the requests of the clients connected
to the network. Thus the distribution or location of Fog
nodes/servers in a network, and the placement of services on
the Fog servers are key issues. Since most networks may have
a large variability of workload over time, the configuration
of Fog servers and services cannot be static, and a dynamic
approach is needed to adapt it to changing situations. Such
issues are not specific to the Fog and they have long been
studied in the context of distributed and networked computer
systems [5], [6], [7], [8], [9]. However, the nature of the
servers and lightweight edge devices in the Fog call for
simple dynamic algorithms which do not impose excessive
decision making overhead. Thus in this paper we develop a
fast decision algorithm for directing requests that originate at
different devices towards the multiple servers where services
are located, without causing significant additional workload for
the edge devices and the servers, and we exploit the presence
of Software Defined Network (SDN) controllers in their midst
so as to provide a Service Management function in addition
to their usual packet routing activities.

The dynamics of Fog substrate configuration can be con-
sidered at different levels. The most advanced, but perhaps
the most costly approach is to migrate services between Fog
nodes. This solution is worth using if there are very significant
changes in network and server load, and in the memory
ocupancy of the servers. Indeed service migration takes time
and bandwidth, also limiting the availability of services during
migration and temporarily reducing the resources available to
end users.

In IoT networks in particular [3], due to the relatively
steady nature of monitoring and actuating on cyberphysical
infrastructures, significant changes in network usage are rela-
tively infrequent. Therefore, in most cases it suffices to locate
each service in a few replicate locations and to optimally
select the location of a service to which a given client’s
request should be addressed. If needed, different instances
of a service can also be activated on-the-fly when repliacs
of a service are installed at different system nodes. However,
replicating services also raises the issue of consistency of the
data and it may introduce additional slowdown and overhead
if consistency control algorithms need to be used [10].

The optimization of such systems with respect to Quality of
Service (QoS) and Energy Consumption using queueing theo-
retica techniques was considered in earlier work [11]. Similar
problems related to the allocation of tasks to servers in the
Cloud were considered in [12] using Reinforcement Learning
(RL) [13] and other Machine Learning (ML) methods such as
Deep Learning [14].

In this paper we discuss the problem of allocating a user’s
request for access to a given service s which is located at
several (N(s) > 1) different servers or Fog nodes. The
approach we take is based on defining a relevant cost or Goal
Function which includes the measured QoS, and then making
decisions in real time regarding the choice of the service’s
location, using RL to optimize the user’s perceived QoS.
We implement the proposed algorithm as a Service Manager
platform which is transparent to the end user and is installed
in a Software Defined Network (SDN) controller. We illustrate
the performance of our system with experiments which show
its effectiveness in the presence of dynamic time-dependent
changes in system workload.

In the sequel, in Section II we first present a formalisation
of the optimization problem for the selection of an instance of
a service for the requst made by some user, when multiple
instances of several services are located at the nodes of a



Fog platform. Section III discusses the mathematically based
ML method that we use, and in Section III-B we detail the
reinforcement learning algorithm that is at the heart of the
system that we have designed and tested. Section IV presents
the specific example that we have experimentally tested in this
paper, where the Service Manager is in charge of selecting a
particular location where a service request formulated by some
user will be executed with the objective of optimizing the re-
sultin QoS. The experimental results that we present show how
the service requests are dynamically allocated, and re-allocated
to another server if a given server becomes overloaded due to
excessive workload. The final section is devoted to drawing
some conclusions and suggesting directions for further work.

II. A REPRESENTATION OF THE DECISION SYSTEM

We consider a system consisting of N nodes {1, ... , N}
where the nodes can be connected via an underlying multi-
hop Internet topology. Thus the N nodes can be viewed as
an overlay networnodes of Fog servers which are also access
points for IoT devices or gateways that are attached to the
overlay nodes. Any two Fog nodes can communicate and
transfer data and tass to each other.

Services, such as data storage systems, named data servers,
content providers or services that execute tasks, are located at
these Fog nodes. Service requests are formulated by users, and
can then be directed towards one of these nodes by the “Fog
Manager” (FM) which is a decision system that mey reside at
each of the nodes, or which may itself reside at some other
node. Forthe purposes of this paper, we do not dwell on where
the FM resides and we viewed itas some form of transparent
instantaneous decision system.

The general problem we formulate is about placing the set
of users U and the set of services S at the various nodes
or locations. Some user u at location l(u) ∈ {1, ... , N}
generates requests R(u) to some service s so that R(u) = s.
The location of s will be denoted l(s) ∈ {1, ... , N}. Generally
users may be mobile, but will make a request from a specific
location. On the other hand, a service s may be duplicated at
a set of locations L(s) ⊂ {1, ... , N(s)}.

The request from u to s ∈ L(R(u)) is satisfied with after
some transfer delay T (l(u), l(R(u)) which depends on the
nodes where the user and service are located, and on the
currently used network paths between them. Furthermore, the
queueing plus service delay D(.) needed to satisfy the request
will also depend on the node l(R(u) that services the request,
and on its current load that we denote by K(l(R(u))). Thus
we will have some non-linear dependency D(K(l(R(u))), to
which we should add the load-dependent local delay at the
node where u is connected, which we will denote d(K(l(u))).

Therefore when a user u makes a request for a service s =
R(u) the purpose of the FM s to try to minimize an objective
function of the form:

G(u, l(R(u))) = T (l(u), l(R(u))) +D(K(l(R(u)))(1)
+d(K(l(u))) + αI(u, l(R(u)))

+βE(u,R(u)),

where α, β ≥ 0 are constants, and:
• I(.) refers to a on-negative numerical value that charac-

terizes the “insecurity” of having user u access service
R(u) at location l(R(u)). We note that this insecurity
can actually be due to the user or its sensitivity, rather
than the location, or it can be interpreted as depending
on some risks or attacks that are related to the location
l(R(u)), which is the more likely case.

• E(.) refers to the resulting energy consumption, and:

E(u,R(u)) = E(l(u), l(R(u))) + E(K(l(R(u)))

+ E(K(l(u))).

The minimization of G(u,R(u)) will be carried out over all
possible locations l(R(u)) ∈ L(R(u)). When we are free to
instantiate the service s = R(u) on any of the servers of the
system, then we will obviously have L(R(u)) = {1, ... , N}.

The minimization of G(u,R(u)) is the optimization prob-
lem that is discussed in this paper, and we would tend to
allocate the request s = R(u) of user u to the node:

i∗(u, s) = arg min{G(u, i) : s.t. i ∈ L(R(u))} . (2)

More restricted cases of this problem have been considered
in earlier work. In [12], the services are duplicated at all
the nodes, and requests emanate from a single node and
are then dispatched to any one of the nodes using an RNN
based Reinforcement Learning scheme. Other work [15] uses
an RNN based algorithm that considers both remote and
local nodes so that the transfer of requests to remote nodes
incurs a communication delay plus a processing delay, while
local nodes have a congestion based queueing delay plus a
request processing time. Note that in (2) each of the terms
D(K(l(R(u))) and d(K(l(u))) can include both a queueing
delay waiting for service at the node, and a service time.

III. THE RANDOM NEURAL NETWORK (RNN) AND
REINFORCEMENT LEARNING

Because the parameters in the Goal function can only be
learned or estimated through measurement over some period
of time, we propose a machine learning approach, and we first
introduce the neural network model that will be used, which
is recurrent, i.e. it contains feedback between its nodes. In
fact, its adjacency graph is a fully connected directed graph
on identical to the topology of the possible IP connections
between nodes in the real system.

The neural network model we use is the recurrent Random
Neural Network (RNN) [16] because of two of its important
mathematical properties: it has a convenient closed form
analytical solution in “product form”, and it has an unique
numerical solution despite its recurrent non-linear structure.
Thus for a given set of input parameters it is guaranteed to
provide a unique state and output value. We will also have
one distinct neuron for each of the N distinct nodes or servers
where services may be placed, and the RNN will be used to
compute the node to which a specific service request must be
directed.



Fig. 1. Topology of a 5-node packet network with 6 inter-node links, and 5
attached servers, two of which support services and the others support end
users. The SDN controller comunicates with every node and acts not just to
establish network paths, but also to decide which service location or instance
will be used by the service requests. This system is used as a test-bed for the
experiments reported in this paper.

An N neuron RNN is a probabilistic dynamical system
whose state is represented by the vector of non-negative inte-
gers K(t) = (K1(t), ... ,KN (t)) at time t ≥ 0, where K(t)
is a vector random process. A particular value taken by K(t)
is denoted by the deterministic vector k = (k1, ... kN ). Ki(t)
represents the “voltage” or potential of neuron i. The neurons
are interconnected via excitatory and inhibitory weights that
are denoted by W+

ij ≥ 0, W−ij ≥ 0, respectively. These
weights can be viewed as rates of spiking from any neuron i
to any neuron j.

Each excitatory spike sent from i and arriving at time t to
j will increase the value of Kj(t) by +1, i.e. its effect will
be Kj(t

+) = Kj(t) + 1. Similarly, each inhibitory spike sent
from i to j at time t will have the following efffect Kj(t

+) =
max[Kj(t)−1, 0]. However a neuron i cn only send out spikes
if its potential is positive, i.e. when Ki(t) > 0. Furthermore,
when neuron i sends a spike to neuron j, then its own potential
drops by 1, i.e. Ki(t

+) = ki(t)− 1.
The key theorem concerning the RNN [16] states that:

lim
t→∞

Prob[K(t) = k] =

N∏
i=1

qki
i (1− qi), where (3)

qi =
Λi +

∑N
j=1 qjW

+
ji

λi +
∑N

j=1[W+
ij +W−ij ] +

∑N
j=1 qjW

−
ji

. (4)

We also use ri to denote the quantity ri =
∑N

j=1[W+
ij +W−ij ],

and we call it the “total firing rate” of neuron i.
Note that each decision is user and service dependent, and

different users may have different locations in the network.

Therefore in general we may have a distinct RNN for each
user and service, and we can write:

qi(u, s) =
Λi(u, s) +

∑N
j=1 qj(u, s)W

+
ji (u, s)

λi(u, s) + ri(u, s) +
∑N

j=1 qjW
−
ji (u, s)

, (5)

where ri(u, s) =
∑N

j=1[W+
ij (u, s) + W−ij (u, s)], is the “total

firing rate” of neuron i.
Let i∗(u, s) = arg max i{qi(u, s)}: we will consider that

i∗(u, s) is the node that is preferred by the decision algorithm
to select the location of the service s = R(u) requested by
user u; hence it is in some sense the node that is estimated
to provide the best performance to the current service request
from user u for the service s = R(u).

A. Initialisation of the Recurrent RNN

Before any data has been gathered, and before the RNN
weights are updated using the reinforcement learning algo-
rithm that we describe in the following section, the RNN
weights should be updated in a manner that makes all the
qi(u, s) = 0.5 to represent a situation where all possible
choices are equally likely, and all weights are identical, i.e.

w = W+
ij (u, s) = W−ij (u, s), (6)

λ = Λi(u, s) = λi(u, s), ∀ i, j, u, s,

which will yield the equation:

0.5 =
λ+ 0.5Nw

λ+ 2.5Nw
, or λ = 1.5Nw. (7)

Thus to obtain qi(u, s) = 0.5, we can set w to any value, as
long as we also set λ = 1.5Nw.

B. The Reinforcement Learning Algorithm

The Goal function G or G′ of (2) or (??) will be used
with the RNN and a Reinforcement Learning (RL) algorithm
to optimize the system. The objective is to choose the best
node i where the service s = R(u) requested by user u
should be instantiated or located. We first define the Reward
R(u, s) = G(u, s)−1 or R(u, s) = G′(u, s)−1 which must be
maximized when the Goal is minimized. Successive values
of R(u, s) are measured, or measured and estimated. For
instance, transfer times between the location of u and the
different nodes in the network can be measured, and they do
not depend on actually executing a user request for a service.
Similarly, the execution time of a service at different locations
for other users u′, other than the actual user u, can be used to
estimate D(K(l(R(u))), while d(K(l(u))) can be estimated
by measuring the performance related to the local node where
u is residing.

Successive values of the “reward” Rl(u, s) = Gl(u, s), l =
1, 2, ... will be obtained from the successive measured Goal
values Gl(u, s), l = 1, 2, ... that are brought back by SPs
and are used them compute “historical value” of the reward:

Tl(u, s) = δ ∗Tl−1(u, s) + (1− δ) ∗Rl(u, s), 0 < δ < 1, (8)

where 0 < δ < 1 is a responsiveness parameter that determines
the importance of past historical values. Setting it to a high



value will prevent the RNN from taking hasty decisions. The
RNN weights are then updated as follows.

First save the current values of the sum of the weights
ri(u, s) =

∑N
j=1[W+

ij (u, s) + W−ij (u, s)]. Let k be the most
recent selected “best” choice of the location for service s with
regard to user u, i.e. k = i∗(u, s) or k = I∗(u, s). Then:

If Rl(u, s) >= Tl−1(u, s) then for j 6= k : (9)

∀i 6= k : W+
ik(u, s)←W+

ik(u, s) +Rl(u, s), (10)
W−ij (u, s)←W−ij (u, s) +Rl(u, s),

If Rl(u, s) < Tl−1(u, s) then for j 6= k : (11)

∀i 6= k : W−ik(u, s)←W−ik(u, s) +Rl(u, s), (12)
W+

ij (u, s)←W+
ij (u, s) +Rl(u, s).

After these updates, a normalization is carried out for all the
weights, preventing them from constantly increasing:

W+
ij (u, s)←W+

ij (u, s)
ri(u, s)∑N

j=1[W+
ij (u, s) +W−ij (u, s)]

, (13)

W−ij (u, s)←W−ij (u, s)
ri(u, s)∑N

j=1[W+
ij (u, s) +W−ij (u, s)]

. (14)

Now with these updated values of the weights, we compute
all the qi(u, s) using the system of equations (5), and obtain
the new value of the “best location”:

i∗(u, s) = arg max{qi(u, s)}. (15)

IV. SERVICE DUPLICATION AT SEVERAL LOCATIONS

In our current implementation and experiments, we use a
simpler load independent form of the Goal Function (2), where
we aggregate the network transfer time and service delay into
a single term:

Q(u, l(R(u))) = T (l(u), l(R(u))) +D(u, l(R(u))), (16)

because these two quantities are measured in our experiments
as one single value, which use as the Goal for the RL
algorithm:

G(u, l(R(u))) = Q(u, l(R(u)) + αI(u, l(R(u)) (17)
+βE(u, l(R(u))).

The experimental platform on which these ideas have been
implemented and tested is represented in Figure 1 where the
five network nodes can be used to support either users or
services. In this case we see that three nodes support users,
while two nodes support services, and the six links that exist
between nodes are also explicitly shown. Both the services and
the users are in fact on separate machines which are connected
as shown to the network nodes.

A. Network Level Path Control

The system, both for network routing and for accessing
services by specific users, is run by a SDN controller [17],
[2], [18], [19], via a switch, which is connected to each of the
five network nodes as shown in Figure 1. The DN controller
uses OpenFlow Version 1.2-1.5 [20].

The SDN system in our test-bed has been extended using
the “cognitive packet routing algorithm” described in [21] to
conduct smart measurements of network delays using “smart
packets” (SP) so as to set up network paths in a manner
that minimizes source-to-destnation packet delays, similar to
the approach taken in [22]. The SDN controller checks the
network state each 5 seconds, and network paths can be
changed at those times if significantly better paths are found
that exceed the previous measured source-to-destination delay
by a given threshold over 30%.

B. Service Management

The SDN controller in our system is also in charge of the
allocaton of a user u’s requests R(u) to the locations l(R(u)).
where the requested service is resident and may be satisfied.

Within the SDN controller, for each user-service pair (u, s),
we install a RNN which has a number of RNN nodes identical
to the number of location where the service can be found,
which we denote N(s). For instance, in Figure 1 we have
N(s) = 2.

The weights of the RNN for the pair (u, s) are updated using
Reinforcement Learning as described in Section III-B, based
on measurements sent to the SDN controller by each user, and
specifically the user’s own perceived average total response
time, from the instant when the request R(u) is sent by u to the
location l(R(u)), to the instant when the successful response
was received by the user u, which corresponds to the quantity
Q(u, l(R(u))) previously defined. Thus these experiments are
based on learning using:

G(u, l(R(u))) = Q(u, l(R(u))), (18)

without using either the “insecurity factor” or the energy
consumption. The RNN weights are updated according to the
algorithm in Section III-B, where the choice of the optimum
location from the values qi(u, s) for 1 ≤ i ≤ N(s).

From the user point of view this solution is completely
transparent. The user u is given a configuration file which
includes an IP address and the port (IP, Port) on which the
service s can be found. Note that this is an IP address which is
unavailable at the network level. Each time u wants to connect
to s, it connects to (IP, Port). On the edge node where u is
connected, the SDN controller changes (IP, Port) to the IP
address of the real location l(s) of s. When the service ends
and the resulting reply goes back from the location of the
service to the user, the real IP address is changed back to the
original “dummy’ IP address provided in the configuration file.

C. Experimental Results

The purpose of our experiments were to show the ability
of the algorithms that we have designed and implemented,



to provide rapid adaptation to changes in the measured QoS
at the nodes. The way in which the QoS has been varied, is
by placing at each of the nodes a specific additional program
which overloads the CPU at each of the two servers where the
service is located.

We have conducted numerous experiments on this test-bed,
with and without the Service Manager being turned on. In
these experiments the users that are attached to servers in
nodes 1, 3, 4 generate a sequences of successive requests for
the service s which is located at the servers attached to nodes
2, 5 and we show the resulting measured response times, with
the Service Manager being off or turned on in Figure 2.

In the upper curve we see the effect of a sudden increase
in workload due to an addditional external load on the server
attached to node 5 of Figure 1, when the Service Manager
is not use: the user experiences a sudden increase in its
perceived total response time as soon as the workload at server
is increased.

On the lower curve of the same figure we see results from
another experiment when the Service Manager is turned on:
when the load at node 5 suddenly increases, first the response
time for the user requests increases, but after a transient of
approximately 2, 000 milliseconds, the total average response
perceived by the user drops to normal, despite the increase of
workload at the server attached to node 5 because the Service
Manager is enabled and updates the IP address that the user
should access to node 2.

In the next Figure 3, the user’s service is initially being
served at the server attached to node 5. Then at roughly 40, 000
milliseconds, the server attached to node 5 is overloaded by an
external load (other than the service) and the user’s perceived
response time rises dramatically. But the server attached to
node 2 is still free of extra load, and the SM transfers the
requests to the server attached to node 2. At time 100, 000
milliseconds exactly the opposite occurs and now the server
attached to node 5 becomes overloaded, and after some delay
the SM transfers the service requests back to the previous
serever. Agin around time 270, 000 milliseconds we go back to
the inital situation. We see that the Service Manager whih has
been kept on throughout this experiment, has been effective in
preserving the QoS perceived by the end user in the presence
of these changes in additional load at the different servers.

V. CONCLUSIONS

This paper has presented a novel control algorithm and
implementation for a Service Manager that advises end user
on the best location for the services that they may need.
The approach uses machine learning, namely Reinforcement
Learning with Random Neural Networks, which attempts to
offer the best decision based on on-line measurements which
are used for learning.

The general framework for our approach is presented via
an objective or Goal Function which can include factors such
as Quality of Service, as well as Energy Consumption and
Security (or insecurity). We have also detailed the algorithms
used.

0 10000 20000 30000 40000 50000
Time [ms]

0

100

200

300

400

500

600

700

R
es
p
on

se
 t
im

e 
[m

s]

Fig. 2. The upper curve show the high increase in response times perceived
by the end user when Service Manager is disabled, and the external (not user
based) workload at the server attached to node 5 is suddenly increased. The
lower curve shows the same experiment when the Service Manager is enabled:
after a brief transitory period, the user’s measured response time drops back
to “normal” because the Service Manager as redirected the user towards the
server attached to node 2.

An experimental test-bed that uses an SDN controller has
been implemented to incorporate these ideas ina practical
setting. The operation of this test-bed and the Service Manager
that we ave designed has been illustrated with some experi-
ments. These experiments have not yet included the security
and energy optimization aspects, but have clearly illustrated
the ability of our system to adapt in real time to changes in
load at different servers that support services that are needed
by a user,.

Future work will continue the study to include specifically
the effects of energy consumption and security. We also plan
to present further results where multipe services compete for
overall distributed system resources so that we may be able
to investigate the system’s ability to adapt in the presence of
competing end-users and multiple services.

REFERENCES

[1] R. Buyya et al., “A manifesto for future generation cloud computing:
Research directions for the next decade,” ACM Comput. Surv.,
vol. 51, no. 5, pp. 105:1–105:38, 2019. [Online]. Available:
https://doi.org/10.1145/3241737

[2] A. Levin, K. Barabash, S. G. Y. Ben-Itzhak, and L. Schour, “Networking
architecture for seamless cloud interoperability,” in 2015 IEEE 8th
International Conference on Cloud Computing, New York, NY, 2015,
pp. 1021–1024.



0 50000 100000 150000 200000 250000 300000 350000 400000
Time [ms]

0

100

200

300

400

500

600

R
es
p
on

se
 t
im

e 
[m

s]

Fig. 3. This figure shows the results of an experiment where the response
time to service requests is measured at the user end is plotted against elapsed
time for a large number of successive service requests. The Service Manager
(SM) is turned on throughout the experiment, and initially the service requests
are being assigned to the server attached to node 5. At roughly 40, 000
milliseconds after the start of the experiment, the response time rises steeply
because an external load has been imposed on the server attached to node 5,
and then drops because the SM has transferred the user’s requests from the
server at node 5 to the server at node 2. At roughly 100, 000 milliseconds, the
overload at the server at node 5 is turned off, and a similar overload is turned
on at the server at node 2: again we observe a high increase in measured
response time and then a drop to “normal” because the SM has transferred
the request to the server attached to node 5. A similar switch occurs in the
other direction at roughly 270, 000 milliseconds showing that the SM acts
appropriately using the algorithm described in this paper.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, August 2012, p.
13–16.

[4] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Profit-aware application placement for integrated fog-cloud computing
environments,” J. Parallel Distrib. Comput., vol. 135, pp. 177–190,
2020. [Online]. Available: https://doi.org/10.1016/j.jpdc.2019.10.001

[5] C. Kim and H. Kameda, “An algorithm for optimal static load balancing
in distributed computer systems,” IEEE Trans. Computers, vol. 41, p.
381–384, 1992.

[6] H. Topcuouglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distributed Systems, vol. 13, no. 3, p. 260–274, 2002.

[7] X. Zhu, X. Qin, and M. Qiu, “Qos-aware fault-tolerant scheduling for
real-time tasks on heterogeneous clusters,” IEEE Trans. Computers,
vol. 60, no. 6, p. 800–812, 2011.

[8] W. Tian, Y. Zhao, Y. Zhong, M. Xu, and C. Jing, “A dynamic and
integrated load-balancing scheduling algorithm for cloud datacenters,”
pp. 311–315, 2011.

[9] Z. Zhang and X. Zhang, “A load balancing mechanism based on
ant colony and complex network theory in open cloud computing
federation,” in Proc. 2nd Int. Conf. Industrial Mechatronics Automation,
vol. 2, 2010, p. 240–243.

[10] E. Gelenbe and K. C. Sevcik, “Analysis of update synchronization
for multiple copy data bases,” IEEE Trans. Computers,
vol. 28, no. 10, pp. 737–747, 1979. [Online]. Available:
https://doi.org/10.1109/TC.1979.1675241

[11] E. Gelenbe and R. Lent, “Energy-qos trade-offs in mobile service
selection,” Future Internet, vol. 5, no. 2, pp. 128–139, 2013. [Online].
Available: https://doi.org/10.3390/fi5020128

[12] L. Wang and E. Gelenbe, “Adaptive dispatching of tasks in the cloud,”
IEEE Trans. Cloud Computing, vol. 6, no. 1, pp. 33–45, 2018. [Online].
Available: https://doi.org/10.1109/TCC.2015.2474406

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2nd Ed., 2018.

[14] Y. Yin, “Deep learning with the random neural network and its
applications,” CoRR, vol. abs/1810.08653, 2018. [Online]. Available:
http://arxiv.org/abs/1810.08653

[15] L. Wang, O. Brun, and E. Gelenbe, “Adaptive workload distribution for
local and remote clouds,” in 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2016, pp. 3984–3988.

[16] E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” Neural Computation, vol. 1, no. 4, pp. 502–
510, 1989.

[17] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn), 2015
international conference on cloud computing research and innovation
(icccri),” pp. 73–79, 2015.

[18] S. Bera, S. Misra, and A. V. Vasilakos, IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1994–2008, 2017.

[19] S. Basterrech and G. Rubino, “A tutorial about random neural networks
in supervised learning,” in Neural Network World, vol. 25, no. 5, 2016,
pp. 457–499.

[20] “Home page of onosproject - open source sdn controller.” [Online].
Available: https://onosproject.org

[21] E. Gelenbe, “Steps toward self-aware networks,” Communications of the
ACM, vol. 52, no. 7, pp. 66–75, 2009.

[22] F. François and E. Gelenbe, “Towards a cognitive routing engine
for software defined networks,” in 2016 IEEE International
Conference on Communications, ICC 2016, Kuala Lumpur,
Malaysia, May 22-27, 2016, 2016, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ICC.2016.7511138


