
P
os
te
d
on

22
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
16
56
39
5.
v
2
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/A

C
C
E
S
S
.2
02
0.
29
68
06
4

Improved Fitness-Dependent Optimizer Algorithm

Danial A. Muhammed 1, Soran AM. Saeed 1, and Tarik A. Rashid 2,2

1Affiliation not available
2University of Kurdistan Hewler

November 8, 2023

Abstract

The fitness-dependent optimizer (FDO) algorithm was recently introduced in 2019. An improved FDO (IFDO) algorithm
is presented in this work, and this algorithm contributes considerably to refining the ability of the original FDO to address
complicated optimization problems. To improve the FDO, the IFDO calculates the alignment and cohesion and then uses
these behaviors with the pace at which the FDO updates its position. Moreover, in determining the weights, the FDO
uses the weight factor (), which is zero in most cases and one in only a few cases. Conversely, the IFDO performs
randomization in the [0-1] range and then minimizes the range when a better fitness weight value is achieved. In this
work, the IFDO algorithm and its method of converging on the optimal solution are demonstrated. Additionally, 19
classical standard test function groups are utilized to test the IFDO, and then the FDO and three other well-known
algorithms, namely, the particle swarm algorithm (PSO), dragonfly algorithm (DA), and genetic algorithm (GA), are
selected to evaluate the IFDO results. Furthermore, the CECC06 2019 Competition, which is the set of IEEE Congress of
Evolutionary Computation benchmark test functions, is utilized to test the IFDO, and then, the FDO and three recent
algorithms, namely, the salp swarm algorithm (SSA), DA and whale optimization algorithm (WOA), are chosen to gauge
the IFDO results. The results show that IFDO is practical in some cases, and its results are improved in most cases.
Finally, to prove the practicability of the IFDO, it is used in real-world applications.

1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

1
VOLUME XX, 2017

I. INTRODUCTION

Since computers were developed, the focus has been on the

aspects of probing unidentified solutions and searching for the

best solution. Alan Turing utilized a search algorithm [1] in

1945 to break the enigma cipher of Germany during the

Second World War. The advancement of practical methods

and a dramatic rise in the volume of computation have caused

difficulties in addressing real-life problems. Therefore, issues

of quickly and proficiently solving complex problems via

classic methods based on formal logic or mathematical

programming have appeared [2]. Many algorithms have been

created with a variety of methods to handle these constraints,

and optimization problems are one of these methods. The

optimization procedure obtains the best solution of a function

by looking for a parameter. Existing solutions are denoted by

sets of possible values, of which one is the best solution.

Generally, solving optimization problems is the purpose of

inventing optimization algorithms [3].

Based on the environment of the algorithms, there is a

simple categorization of optimization algorithms that can

separate them into two central groups: deterministic

algorithms and stochastic algorithms. The first group, the

deterministic algorithms, produces a similar set of answers

when a similar preliminary starting point is used to begin the

iterations; this is due to utilizing inclination, for instance, hill-

climbing with a strict move sequence. Alternatively, the

second groups, the stochastic algorithms, regularly produce

different answers with similar preliminary values without

utilizing inclination. On the other hand, there is a minor

difference in the final values; a similar best solution would

match the specified accuracy. Stochastic algorithms are

categorized into two types: heuristic and metaheuristic [4].

Heuristic algorithms utilize trial and error to look for a

solution; it is expected that they will take a feasible amount of

time to achieve a solution. Likewise, heuristic algorithms tend

to use different approaches in randomization techniques and

local explorations [5]. Additional research and improvements

on heuristic algorithms transformed them into metaheuristic

algorithms, and these new groups of algorithms have superior

performance compared to the heuristic algorithms; therefore,

the prefix of “meta”, which means “higher” or “beyond”, was

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017. Doi Number

Improved Fitness-Dependent Optimizer
Algorithm

Danial A. Muhammed
1
, Soran AM. Saeed

2
, Tarik A. Rashid

3
 (IEEE Member)

1Danial Abdulkareem Muhammed, Computer Department, College of Science, University of Sulaimani, Sulaymaniyah, Iraq. danial.muhammed@univsul.edu.iq

2Soran AM. Saeed, Sulaimania Polytechnic University, Sulaymaniyah, KRG, Iraq. soran.saeed@spu.edu.iq

3Tarik A. Rashid, Computer Science and Engineering, University of Kurdistan Hewler, Erbil, KRG, Iraq. tarik.ahmed@ukh.edu.krd

ABSTRACT The fitness-dependent optimizer (FDO) algorithm was recently introduced in 2019. An improved

FDO (IFDO) algorithm is presented in this work, and this algorithm contributes considerably to refining the

ability of the original FDO to address complicated optimization problems. To improve the FDO, the IFDO

calculates the alignment and cohesion and then uses these behaviors with the pace at which the FDO updates

its position. Moreover, in determining the weights, the FDO uses the weight factor (𝑤𝑓), which is zero in most

cases and one in only a few cases. Conversely, the IFDO performs 𝑤𝑓 randomization in the [0-1] range and

then minimizes the range when a better fitness weight value is achieved. In this work, the IFDO algorithm and

its method of converging on the optimal solution are demonstrated. Additionally, 19 classical standard test

function groups are utilized to test the IFDO, and then the FDO and three other well-known algorithms,

namely, the particle swarm algorithm (PSO), dragonfly algorithm (DA), and genetic algorithm (GA), are

selected to evaluate the IFDO results. Furthermore, the CECC06 2019 Competition, which is the set of IEEE

Congress of Evolutionary Computation benchmark test functions, is utilized to test the IFDO, and then, the

FDO and three recent algorithms, namely, the salp swarm algorithm (SSA), DA and whale optimization

algorithm (WOA), are chosen to gauge the IFDO results. The results show that IFDO is practical in some

cases, and its results are improved in most cases. Finally, to prove the practicability of the IFDO, it is used in

real-world applications.

Index Terms Improved Fitness-Dependent Optimizer, IFDO, Optimization, Intelligence Swarm,

Metaheuristic Algorithms.

mailto:danial.muhammed@univsul.edu.iq
mailto:tarik.ahmed@ukh.edu.krd

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

2 VOLUME XX, 2017

associated with them [6]. Nevertheless, these two terms

(heuristic and meta-heuristic) are currently indistinguishable

to scientists, although a slight dissimilarity exists in their

meanings. Recently, meta-heuristic nature-inspired algorithms

have been used professionally and effectively to solve recent

nonlinear numerical global optimization difficulties. All meta-

heuristic algorithms attempt to build some stability between

local exploration and randomization [7].

Recently, existing real-world problems have become

complicated, and considering space, time, and cost, it is

impractical to explore all the conceivable solutions.

Consequently, to solve such real-world problems, reasonable

techniques that are low-cost and fast are essential. Hence, to

determine how to address these difficulties, scientists have

investigated natural occurrences and animal behaviors, for

instance, how path selection occurs for ants, how evading the

enemy and chasing prey occur for a group of birds, flies or

fish, and how gravity works. Therefore, the name “nature-

inspired algorithms” was selected for the algorithms that were

inspired by nature [8]. There are many nature-inspired

algorithms. The University of Michigan started to develop

such algorithms in 1960 when Holland and his colleagues

published a book about their GA and republished it in 1970

and 1983 [9]. Simulated annealing (SA) was implemented by

Kirkpatrick et al. The motivation for the SA algorithm was the

annealing process of metal [10].

PSO and ant colony optimization (ACO) are two commonly

used swarm intelligence algorithms that were proposed by

Kennedy and Eberhart in 1995 and Dorigo et al., 1996,

respectively. PSO is inspired by the collective grouping

behavior of birds in searching for food, and ACO is inspired

by the nature of the ant, which has the ability to hold previous

paths in its mind. [11-13]. The authors of the PSO thought

these behaviors would help the optimization issues; then, other

algorithms benefitted from the definitions used in the PSO

algorithm. In the last two decades, various excellent

intelligence swarms have been suggested, such as differential

evolution (DE) in 1997, which was proposed by R. Storn and

K. Price; it was a vector-based algorithm and performed better

than GA in many applications [14].

In 2005, the artificial bee colony (ABC) algorithm was

proposed by Karaboga and Basturk [15, 16]. Xin-She Yang

created the firefly algorithm (FA) in 2009 [17], and then, the

same year, CS was suggested by the same author [18].

Moreover, a bat-inspired algorithm was suggested by Xin-She

in 2010 [19]. The artificial plant optimization algorithm

(APOA) proposed by Bing Yu et al. in 2013 is inspired by the

natural plant growing process. [20]. Additionally, in 2014, Li

et al., offered a newly announced algorithm, animal migration

optimization (AMO), which is inspired by swarm migration

behavior in animals [21]. Later, Mirjalili A. S. proposed three

algorithms: first, DA, in 2015, based on the behaviors related

to attraction to food and evasion of enemies; second, WOA, in

2016; third, the salp swarm algorithm (SSA) in 2017 [22-24].

The novel ABC was altered with two modified ABCs created

by Laizhong et al. In the first variant, an adaptive method for

the population size (AMPS) was implemented by the authors

[25], and in the second variant, the authors implemented a

ranking-based adaptive ABC algorithm (ARABC) [26]; these

variants were used for improvement exploitation in the

original ABC algorithm. In 2019, Jaza Abdullah and Tarik

Rashid developed a fitness-dependent optimizer or FDO

algorithm. The FDO algorithm looks at the behaviors of bee

swarms during reproduction and imitates swarm activities.

Finding a different appropriate solution among various

possible solutions forms a substantial part of this algorithm

[27].

There are many other meta-heuristic optimization

algorithms inspired by nature and utilized for difficult

optimization problems, such as the evolutionary strategy (ES)

[28], elephant herding optimization [29], fireworks algorithm

(FWA) [30], biogeography-based optimization (BBO) [31],

brain storm optimization [32], [33], earthworm optimization

algorithm [34], krill herd algorithm (KH) [35-42], probability-

based incremental learning (PBIL) [43], harmony search (HS)

[44-46], bat algorithm (BA) [47, 48], monarch butterfly

optimization (MBO) [49], and the moth search algorithm [50].

These algorithms cannot use all important information from

instances in former iterations to direct their search in the

present and future. Therefore, these algorithms can be divided

into two groups. The first group, for instance, BBO [31, 50]

and BA [47], is strictly independent of previous instances, and

the second group, for instance, KH [35, 36], FWA [30, 51],

and MBO [49] utilizes the instances that were best in earlier

iterations [52].

Researchers have extensively utilized the abovementioned

algorithms in many areas. However, there is no specific

algorithm that achieves the most fitting solution for all

optimization problems. Some algorithms yield better solutions

for some specific problems than for others. Therefore, seeking

adaptation in optimization techniques is an open problem [53].

In this paper, an improvement in fitness-dependent

optimization (IFDO) has been developed from the FDO

algorithm. In the FDO algorithm, the authors created the

algorithm with a few characteristics of a scout. Jaza and Tarik

described the main operator of the scout to update its location

with its velocity (pace). Moreover, to manage weights, this

operator typically relies on the fitness function value, and

then, for the phases of exploitation and exploration, search

agents are guided via these weights [27]. However, in IFDO, a

scout exhibits other behaviors in addition to the pace, such as

alignment and cohesion.

Moreover, the FDO, a weight factor (𝑤𝑓) was used to

control the fitness weight. Nevertheless, the 𝑤𝑓 was neglected

in most cases [27]. However, in IFDO, the weight factor (𝑤𝑓)

is used whenever a better fitness weight is obtained.

In the following, the papers’ main contributions are briefly

presented:

1) The IFDO algorithm is constructed by adding the

behaviors of alignment and cohesion in updating the scout

location and enhances the FDO algorithm in both the

exploration and exploitation phases by considering

reasonable covering of the search space to produce earlier

convergence in the direction of global optimality.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

3 VOLUME XX, 2017

2) The IFDO algorithm randomizes the 𝑤𝑓 and utilizes it for

each scout in each of the iterations.

3) One additional unique feature of IFDO is that when a better

solution is obtained, a new 𝑤𝑓 is generated in a new

range to increase the chance of achieving the best

solution in a shorter time (this is discussed further in

section III).

The next sections describe this research. The second section

presents the original algorithm FDO. The third section

describes our improvements to the FDO algorithm. The fourth

section shows the results and discussion; the performance

information of the IFDO compared to the selected well-known

and recent algorithms is specifically demonstrated, and then

two real-world problems are addressed. The fifth section

analyses the results and explains the role of the operators

proposed in this study. Section 6 concludes the main points

and suggests future research studies with the improved IFDO.

II. FITNESS-DEPENDENT OPTIMIZER

The FDO can be divided into the scout bee searching process

and the scout bee movement process. In the scout bee

searching process, the algorithm makes the scout bees search

for a suitable hive (solution) among many potential hives

(solutions). Through the scout bee updating process, the

algorithm utilizes a random walk and a fitness weight

mechanism to move into a new position; accordingly, this

section contains two parts.

1) Scout Bee Searching Process

The process of scout bees searching numerous possible hives

to obtain a new proper hive means that the main part of this

algorithm focuses on that process. In this algorithm, a proper

solution is denoted by a scout bee that searches for a new hive.

Moreover, meeting optimality means choosing the best hive

among numerous hives. Furthermore, when the FDO begins

execution, it defines an artificial scout population with random

locations in an Xi (i=1, 2, …n) space search by means of upper

and lower boundaries. Through the execution, the FDO picks

the global best solution. Finding a new hive (solution) in this

algorithm is represented by a scout bee position. Scouts based

on a random walk search in the search space for a more

suitable solution; when the more suitable solution is revealed,

the earlier solution is ignored. Nevertheless, if the scout

cannot achieve a more suitable solution, then it uses the

former solution with the expectation of finding a more suitable

solution next time. Finally, in the case of not finding a more

appropriate solution with the former solution, the scout will

continue with the current solution, which is the best solution at

that time.

2) Scout Bee Movement Process
In this algorithm, the scout, to obtain a better solution, updates

its current position by adding pace. The updated artificial

scout bee can be calculated according to equation (1) as

follows:

 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑝𝑎𝑐𝑒 (1)

where 𝑖 denotes the current search agent, 𝑡 denotes the

current iteration, 𝑋 denotes an artificial scout bee (search

agent), and pace denotes the movement rate and direction of

the artificial scout bee. The pace is typically reliant on the

fitness weight 𝑓𝑤. Nevertheless, a random mechanism

completely relies on the direction of the 𝑝𝑎𝑐𝑒.

In FDO, the fitness weight (𝑓𝑤) value is typically utilized

to manage the 𝑝𝑎𝑐𝑒. The algorithm determines the fitness

weight (𝑓𝑤) for every artificial scout using equation (2).

𝑓𝑤 = |

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗

 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠
| – 𝑤𝑓

(2)

where xi,t fitness

∗ denotes the best global solution’s fitness

function value that has been revealed so far. 𝑥𝑖, 𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

denotes the current solution’s value of the fitness function; 𝑤𝑓

denotes a weight factor, randomly set between 0 and 1, which

is used for controlling the 𝑓𝑤.

Later, the algorithm considers some settings for (𝑓𝑤), for

instance, if 𝑓𝑤 = 1 or 0, and xi,t fitnees = 0, the algorithm sets

the pace randomly according to equation (3). On the other

hand, if 𝑓𝑤 > 0 and 𝑓𝑤 < 1, then the algorithm generates a

random number in the [-1, 1] range to make the scout search in

every direction; when 𝑟 < 0, pace is calculated according to

equation (4), and when 𝑟 >= 1, pace is calculated according to

equation (5).

{

𝑓𝑤 = 1 𝑜𝑟 𝑓𝑤 = 0 or 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0, 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡 ∗ 𝑟 (3)

 𝑓𝑤 > 0 𝑎𝑛𝑑 𝑓𝑤 < 1{
𝑟 < 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡

∗) ∗ 𝑓𝑤 ∗ −1 (4)

 𝑟 ≥ 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡
∗) ∗ 𝑓𝑤 (5)

}
}

where 𝑟 denotes a random number in the range of [-1, 1],

𝑥𝑖, 𝑡 denotes the current solution, and xi,t
∗ denotes the global

best solution achieved thus far. Among various applications

for random numbers, the FDO selects Levy flight because it

considers further stable movement via its fair distribution

curve [7].

The FDO pace is saved in every iteration for the accepted

solution, and then it can be used next time.

III. THE IMPROVED FITNESS-DEPENDENT OPTIMIZER

The IFDO is developed from the original FDO, which is an

evolutionary optimization algorithm that was proposed by Jaza

and Tarik [27]. The idea of this algorithm is essentially based

on the generative process and collective decision-making used

by bees. The bees search for many possible hives to obtain a

new proper hive. Based on the original FDO, our proposed

improved fitness-dependent optimizer is introduced, and it

includes two phases: the updating of the scout bee position,

which is improved by the functionalization of certain

parameters, and the randomization of the weight factor (𝑤𝑓) in

the [0, 1] range. Accordingly, this section contains two parts.

1) Updating the Scout Bee Position

The IFDO, to create a different way of movement, applies

order and cohesion, which are two vital signifiers of group

motion; cohesion inside a group defines the distance between

members, whereas members' alignment inside a group can be

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

4 VOLUME XX, 2017

indicated by order when it is measured as divergence.

Effective movement and maximization of the benefits of

grouping for individual group members rely on better group

cohesion and divergence [54].

In the original FDO, to achieve a more suitable solution, the

scout bee adds pace to the current position in searching for

new positions, as expressed in equation (1). In the IFDO, this

equation is improved by adding two parameters, such as

alignment and cohesion, to the pseudocode of the IFDO

illustrated (see Figure (1)). In the following, the new

movement of the artificial scout bee is expressed as:

 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑝𝑎𝑐𝑒 + (𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∗
1
𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛⁄) (6)

where 𝑖 is the current artificial scout bee (search agent), 𝑡 is

the current iteration; the pace is the rate of the movement and

the artificial bee direction, 𝑋 is an artificial bee, and alignment

is the pace matching of scouts to that of other scouts in

neighborhoods, and cohesion, is the inclination of scouts in the

direction of the center of the mass of the neighborhood.

This improvement has been made in the light of scout bee

behavior, which is always attracted to better solutions and

avoids decreased chances of obtaining better solutions [27].

To calculate the alignment and cohesion behaviors, the scouts’

neighbors' search landscape should be determined as shown in

the pseudocode of the IFDO (see Figure (1)). In the IFDO, the

search landscape of the artificial scout's neighbors is expressed

as follows:

𝑛𝑙 =
𝑙𝐵

2∗𝑃𝐼
 (7)

where 𝑛𝑙 is the landscape of the neighbors, and 𝑙𝐵 is the

landscape boundary. To functionalize these two suggested

parameters to update the scout bee position, it should be

determined whether the scouts fall into the landscape of the

neighbors (𝑙𝑛), as shown in the pseudocode of the IFDO (see

Figure (1)). The alignment and cohesion can be calculated

according to equations (8) and (9).

{

 𝑛 = 𝑋 − 𝑋𝑖 , 𝑛 = 𝑛𝑙 𝑜𝑟 𝑛 < 𝑛𝑙 , 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑘 =

∑ 𝑝𝑎𝑐𝑒𝑘
𝑁
𝑘=1

𝑁
 (8)

 𝑛 = 𝑋 − 𝑋𝑖 , 𝑛 = 𝑛𝑙 𝑜𝑟 𝑛 < 𝑛𝑙 , 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝑘 =
∑ 𝑋𝑘
𝑁
𝑘=1

𝑁
−𝑋(9)

 }

where 𝑛 represents a scout in the neighbors’ landscape and

the role of the variable n is signifying which scout participates

in determining the alignment and cohesion, 𝑋 represents the

current scout’s position, 𝑁 represents the neighborhood’s

number, 𝑝𝑎𝑐𝑒𝑘 is the pace matching of scouts to that of other

scouts in neighborhoods, and 𝑥𝑘 represents the position of the

k
th

neighboring scout.

In the IFDO implementation, there are upper boundaries and

lower boundaries for the dimensions of the agents to address

weight values that are too large or small. See equations (10)

and (11).

{
wvb > ub,wvb = ub ∗ nrd (10)
wvb < lb,wvb = lb ∗ nrd (11)

}

where 𝑤𝑣𝑏 is the weight value of a bee, 𝑢𝑏 is the upper

boundary of the weight value of a bee, 𝑛𝑟𝑑 is the new random

double value, and 𝑙𝑏 is the lower boundary of the weight value

of a bee.

The IFDO randomly moves the agents. The agent who

remains still for finite time is the global best for this status;

therefore, that agent randomly moves, and its movement will

not be accepted until the agent obtains a better movement. See

equation (3).

Because the FDO algorithm is PSO-based, this paper tries to

add some PSO principles, such as alignment and cohesion, to

improve the FDO algorithm from the perspective of

convergence. Moreover, the IFDO has the same mathematical

complexity as that of the FDO with a slight change in space

complexity. The IFDO has time complexity O (d*p + COF*p)

for each iteration, where d is the dimension of the problem, p

is the population size, and COF is the cost of the objective

function. On the other hand, IFDO has space complexity O

(COF*p + p*pace+(alignment*1/cohesion)) for all iterations,

where pace+ (alignment*1/cohesion) is the best previous pace

stored. Hence, for the total number of iterations, the time

complexity in the IFDO is comparable. On the other hand, for

the progress of iterations, its space complexity will be the

same. Space complexity is slightly increased in the IFDO

compared to the FDO due to the addition of two additional

loops to calculate alignment and cohesion, although this

increase is negligible, especially in modern computers, which

have a substantial amount of memory space and computational

time; this causes the IFDO to have decreased time complexity

and better convergence.

2) Randomization Weight Factor
The original FDO uses pace as the degree of movement and

the artificial bee direction. The regular fitness weight (fw)

value is used to manage the pace. On the other hand, random

mechanisms completely determine the pace direction. Hence,

the minimization of fw is expressed according to equation (2).

The authors of the FDO algorithm stated that the weight

factor is used to control the fitness weight and that the value of

the weight factor is either 0 or 1; if 𝑤𝑓 = 0, it is a more stable

search, and if wf = 1, it the convergence is high, and the

chance of coverage is weak. Nevertheless, the authors

mentioned that while the fitness function value entirely

depends on the optimization problem, the reverse may also

happen. Consequently, in our improved fitness-dependent

optimizer, we use a random mechanism to control the fitness

weight by generating a weight factor in the [0, 1] range, as

shown in the pseudocode of the IFDO (see Figure (1)), to

increase the IFDO performance, as is shown from the resulting

test in section (4). In our proposed improvement, we change

equation (2), as shown in equation (12).

𝑓𝑤 = |

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗

 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠
|

(12)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

5 VOLUME XX, 2017

With equation (12), we find the fitness weight value and

then check if it is less than or equal to the generated weight

factor, as shown in the pseudocode of the IFDO (see Figure

(1)); if it is, then the weight factor is ignored in controlling the

fitness weight. Otherwise, the weight factor participates in

controlling the fitness weight according to equation (13).

𝑓𝑤 = 𝑓𝑤 −𝑤𝑓 (13)

This is a new way of finding the fitness weight, which is

avoided by ignoring 𝑤𝑓 in most cases, and 𝑤𝑓 reasonably

participates in many cases. In the IFDO, the weight factor is

randomly set in every iteration for each scout, and a new 𝑤𝑓 is

generated in the new [0, 𝑤𝑓] range when a new, better

solution is accepted, as shown in the pseudocode of the IFDO

(see Figure (1)). From there, new 𝑤𝑓 limited in [0, 𝑤𝑓] is

better while for a new solution the IFDO will be more stable

and higher coverage than the previous solution due to

decreasing 𝑤𝑓 for each iteration, as well as, it has more

convergence than the setting 𝑤𝑓 = 0.

IV. RESULTS AND DISCUSSION

This improved fitness-dependent optimizer’s performance is

verified using various standard test functions that exist in the

literature; readers who are interested in knowing more about

the methods of comparison can see references [27] [55] [57]

[58]. Furthermore, the FDO implementation that can be found

through the link https://github.com/Jaza-Abdullah/FDO-Java

was downloaded; it was coded via the Java language. Then,

the IFDO was created with the same language, and the IFDO

algorithm was tested with the same parameter setting, the

same test functions, and the same number of iterations as used

in the FDO’s tests. Moreover, the performance of the IFDO is

evaluated against six state-of-the-art algorithms, namely,

FDO, DA, GA, PSO, SSA, and WOA. The results of the tests

of the 19 classical standard test functions and CEC-C06 tests

for the different algorithms are taken from the original FDO

work [27]. In addition, two real-world applications are

optimized using the IFDO; therefore, this section consists of

five parts, as follows:

1) Classical Benchmark Test Functions
The IFDO performance is tested with three groups of test

functions [55]. There are various features for the test

functions, such as unimodal, multimodal, and composite. To

measure the algorithm’s specific outcomes, these groups of

tests are utilized. The stages of exploitation and convergence

to infer a single optimum are verified by unimodal benchmark

functions. On the other hand, there are many optimal solutions

for the second feature (multimodal test functions); avoidance

of local optima and stages of exploration are verified with this

feature. It is worth mentioning that among the many optimal

solutions, most are local optima, and there is only one global

optimum. Avoiding local optimal solutions and moving

toward a global optimum solution is essential to an algorithm.

Additionally, with the third feature (composite test functions),

various search areas can have various forms and large

numbers of local optima. Composite test functions are

generally moved, amalgamated, biased, and altered

adaptations of other test functions. Difficulties that occur in

real-world search areas can be identified by this type of

standard function (see Tables 3, 4 and 5 in the appendix) [27].

FIGURE 1. IFDO Pseudocode

To determine the average and standard deviation for each

algorithm in Table (1) based on searching for the optimal

solution, the algorithms in Table (1) are tested 30 times for

500 iterations and 30 scout bees each with 10 dimensions.

Parameter explanations for the DA, PSO, and the GA can be

obtained in [55]. Moreover, there is only one parameter for the

IFDO and the standard FDO, which is 𝑤𝑓. For the FDO, in the

test functions in Table (1), in only two of the cases (2 and 8),

𝑤𝑓 is set to 1, and for all other cases, 𝑤𝑓 is set to 0. In

contrast, in our proposed algorithm (IFDO), 𝑤𝑓 is set

randomly in the [0, 1] range for all of the cases. However, this

Initialize scout bee population 𝑋𝑡,𝑖 (i = 1, 2, ..., n)

Generate random weight factor (wf) in [0, 1] range

while iteration (t) limit is not reached

 for each artificial scout bee 𝑋𝑡,𝑖

 find best artificial scout bee 𝑥𝑡,𝑖
∗

 generate random-walk r in [-1, 1] range

 if(𝑋𝑡,𝑖 fitness == 0) (avoid dividing by zero)

 fitness weight = 0

 else

 calculate fitness weight, equation (12)

if(fitness weight > wf)

 calculate fitness weight, equation (13)

 end if

 end if

 determine neighbors' search landscape (ln), equation (7)

 if(x-xt,i < ln or x-xt,i == ln)

 calculate alignment, equation (8)

 calculate cohesion, equation (9)

 end if

 if (fitness weight = 1 or fitness weight = 0)

 calculate pace using equation (3)

 else

 if (random number >= 0)

 calculate pace using equation (5)

 else

 calculate pace using equation (4)

 end if

 end if

 calculate 𝑋𝑡+1,𝑖, equation (6)

 if(𝑋𝑡+1,𝑖 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑋𝑡,𝑖 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)
move accepted and 𝑝𝑎𝑐𝑒 saved

 generate new wf in [0, wf]

 else

 calculate 𝑋𝑡+1,𝑖, equation (6)

 … with previous 𝑝𝑎𝑐𝑒

 if (𝑋𝑡+1,𝑖 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑋𝑡,𝑖 𝑓𝑖𝑡𝑛𝑒𝑠𝑠)
 move accepted and save 𝑝𝑎𝑐𝑒

 generate new wf in [0, wf]

 else

 maintain current position (don’t move)

 end if

 end if

 end for

end while

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

6 VOLUME XX, 2017

range will change when the algorithm detects a more suitable

solution; for more detail, see Figure (1). During the test, only

the test function TF8 is reduced to -2917375.29380209, and

all of the other test functions are reduced to 0.0 (details of the

conditions of the test functions can be found in Appendix

Tables 3, 4 and 5). To confirm that the algorithm does not

discriminate in the direction of origin, some degree of shifting

is utilized for some of the test functions.

The IFDO results and the FDO, GA, DA, and PSO results are

illustrated in Table (1). The results show that the IFDO in

TF5, TF8, TF11, and TF12 was driven better overall in

comparison with the selected comparator algorithms.

However, the IFDO was worse than the other algorithms in

TF6, TF7, and TF13. Moreover, the results of TF7, TF17, and

TF18 showed that the IFDO was more comparable to the

original FDO, whereas the results of TF10 and TF19

demonstrated that the IFDO outperformed the other

competitor algorithms. Additionally, the results of TF1, TF3,

TF4, TF9, TF14, TF15, and TF16, which are highlighted in

green in Table (1), proved that the IFDO surpassed the

original FDO, GA, PSO, and DA in all the situations.

2) CEC-C06 2019 Benchmark Test Functions
To further evaluate the IFDO, the algorithm was tested on 10

current test function sets of the CEC standard. Professor

Suganthan and his colleagues enhanced these test functions for

the optimization of a single objective problem [56]. A set of

CEC standard test functions are planned to be used in the

annual optimization competition “The 100-Digit Challenge”,

which is a common name for this set of test functions (see

Table (2)). CEC01 to CEC03 are not similar to the test

functions CEC04 to CEC10, while CEC01 to CEC03 are not

shifted and rotated. However, a feature of scalability is utilized

in both CEC01 to CEC03 and CEC04 to CEC10. Regarding

the parameters, the CEC benchmark developer provided a set

of parameters; the various dimensions for CEC01 to CEC03

are as shown in the Appendix in Table 6, and a 10-

dimensional minimization problem in the [-100, 100]

boundary range was set for the functions CEC04 to CEC10.

The CEC global optimum is entirely bound to point 1 to be

more appropriate. With the FDO, the three other recent

algorithms for optimization, DA, WOA, and SSA, are tested

for competitiveness with our proposed IFDO. Various

motivations led to choosing these recent algorithms. First, the

improved FDO, the original FDO, and the other chosen

algorithms are all PSO-based algorithms. Second, in previous

works, these algorithms were obviously used. Third, on both

real-world problems and benchmark test functions, all of these

algorithms have exceptionally good results. Fourth, the

authors of these algorithms freely provided the algorithms’

operating methods. It is worth mentioning that the parameter

settings of the chosen algorithms were not changed during the

test. The same settings were used for all the opponents, as

shown in papers [27] [55] [57] [58]. Readers can access the

MATLAB parameter setting arrangement and their

implementations for the algorithms in this reference if desired

[59]. Furthermore, the generated random weight factor (wf) in

the [0, 1] range is used for all test functions; however, this 𝑤𝑓

is regenerated in [0,𝑤𝑓] for the next iteration if a better fitness

weight (𝑓𝑤) is achieved (see the pseudocode in Figure (1)).

To perform the test of IFDO and other competitors’ algorithms

as presented in Table (2), 30 agents with 500 iterations were

applied to each algorithm.

In the cases of CEC02, CEC03, CEC09, and CEC10, the

IFDO was equal to the original FDO; however, the standard

deviation (SD) was changed somewhat. On the other hand, the

IFDO surpasses other competitors’ algorithms in those cases.

In cases CEC04 - CEC08, except for CEC06, the IFDO

outperformed all of the opponents; however, in the case of

CEC06, the IFDO performed worse than the DA, WOA, and

TABLE 1

FDO AND CHOSEN ALGORITHMS [27] WITH IFDO CLASSICAL BENCHMARK RESULTS

Test

Function

IFDO FDO DA PSO GA

AV. ST. AV. ST. AV. ST. AV. ST. AV. ST.

TF1 5.38E-24 2.74E-23 7.47E-21 7.26E-19 2.85E-18 7.16E-18 4.2E-18 1.31E-17 748.5972 324.9262

TF2 0.534345844 1.620259633 9.388E-6 6.90696E-6 1.49E-05 3.76E-05 0.003154 0.009811 5.971358 1.533102

TF3 2.88E-07 6.90E-07
8.5522E-

7
4.39552E-6 1.29E-06 2.1E-06 0.001891 0.003311 1949.003 994.2733

TF4 2.60E-04 9.11E-04 6.688E-4 0.0024887 0.000988 0.002776 0.001748 0.002515 21.16304 2.605406

TF5 1.94E+01 3.31E+01 23.50100 59.7883701 7.600558 6.786473 63.45331 80.12726 133307.1 85,007.62

TF6 4.22E+06 8.15E-09
1.422E-

18
4.7460E-18 4.17E-16 1.32E-15 4.36E-17 1.38E-16 563.8889 229.6997

TF7 5.68E-01 3.14E-01 0.544401 0.3151575 0.010293 0.004691 0.005973 0.003583 0.166872 0.072571

TF8 -2.92E+06 2.24E+05 -2285207 206684.91 -2857.58 383.6466 -7.1E+11 1.2E+12 -3407.25 164.4776

TF9 1.35E+01 6.66E+00 14.56544 5.202232 16.01883 9.479113 10.44724 7.879807 25.51886 6.66936

TF10 5.18E-15 1.67E-15
3.996E-

15
6.3773E-16 0.23103 0.487053 0.280137 0.601817 9.498785 1.271393

TF11 0.525690405 8.90E-02 0.568776 0.1042672 0.193354 0.073495 0.083463 0.035067 7.719959 3.62607

TF12 1.81E+01 2.57E+01 19.83835 26.374228 0.031101 0.098349 8.57E-11 2.71E-10 1858.502 5820.215

TF13 4.10E+09 1.50E-05 10.2783 7.42028 0.002197 0.004633 0.002197 0.004633 68,047.23 87,736.76

TF14 2.68E-07 4.68E-07
3.7870E-

7
6.3193E-7 103.742 91.24364 150 135.4006 130.0991 21.32037

TF15 4.03E-16 9.25E-16 0.001502 0.0012431 193.0171 80.6332 188.1951 157.2834 116.0554 19.19351

TF16 9.14E-16 3.61E-16 0.006375 0.0105688 458.2962 165.3724 263.0948 187.1352 383.9184 36.60532

TF17 2.38E+01 1.24E-01 23.82013 0.2149425 596.6629 171.0631 466.5429 180.9493 503.0485 35.79406

TF18 2.24E+02 2.68E-05 222.9682 9.9625E-6 229.9515 184.6095 136.1759 160.0187 118.438 51.00183

TF19 3.15E+01 1.32E-03 22.7801 0.0103584 679.588 199.4014 741.6341 206.7296 544.1018 13.30161

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

7 VOLUME XX, 2017

SSA but better than the original FDO. Finally, it is clear that

the average IFDO, FDO, and WOA results are equal, whereas

the standard deviation of WOA is equal to 0, which means

there is no way to promote enhancement because similar

results are obtained in all cases.

3) Quantitative Measurement Metrics

Two quantitative metrics were used for further investigation

and detailed observation of IFDO, as shown in Figures 2 and

3. For each quantitative metric, among the unimodal standard

functions TF1 to TF7, the first test function is chosen, among

the multimodal standard test functions TF8 to TF13, the

second test function is chosen, and among the composite

standard functions TF14 to TF19, the third test function is

chosen. For each investigation, searching the two-dimensional

search space through 150 iterations was performed using 10

search agents.

The first measurement metrics test demonstrates how the

search space is covered by the scout bee and presents the

course of the convergence. During the test, the positions of the

scout bees are logged from the start of the test to the end.

Hence, this metric is simply a scout bee search history. At

first, the whole area is rapidly discovered by the scout bee, and

then, in the direction of optimality, they steadily move. Figure

(2) presents the first quantitative metrics test.

The second measurement metric test illustrates the iteration

process that measures the agent’s global best convergence.

When the number of iterations is increased, xi* (the global

best agent) is more precise, and when the scout bee focuses on

the exploitation and local search, rapid changes are observed.

See figure (3).

Generally, the IFDO has the ability to successfully explore

the search space, justifiably move in the direction of

optimality and avoid local optima.

FIGURE 2. Using unimodal, multimodal, and composite test functions for the IFDO algorithm search history

FIGURE 3. Using unimodal, multimodal, and composite test functions for the IFDO algorithm convergence curve

TABLE 2

RESULTS OF THE IEEE ECE BENCHMARK 2019 [27]

Test Function
IFDO FDO DA WOA SSA

AV. ST. AV. ST. AV. ST. AV. ST. AV. ST.

CEC01 2651.198672 13944.10274 4585.27 20707.627 543×108 669×108 411×108 542×108 605×107 475×107

CEC02 4.000002146 1.00E-05 4.0 3.22414E-9 78.0368 87.7888 17.3495 0.0045 18.3434 0.0005

CEC03 13.70240422 4.82E-09 13.7024 1.6490E-11 13.7026 0.0007 13.7024 0.0 13.7025 0.0003

CEC04 31.19516293 12.91586061 34.0837 16.528865 344.3561 414.0982 394.6754 248.5627 41.6936 22.2191

CEC05 1.13187643 0.070551978 2.13924 0.085751 2.5572 0.3245 2.7342 0.2917 2.2084 0.1064

CEC06 12.12714515 0.52079368 12.1332 0.600237 9.8955 1.6404 10.7085 1.0325 6.0798 1.4873

CEC07 115.5677518 10.27465902 120.4858 13.59369 578.9531 329.3983 490.6843 194.8318 410.3964 290.5562

CEC08 4.940001939 0.891043403 6.1021 0.756997 6.8734 0.5015 6.909 0.4269 6.3723 0.5862

CEC09 2.0 3.10E-15 2.0 1.5916E-10 6.0467 2.871 5.9371 1.6566 3.6704 0.2362

CEC10 2.718281828 4.44E-16 2.7182 8.8817E-16 21.2604 0.1715 21.2761 0.1111 21.04 0.078

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

8 VOLUME XX, 2017

According to [60], if any algorithm’s fitness value in

minimization problems decreases with increasing iteration

number, it reaches optimality.

4) Real World Applications of the IFDO
Real-world problems are solved via the IFDO and FDO; in

this section, we performed two real-world applications.

The first application is the “aperiodic antenna array design,”

which was already tried by the original FDO. The second

application is the "pedestrian evacuation model", which, to the

best of our knowledge, is a new optimization problem that

determines the best main door location inside an open area to

evacuate people with greater efficiency. The results of the

IFDO and FDO are evaluated for both real-world problems.

A- USE OF THE IFDO ON APERIODIC ANTENNA ARRAY
DESIGNS.

Developments in radio astronomy and radar methods from the

1960s drew significant attention to aperiodic antenna arrays.

Thinned antenna arrays and non-uniform antenna arrays are

shown in Figure (4).

Real-number vectors are needed to express a position in

non-uniform arrays to optimize the element position with the

intention of achieving the highest sidelobe level (SLL).

Additionally, as shown in equation (7), a confident

boundary position of the element is needed to avoid discordant

lobes. Interested readers can consult [61].

The 10 elements of a non-uniform isotropic array are

shown in figure (5) and setting the outermost element to have

an average element position of 𝑑𝑎𝑣𝑔 = 0.5λ0 at position

2.25λ0 is a reason for optimizing the positions of the four

elements alone. The limitations of this optimization problem

with four dimensions are expressed in equation (14) as

follows:

x_i ∈ |x_i − x_j |(0,2.25) > min{xi} 0.25λ_0 >
0.125λ_0. i = 1,2,3,4. i ≠ j. (14)

Nonetheless, there is no element that can be smaller than

0.125λ0 or larger than 2.0λ0. Due to these limitations, each

element has a boundary between 0 and 2.25 because the

element 2.25λ0 is fixed, and the neighboring elements do not

have the ability to be closer than 0.25λ0. Equation (15) defines

the problem of the fitness function:

 𝑓 = 𝑚𝑎𝑥{20 𝑙𝑜𝑔 |𝐴𝐹(𝜃)| } (15)

where

AF(θ) = ∑cos[(cos θ − cos θs)2πxi]

4

i=1

 + cos[(cos θ − cos θs)2.25 × 2π]

(16)

For this work, Figure (5) shows that θs = 90
° [62].

FIGURE 4. A thinned antenna array and a non-uniform

antenna array [61].

FIGURE 5. Ten-element arrangements in the array [62].

FIGURE 6. The average fitness and global optimum as a result

of optimizing aperiodic antenna array designs in 200 iterations

with 20 artificial scout bees using the standard FDO.

Based on the limitations stated in equation (14), for twenty

artificial scout bees within 200 iterations, the original FDO

algorithm was utilized to optimize this problem. Moreover,

based on equation (15), the average fitness value and the

global best fitness in each iteration are shown in Figure (6).

The results indicate that with the element locations

{0.713,1.595,0.433,0.130} in iteration 78, the global best

solution was achieved.

Likewise, regarding the mentioned restrictions of this

problem, similar to the original FDO, this problem was

optimized using the IFDO algorithm in 200 iterations for

twenty search agents (artificial bees), as shown in Figure (7),

based on equation (15), which contains the average fitness

value and the global best fitness in each iteration. The result

shows that with element locations {0.701, 1.552, 0.402,

0.103}, the global best solution was achieved in iteration 29.

Consequently, from both the IFDO and FDO results, it clearly

appears that the IFDO is better for optimizing this problem

due to its increasing capability of making better decisions in

exploring better hives among the existing potential hives by

adding alignment and cohesion when the scout wants to go to

a different location in the defined space search; it also avoids

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

9 VOLUME XX, 2017

unsuitable exploitation in achieving a better solution when, for

every achieved better solution, the IFDO generates a new 𝑤𝑓

to control the 𝑓𝑤 (see the pseudocode in Figure (1)).

FIGURE 7. The average fitness and global optimum as a result

of optimizing aperiodic antenna array designs in 200 iterations

with 20 artificial scout bees using the IFDO.

B- IFDO VS THE FDO ON A PEDESTRIAN EVACUATION
MODEL.

In the last two decades, scenarios involving the evacuation of

crowds and pedestrians have been studied in many works to

reduce the negative aspects of emergency situations, such as

deaths, damages, and injuries [63]. In this part of this paper,

we create a simple pedestrian evacuation model based on a

cellular automata model (see Figure (8)), fuzzy logic ideas,

and statistical equations. Readers who desire to know how this

evacuation model is created and how the ideas of fuzzy logics

and statistical equations are utilized to define the pedestrians’

desired speeds can access reference [64]. Additionally, the

evacuation time of each pedestrian is calculated via the

pedestrian’s desired speed and its distance from the exit door

as expressed in equation (17), and the average of the

evacuation time of the pedestrians is used as the average

fitness value.

𝑒𝑣𝑎𝑐𝑇𝑖𝑚𝑒 = (𝑑𝑖𝑠𝑡/2) * 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑝𝑒𝑒𝑑 (17)

where 𝑑𝑖𝑠𝑡 represents the pedestrian’s distance from the

door exit locations, which is calculated from the equation of

distance (18), and 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑝𝑒𝑒𝑑 represents the pedestrian's

speed.

𝑑𝑖𝑠𝑡 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 (18)

where 𝑥2 and 𝑦
2
 represent the coordinates of the exit door

location, and 𝑥1 and 𝑦
1
 represent the coordinates of the

pedestrian's location.

Finally, both the IFDO and FDO algorithms are applied to

this model to achieve the global best solution by finding the

best location of the main door through which to evacuate

people during the evacuation process. The results showed that

the IFDO was more efficient and reached the optimum

solution with only 38 iterations, whereas the FDO reached the

optimum solution with 57 iterations. Figure (9) shows the

results of both algorithms.

FIGURE 8. The area of the pedestrian evacuation model.

The reasons behind the IFDO’s efficiency are related to the

selected parameters, alignment, and cohesion, in updating the

position of the artificial scout bees, which makes the algorithm

perform better explorations in finding a suitable solution in the

landscape. Second, the randomization in defining 𝑤𝑓 in every

iteration for each scout bee when a better solution is achieved

makes the algorithm avoid unnecessary exploitations to gain a

better solution. Third, the IFDO, as regards covering a

reasonable search space, converges sooner to global

optimality.

(9a)

(9b)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

10 VOLUME XX, 2017

FIGURE 9. IFDO and FDO global optimum and average

fitness

(a) IFDO global optimum, (b) IFDO average fitness, (c) FDO

global optimum, and (d) FDO average fitness

For both FDO and IFDO, after testing on various real-world

applications and classical and modern benchmark test

functions, it was found that their performance depended on the

number of search agents. Hence, both algorithms are limited to

using a small number of search agents; for example, the

accuracy of the algorithms suffers noticeably when they use

fewer than five search agents. Conversely, using a large

number of search agents enhances the accuracy and rate with

more space and time.

5) IFDO VS FDO Execution Time
Here, execution time is considered for various tests, such as

classical benchmark test functions, modern IEEE CEC 2019

benchmark test functions, and two real-world applications,

aperiodic antenna array designs (AAAD) and pedestrian

evacuation models (PEMs). The results of the total time are

briefly provided in Tables 7, 8, and 9.

From the results shown in table (7), the execution times of the

modern IEEE CEC 2019 benchmark test functions for both the

IFDO and FDO were relatively the same; for instance, the

IFDO had a smaller total time of execution than the FDO in

the execution of the CEC02, CEC05, CEC07, CEC08, and

CEC10 cases; however, the IFDO took a larger portion of the

total time to execute the CEC01, CEC03, and CEC06 cases.

The IFDO and FDO took the same total time to execute the

CEC04 and CEC09 cases. Moreover, the results of the

classical benchmark test functions in table (8) show that the

IFDO requires less time than the FDO to execute most of the

test functions, such as TF1, TF5, TF7, TF10, TF12, TF13,

TF15, TF18, and TF19, the same amount of time in a few

cases, such as TF4 and TF14, and more time in some cases,

such as TF2, TF3, TF6, TF8, TF9, TF11, TF16, and TF17.

Finally, the execution time results of the real-world

applications in Table (9) illustrate that the IFDO is more

capable than the FDO from the perspective of spending time

on PEM real-world applications, whereas it is not as powerful

as the FDO in executing the AAAD.

V. ANALYSIS OF THE RESULTS

The IFDO modified the FDO in both scout bee movements, to

update their positions, and weight factor (𝒘𝒇), to control the

fitness weight (𝒇𝒘), to find a better solution. From the results

and discussion, it appears that these changes improve both

exploration and exploitation. From there, these changes

improve the time complexity and convergence. To evaluate

this idea, readers can reference subsection IV in subsections 1,

2, 3, 4, and 5 to see that after the modifications, the IFDO was

better in the classical benchmark test function results than the

TABLE 8

RESULTS OF THE IFDO VS FDO EXECUTION TIME FOR THE

CLASSICAL BENCHMARK TEST FUNCTIONS

Test function
Execution time

IFDO FDO

TF1 15 seconds 16 seconds

TF2 19 seconds 17 seconds

TF3 21 seconds 18 seconds

TF4 16 seconds 16 seconds

TF5 14 seconds 17 seconds

TF6 23 seconds 18 seconds

TF7 21 seconds 24 seconds

TF8 32 seconds 31 seconds

TF9 34 seconds 32 seconds

TF10 29 seconds 33 seconds

TF11 40 seconds 35 seconds

TF12 41 seconds 44 seconds

TF13 55 seconds 58 seconds

TF14 3 seconds 3 seconds

TF15 7 seconds 9 seconds

TF16 29 seconds 27 seconds

TF17 25 seconds 22 seconds

TF18 26 seconds 27 seconds

TF19 20 seconds 24 seconds

TABLE 9

RESULTS OF THE IFDO VS FDO EXECUTION TIME FOR REAL-

WORLD APPLICATIONS

Application
Execution time

IFDO FDO

AAAD 47 seconds 44 seconds

PEM 28 seconds 31 seconds

TABLE 7

RESULTS OF THE IFDO VS FDO EXECUTION TIME FOR THE

IEEE ECE BENCHMARK 2019

Test function
Execution time

IFDO FDO

CEC01 15 seconds 2 seconds

CEC02 19 seconds 20 seconds

CEC03 21 seconds 6 seconds

CEC04 16 seconds 16 seconds

CEC05 14 seconds 20 seconds

CEC06 49 minutes 46 seconds 45 minutes 38 seconds

CEC07 21 seconds 55 seconds

CEC08 31 seconds 32 seconds

CEC09 34 seconds 34 seconds

CEC10 29 seconds 35 seconds

(9c)

(9d)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

11 VOLUME XX, 2017

other competing algorithms. For instance, in TF1, TF3, TF4,

TF9, TF14, TF15, TF16, as well as in TF7, TF17, and TF18,

the results showed the IFDO was more similar to the original

FDO, while the results of TF10 and TF19 confirmed that the

IFDO outperformed the other competing algorithms.

Moreover, the IFDO had better results in cases CEC04-CEC08

than the opponents, except for case CEC06, in which it had a

worse result than the opponents and a better result than the

FDO. On the other hand, in cases CEC02, CEC03, CEC09,

and CEC10, although the standard deviation was different

from that in the original FDO, the IFDO was equivalent to that

in the original FDO. Furthermore, the results of the

quantitative measurement metrics revealed that the IFDO had

the ability to successfully explore the search space, move

toward optimality, and avoid the local optima. Additionally,

the IFDO and FDO were used with real-world applications in

200 iterations for twenty search agents (artificial bees), and

the IFDO outperformed the FDO algorithm. For example, in

the aperiodic antenna array designs, the IFDO reached

optimality with just 29 iterations, while the number of

iterations needed in the FDO was 78. In the pedestrian

evacuation model, the IFDO reached optimality in only 38

iterations, while the FDO required 57 iterations. From these

results, it is possible to say that IFDO generally had a better

performance in reaching optimality and better exploration and

exploitation. Finally, the IFDO was compared with the FDO

from the perspective of execution time. For this purpose, the

classical benchmark test functions, IEEE CEC 2019

benchmark test functions, and two real-world applications,

AAAD and PEM, were utilized. From the results, both IFDO

and FDO were relatively similar in most of the results for the

classical benchmark and the IEEE CEC 2019 benchmark test

functions. However, the results of these algorithms in

optimizing the two real-world applications were generally

different. For instance, the IFDO required a shorter time than

the FDO to optimize PEM: 28 seconds and 31 seconds,

respectively. Conversely, the IFDO required a larger portion

of time than the FDO to optimize AAAD: 47 seconds and 44

seconds, respectively.

VI. CONCLUSION

Improvements have been made to the fitness-dependent

optimizer from two main perspectives. First, for updating the

artificial scout bee position, in the IFDO, two additional

parameters were added to the position update equation in the

original FDO: alignment and cohesion. Second, the weight

factor (𝑤𝑓) was changed from a stable value to a random

value in controlling the fitness weight of the FDO algorithm.

These changes were made in the IFDO with the aim of moving

the scout bees toward optimality with better performance. To

evaluate the performance of the IFDO, it was tested with 19

single-objective benchmark test functions (unimodal,

multimodal and composite test functions). Moreover, the 10

modern benchmarks of CEC-C06 were utilized to test the

IFDO. Furthermore, quantitative measurement metrics were

used to show that the IFDO succeeded in exploring the search

space, moving towards optimality, and avoiding the local

optima. Additionally, both the IFDO and FDO were used to

execute the classical benchmark test functions, IEEE CEC

2019 test functions, and two real-world applications. Each test

function’s total time of execution was specified and compared.

The results of the IFDO tests with the classic and modern test

functions were compared to those of the FDO, two other

distinguished algorithms (GA and PSO), and three state-of-

the-art algorithms (SSA, WOA, and DA). According to the

results, the IFDO, except for some cases in which it had

comparable results, outperformed the preferred algorithms in

most cases. It could be said that this advancement was due to

the modification in updating the artificial scout position,

which led to more convenient exploration during the search

for a better solution among many potential hives (solutions),

and due to the randomization of the 𝑤𝑓 for each scout bee in

every iteration, which led to a better 𝑓𝑤 participating in

making better decisions in the exploitation to find better

solutions. Additionally, the IFDO produced faster

convergence to global optimality when considering rational

coverage of the search space. On the other hand, the use of

various numbers of scout bees affected the accuracy, cost,

time, and space of the algorithm. When more than five scout

bees were used, the enhanced accuracy of the algorithm could

be clearly seen; however, a smaller number of scout bees led

to decreased accuracy of the algorithm. In addition, to confirm

that the IFDO has the ability to address real-life applications,

two real-world problems were selected: the first problem was

an existing real-world “aperiodic antenna array design”

problem, and the second problem was a real-world crowd

evacuation problem that we created. In both applications, the

IFDO outperformed the original FDO; in the first application,

the FDO needed 78 iterations to discover the global optimal

solution, whereas the IFDO needed only 29 iterations to obtain

the global optimal solution. Additionally, in the second

application, the IFDO outperformed the original FDO;

although the IFDO needed only 38 iterations to obtain the

optimal global solution, the FDO needed 57 iterations to

achieve the same result. It is worth mentioning that because

this performance is an improvement compared with the

original FDO, the improved fitness-dependent optimizer was

selected as the official name of this improved algorithm. This

proposed algorithm is more suitable for application fields of

engineering, design, industry, helath, education, energy, and

evacuation.

In future studies, multiobjective and binary objective

optimization problems will be tested with the IFDO. Finally,

adaptation and hybridization of the IFDO with other

algorithms will be the main focus of future work. Also, the

performance of IFDO can be further evaluated against other

popular algorithms, such as WOA-BAT [65], Donkey and

Smuggler Optimisation [66], and Modified Grey Wolf

Optimiser [67], Modifications of Dragonfly Algorithm [68],

Modifications of Backtracking Algorithm [69].

VII. REFERENCES

[1] B. J. Copeland, Alan Turing's Automatic Computing

Engine. Oxford, U.K.: Oxford Univ., 2005.

[2] G. G. Wang, S. Deb, and L. D. S. Coelho, “Earthworm

optimisation algorithm: a bio-inspired metaheuristic

algorithm for global optimisation problems,”

International Journal of Bio-Inspired Computation, vol.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

12 VOLUME XX, 2017

12, no. 1, p. 1, 2018.

[3] G.-G. Wang, L. Guo, H. Duan, and H. Wang, “A New

Improved Firefly Algorithm for Global Numerical

Optimization,” Journal of Computational and

Theoretical Nanoscience, vol. 11, no. 2, pp. 477–485,

Jan. 2014.

[4] X. S. Yang, A. H. Gandomi, S. Talatahari, and A. H.

Alavi, Metaheuristics in Water, Geotechnical and

Transport Engineering, Elsevier, London, UK (2013).

[5] I. Fister, Jr., X.-S. Yang, I. Fister, J. Brest, and D. Fister,

``A brief review of nature-inspired algorithms for

optimization,'' Elektrotehni²ki Vestnik, vol. 80, no. 3,

pp. 116122, 2013.

[6] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J.

Gutjahr, A Survey on Metaheuristics for Stochastic

Combinatorial Optimization, vol. 8. Amsterdam, The

Netherlandsl: Springer, 2008, pp. 239287.

[7] X. S. Yang, Nature-Inspired Metaheuristic Algorithms,

2nd ed, Luniver Press, Frome (2010).

[8] R. Storn and K. Price, ``Differential evolutionA simple

and efficient heuristic for global optimization over

continuous spaces,'' J. Global Optim., vol. 11, pp.

341359, Dec. 1997.

[9] M. Melanie, An Introduction to Genetic Algorithms.

Cambridge, MA, USA: MIT Press, 1999.

[10] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,

``Optimization by simulated annealing,'' Science, vol.

220, no. 4598, pp. 671_680, May 1983.

[11] X. S. Yang and Z. Cui, “Bio-inspired computation:

success and challenges of IJBIC,” International Journal

of Bio-Inspired Computation, vol. 6, no. 1, p. 1, 2014.

[12] Kennedy, J. and Eberhart, R. (1995) ‘Particle swarm

optimization’, in Proceeding of the IEEE International

Conference on Neural Networks, IEEE, pp.1942–1948.

[13] G.-G. Wang, A. H. Gandomi, X.-S. Yang, and A. H.

Alavi, “A novel improved accelerated particle swarm

optimization algorithm for global numerical

optimization,” Engineering Computations, vol. 31, no. 7,

pp. 1198–1220, 2014.

[14] R. Storn and K. Price, ``Differential evolutionA simple

and efficient heuristic for global optimization over

continuous spaces,'' J. Global Optim., vol. 11, pp.

341359, Dec. 1997.

[15] D. Karaboga and B. Basturk, “A powerful and efficient

algorithm for numerical function optimization: artificial

bee colony (ABC) algorithm,” Journal of Global

Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[16] X. Li and M. Yin, “Self-adaptive constrained artificial

bee colony for constrained numerical optimization,”

Neural Computing and Applications, vol. 24, no. 3-4,

pp. 723–734, Jun. 2012.

[17] X.-S. Yang and X. He, ``Fire_y algorithm: Recent

advances and applications,'' Int. J. Swarm Intell., vol. 1,

no. 1, pp. 36_50, 2013.

[18] X. S. Yang and S. Deb, ``Cuckoo search via Lévy

_ights,'' in Proc.World Congr. Nature Biologically

Inspired Comput. (NaBIC), Dec. 2009, pp. 210_214.

[19] X.-S. Yang, “A New Metaheuristic Bat-Inspired

Algorithm,” Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010) Studies in Computational

Intelligence, pp. 65–74, 2010.

[20] B. Yu, Z. Cui, and G. Zhang, “Artificial Plant

Optimization Algorithm with Correlation Branches,”

Journal of Bioinformatics and Intelligent Control, vol. 2,

no. 2, pp. 146–155, Jan. 2013.

[21] Ma, M., Luo, Q., Zhou, Y., Chen, X. and Li, L., 2015.

An improved animal migration optimization algorithm

for clustering analysis. Discrete Dynamics in Nature and

Society, 2015.

[22] S. Mirjalili, ``Dragony algorithm: A new meta-heuristic

optimization technique for solving single-objective,

discrete, and multi-objective problems,'' Neural Comput.

Appl., vol. 27, no. 4, pp. 10531073, May 2015.

[23] S. Mirjaliliab and A. Lewisa, ``The whale optimization

algorithm,'' Adv.Eng. Softw., vol. 95, pp. 5167, May

2016.

[24] S. Mirjalilia, A. H. Gandomibf, S. Z. Mirjalili, C.

Saremia, H. Farisd, and S. M. Mirjalilie, ``Salp swarm

algorithm: A bio-inspired optimizer for engineering

design problems,'' Adv. Eng. Softw., vol. 114, pp.

163191, Dec. 2017.

[25] L. Cui et al., ``A novel articial bee colony algorithm

with an adaptive population size for numerical function

optimization,'' Inf. Sci., vol. 414, pp. 5367, Nov. 2017.

[26] L. Cui, G. Li, X. Wang, Q. Lin, J. Chen, N. Lu, J. Lu,

``A ranking-based adaptive articial bee colony algorithm

for global numerical optimization,'' Inf. Sci., vol. 417,

pp. 169185, Nov. 2017.

[27] J. M. Abdullah and T. Ahmed, “Fitness Dependent

Optimizer: Inspired by the Bee Swarming Reproductive

Process,” IEEE Access, vol. 7, pp. 43473–43486, 2019.

[28] H. Beyer and H. Schwefel, Natural Computing.

Dordrecht, Netherlands: Kluwer Acad., 2002.

[29] G.-G. Wang, S. Deb, X.-Z. Gao, and L. D. S. Coelho,

“A new metaheuristic optimisation algorithm motivated

by elephant herding behaviour,” Int. J. Bio Inspired

Comput., vol. 8, no. 6, pp. 394–409, 2017.

[30] J. Li and Y. Tan, “Orienting mutation based fireworks

algorithm,” 2015 IEEE Congress on Evolutionary

Computation (CEC), 2015.

[31] D. Simon, “Biogeography-based optimization,” IEEE

Trans. Evol. Comput., vol. 12, no. 6, pp. 702–713, Dec.

2008.

[32] Y. Shi, “An optimization algorithm based on

brainstorming process,” Int. J. Swarm Intell. Res., vol. 2,

no. 4, pp. 35–62, 2011.

[33] Y. Shi, J. Xue, and Y. Wu, “Multi-objective

optimization based on brain storm optimization

algorithm,” Int. J. Swarm Intell. Res., vol. 4, no. 3, pp.

1–21, 2013.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

13 VOLUME XX, 2017

[34] G.-G. Wang, S. Deb, and L. D. S. Coelho, “Earthworm

optimization algorithm: A bio-inspired metaheuristic

algorithm for global optimization problems,” Int. J. Bio

Inspired Comput., 2015. [Online]. Available:

http://www.inderscience.com/info/ingeneral/forthcomin

g.php?jcode=ijbic, doi: 10.1504/IJBIC.2015.10004283.

[35] A. H. Gandomi and A. H. Alavi, “Krill herd: A new bio-

inspired optimization algorithm,” Commun. Nonlin. Sci.

Numer. Simulat., vol. 17, no. 12, pp. 4831–4845, 2012.

[36] G.-G. Wang, L. Guo, A. H. Gandomi, G.-S. Hao, and H.

Wang, “Chaotic krill herd algorithm,” Inf. Sci., vol. 274,

pp. 17–34, Aug. 2014.

[37] G. Wang et al., “Incorporating mutation scheme into

krill herd algorithm for global numerical optimization,”

Neural Comput. Appl., vol. 24, nos. 3–4, pp. 853–871,

2014.

[38] G.-G. Wang, A. H. Gandomi, and A. H. Alavi, “Stud

krill herd algorithm,” Neurocomputing, vol. 128, pp.

363–370, Mar. 2014.

[39] G.-G. Wang, A. H. Gandomi, and A. H. Alavi, “An

effective krill herd algorithm with migration operator in

biogeography-based optimization,” Appl. Math. Model.,

vol. 38, nos. 9–10, pp. 2454–2462, 2014.

[40] G.-G. Wang, A. H. Gandomi, A. H. Alavi, and G.-S.

Hao, “Hybrid krill herd algorithm with differential

evolution for global numerical optimization,” Neural

Comput. Appl., vol. 25, no. 2, pp. 297–308, 2014.

[41] G.-G. Wang, A. H. Gandomi, A. H. Alavi, and S. Deb,

“A hybrid method based on krill herd and quantum-

behaved particle swarm optimization,” Neural Comput.

Appl., vol. 27, no. 4, pp. 989–1006, 2016.

[42] G.-G. Wang, S. Deb, A. H. Gandomi, and A. H. Alavi,

“Oppositionbased krill herd algorithm with Cauchy

mutation and position clamping,” Neurocomputing, vol.

177, pp. 147–157, Feb. 2016.

[43] optimization algorithm: Harmony search,” Simulation,

vol. 76, no. 2, pp. 60–68, 2001.

[44] A. Rezoug and D. Boughaci, “A self-adaptive harmony

search combined with a stochastic local search for the 0-

1 multidimensional knapsack problem,” Int. J. Bio

Inspired Comput., vol. 8, no. 4, pp. 234–239, 2016.

[45] T. Niknam and A. Kavousi-Fard, “Optimal energy

management of smart renewable micro-grids in the

reconfigurable systems using adaptive harmony

search algorithm,” Int. J. Bio Inspired Comput., vol. 8,

no. 3, pp. 184–194, 2016.

[46] X. S. Yang and A. H. Gandomi, “Bat algorithm: A novel

approach for global engineering optimization,” Eng.

Comput., vol. 29, no. 5, pp. 464–483, 2012.

[47] X. Cai, X.-Z. Gao, and Y. Xue, “Improved bat algorithm

with optimal forage strategy and random disturbance

strategy,” Int. J. Bio Inspired Comput., vol. 8, no. 4, pp.

205–214, 2016.

[48] G.-G. Wang, S. Deb, and Z. Cui, “Monarch butterfly

optimization,” Neural Comput. Appl., pp. 1–20, May

2015. [Online]. Available:

https://link.springer.com/article/10.1007/s00521-015-

1923-y, doi: 10.1007/s00521-015-1923-y.

[49] G.-G. Wang, “Moth search algorithm: A bio-inspired

metaheuristic algorithm for global optimization

problems,” Memetic Comput., pp. 1–4, Sep. 2016.

[Online]. Available:

https://link.springer.com/article/10.1007/s12293-016-

0212-3, doi: 10.1007/s12293-016-0212-3.

[50] D. Simon, M. Ergezer, D. Du, and R. Rarick, “Markov

models for biogeography-based optimization,” IEEE

Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 1,

pp. 299–306, Feb. 2011.

[51] Y. Tan, Fireworks Algorithm-A Novel Swarm

Intelligence Optimization Method. Heidelberg,

Germany: Springer-Verlag, 2015, p. 323.

[52] G.-G. Wang and Y. Tan, “Improving Metaheuristic

Algorithms With Information Feedback Models,” IEEE

Transactions on Cybernetics, vol. 49, no. 2, pp. 542–

555, 2019.

[53] M. Yazdani and F. Jolai, “Lion Optimization Algorithm

(LOA): A nature-inspired metaheuristic algorithm,”

Journal of Computational Design and Engineering, vol.

3, no. 1, pp. 24–36, 2016.

[54] Laizhong Cui, Genghui Li, Zexuan Zhu, Qiuzhen Lin,

Zhenkun Wen, Nan Lu, Ka-Chun Wong, Jianyong

Chen, "A novel artificial bee colony algorithm with an

adaptive population size for numerical function

optimization," Information Sciences, 2017.

[55] S. Mirjalili, "Dragonfly algorithm: a new meta-heuristic

optimization technique," Neural Comput & Applic, vol.

27, no. 4, p. 1053–1073, 2015.

[56] K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan,

"The 100-Digit Challenge: Problem Definitions and

Evaluation Criteria for the 100-Digit Challenge Special

Session and Competition on Single Objective Numerical

Optimization," Nanyang Technological University,

Singapore, November 2018.

[57] Seyedali Mirjaliliab, Andrew Lewisa, "The Whale

Optimization Algorithm," vol. 95, pp. 51-67, 2016.

[58] Seyedali Mirjalilia, Amir H.Gandomibf, Seyedeh Zahra

Mirjalili, cShahrzad Saremia, Hossam Farisd, Seyed

Mohammad Mirjalilie, "Salp Swarm Algorithm: A bio-

inspired optimizer for engineering design problems,"

Advances in Engineering Software, vol. 114, pp. 163-

191, 2017.

[59] MirJalili, "Ali MIrjalili," Seyedali Mirjalili, 2015.

[Online]. Available:

http://www.alimirjalili.com/Projects.html. [Accessed 01

06 2019].

[60] Frans van den Bergh and Andries Petrus Engelbrecht,

"A study of particle swarm," Inf. Sci., vol. 176, pp. 937-

971, 2006.

[61] L. Cui et al., ``An enhanced articial bee colony

algorithm with dualpopulation framework,'' Swarm

Evol. Comput., vol. 43, pp. 184206, Dec. 2018.

[62] N. Jin and Y. Rahmat-Samii, ``Advances in particle

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

14 VOLUME XX, 2017

swarm optimization for antenna designs: Real-number,

binary, single-objective and multiobjective

implementations,'' IEEE Trans. Antennas Propag., vol.

55, no. 3, pp. 560562, Mar. 2007.

[63] D. A. Muhammed, S. A. M. Saeed, and T. A. Rashid,

“A Comprehensive Study on Pedestrians’ Evacuation,”

International Journal of Recent Contributions from

Engineering, Science & IT (iJES), vol. 7, no. 4, p. 38,

Oct. 2019.

[64] D. Muhammed, S. Saeed, and T. Rashid, “A Simulation

Model for Pedestrian Crowd Evacuation Based on

Various AI Techniques,” Revue dIntelligence

Artificielle, vol. 33, no. 4, pp. 283–292, 2019.

[65] H. M. Mohammed, S. U. Umar, and T. A. Rashid, “A

Systematic and Meta-Analysis Survey of Whale

Optimization Algorithm,” Computational Intelligence

and Neuroscience, vol. 2019, pp. 1–25, 2019.

[66] A. S. Shamsaldin, T. A. Rashid, R. A. A.-R. Agha, N. K.

Al-Salihi, and M. Mohammadi, “Donkey and smuggler

optimization algorithm: A collaborative working

approach to path finding,” Journal of Computational

Design and Engineering, vol. 6, no. 4, pp. 562–583,

2019.

[67] T. A. Rashid, D. K. Abbas, and Y. K. Turel, “A multi

hidden recurrent neural network with a modified grey

wolf optimizer,” Plos One, vol. 14, no. 3, 2019.

[68] C. M. Rahman and T. A. Rashid, “Dragonfly Algorithm

and Its Applications in Applied Science Survey,”

Computational Intelligence and Neuroscience, vol.

2019, pp. 1–21, Jun. 2019.

[69] B. A. Hassan and T. A. Rashid, “Operational framework

for recent advances in backtracking search optimisation

algorithm: A systematic review and performance

evaluation,” Applied Mathematics and Computation,

vol. 370, p. 124919, 2020.

VIII. APPENDIX

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

15
VOLUME XX, 2017

TABLE 3

Unimodal standard functions [𝟑𝟎].

TABLE 4

(10 DIMENSIONAL) MULTIMODAL STANDARD FUNCTIONS [30].

Functions Dimension Range Shift position 𝒇𝒎𝒊𝒏

𝑻𝑭𝟏(𝒙) = ∑𝑥𝑖
2

𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0

𝑻𝑭𝟐(𝒙) = ∑ |𝑥𝑖

𝑛

𝑖=1

| +∏|𝑥𝑖|

𝑛

𝑖=1

10

[-10,10] [-3, -3, … -3] 0

𝑻𝑭𝟑(𝒙) = ∑(∑𝑥𝑗

𝑖

𝑗−1

)

2
𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0

𝑻𝑭𝟒(𝒙) = max
𝑖
{|𝑥|, 1 ≤ 𝑖 ≤ 𝑛} 10 [-100, 100] [-30, -30, … -30] 0

𝑻𝑭𝟓(𝒙) = ∑[100(𝑥𝑖+1 − 𝑥1
2)2

𝑛−1

𝑖=1

+ (𝑥𝑖 − 1)
2]

10 [-30,30] [-15, -15, … -15] 0

𝑻𝑭𝟔(𝒙) = ∑([𝑥𝑖 + 0.5])
2

𝑛

𝑖=1

 10 [-100, 100] [-750, … -750] 0

𝑻𝑭𝟕(𝒙) =∑𝑖𝑥𝑖
4 + random[0, 1]

𝑛

𝑖=1

 10 [-1.28,1.28] [-0.25, …-0.25] 0

Functions Range Shift position 𝒇𝒎𝒊𝒏

𝑻𝑭𝟖(𝒙) = ∑−𝑥𝑖
2

𝑛

𝑖=1

sin (√|𝑥𝑖|) [-500, 500] [-300, … -300]
-

418.9829

𝑻𝑭𝟗(𝒙) = ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 [-5.12,5.12] [-2, -2, …-2] 0

𝑻𝑭𝟏𝟎(𝒙) = −20𝑒𝑥𝑝(−0.2√∑𝑥𝑖
2

𝑛

𝑖=1

) − 𝑒𝑥𝑝 (
1

𝑛
∑cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20

+ 𝑒

[-32, 32] 0

𝑻𝑭𝟏𝟏(𝒙) =
1

4000
∑ 𝑥𝑖

2

𝑛

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 [-600, 600] [-400, … -400] 0

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 > 𝑎

0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 < −𝑎

𝑻𝑭𝟏𝟐(𝑥) =
𝜋

𝑛
{10 𝑠𝑖𝑛(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] +
𝑛−1
𝑖=1

(𝑦𝑛 − 1)
2} + ∑ 𝑢(𝑥𝑖 , 10, 100, 4)

𝑛
𝑖=1 .

𝑦𝑖 = 1 +
𝑥+1

4
.

[-50,50] [-30, 30, … 30] 0

𝑻𝑭𝟏𝟑(𝑥) = 0.1{𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)
2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 +

𝑛
𝑖=1

1)] + (𝑥𝑛 − 1)
2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4).

𝑛
𝑖=1

[-50,50] [-100, … -100] 0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

16
VOLUME XX, 2017

TABLE 5

COMPOSITE STANADRD FUNCTIONS [30].

Functions Dimension Range 𝒇𝒎𝒊𝒏

𝑓1, 𝑓2, 𝑓3…𝑓10 = Sphere function

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1]

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
5

100
,
5

100,
,
5

100
, …

5

100
]

TF14 (CF1)

10 [-5, 5] 0

𝑓1, 𝑓2, 𝑓3…𝑓10 = Griewank’s function

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1]

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
5

100
,
5

100,
,
5

100
, …

5

100
]

TF15 (CF2)

10 [-5, 5] 0

𝑓1, 𝑓2, 𝑓3…𝑓10 = Griewank’s function

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1]
𝜆1, 𝜆2, 𝜆3…𝜆10 = [1,1,1, … .1]

TF16 (CF3)

10 [-5, 5] 0

𝑓1, 𝑓2 = Ackley’s function

𝑓3, 𝑓4 = Rastrigin’s function

𝑓5, 𝑓6 = Weierstrass function

𝑓7, 𝑓8 = Griewank’s function

𝑓9, 𝑓10 = Sphere function

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1]

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
5

32
,
5

32,
, 1,1,

5

0.5
,
5

0.5
,
5

100
,
5

100
,
5

100
,
5

100
]

TF17 (CF4)

10 [-5, 5] 0

𝑓1, 𝑓2 = Rastrigin’s function

𝑓3, 𝑓4 = Weierstrass function

𝑓5, 𝑓6 = Griewank’s function

𝑓7, 𝑓8 = Ackley’s function

𝑓9, 𝑓10 = Sphere function

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1]

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
1

5
,
1

5,
,
5

0.5
,
5

0.5
,
5

100
,
5

100
,
5

32
,
5

32
,
5

100
,
5

100
]

TF18 (CF5)

10 [-5, 5] 0

𝑓1, 𝑓2 = Rastrigin’s function

𝑓3, 𝑓4 = Weierstrass function

𝑓5, 𝑓6 = Griewank’s function

𝑓7, 𝑓8 = Ackley’s function

𝑓9, 𝑓10 = Sphere function

𝛿1, 𝛿2, 𝛿3…𝛿10 = [0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9,1]

𝜆1, 𝜆2, 𝜆3…𝜆10 = [0.1 ∗
1

5
, 0.2 ∗

1

5
, 0.3 ∗

5

0.5
, 0.4 ∗

5

0.5
, 0.5

∗
5

100
 ,0.6 ∗

5

100
, 0.7 ∗

5

32
, 0.8 ∗

5

32
, 0.9

∗
5

100
, 1 ∗ 5/100]

TF19 (CF6)

10 [-5, 5] 0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2968064, IEEE Access

 Danial Muhammed: Preparation of Papers for IEEE Access (November 2018)

17 VOLUME XX, 2017

TABLE 6

“THE 100-DIGIT CHALLENGE:” CEC-C06 2019 STANDARDS [31].

NOTE: Readers who concern to know more information about CEC benchmarks can access this paper [31].

No. Functions Dimension Range 𝒇𝒎𝒊𝒏

1 STORN'S CHEBYSHEV POLYNOMIAL FITTING PROBLEM 9 [-8192, 8192] 1

2 INVERSE HILBERT MATRIX PROBLEM 16 [-16384,

16384]

1

3 LENNARD-JONES MINIMUM ENERGY CLUSTER 18 [-4,4] 1

4 RASTRIGIN’S FUNCTION 10 [-100, 100] 1

5 GRIEWANGK’S FUNCTION 10 [-100, 100] 1

6 WEIERSTRASS FUNCTION 10 [-100, 100] 1

7 MODIFIED SCHWEFEL’S FUNCTION 10 [-100, 100] 1

8 EXPANDED SCHAFFER’S F6 FUNCTION 10 [-100, 100] 1

9 HAPPY CAT FUNCTION 10 [-100, 100] 1

10 ACKLEY FUNCTION 10 [-100, 100] 1

