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Abstract

The fitness-dependent optimizer (FDO) algorithm was recently introduced in 2019. An improved FDO (IFDO) algorithm
is presented in this work, and this algorithm contributes considerably to refining the ability of the original FDO to address
complicated optimization problems. To improve the FDO, the IFDO calculates the alignment and cohesion and then uses
these behaviors with the pace at which the FDO updates its position. Moreover, in determining the weights, the FDO
uses the weight factor ( ), which is zero in most cases and one in only a few cases. Conversely, the IFDO performs
randomization in the [0-1] range and then minimizes the range when a better fitness weight value is achieved. In this
work, the IFDO algorithm and its method of converging on the optimal solution are demonstrated. Additionally, 19
classical standard test function groups are utilized to test the IFDO, and then the FDO and three other well-known
algorithms, namely, the particle swarm algorithm (PSO), dragonfly algorithm (DA), and genetic algorithm (GA), are
selected to evaluate the IFDO results. Furthermore, the CECC06 2019 Competition, which is the set of IEEE Congress of
Evolutionary Computation benchmark test functions, is utilized to test the IFDO, and then, the FDO and three recent
algorithms, namely, the salp swarm algorithm (SSA), DA and whale optimization algorithm (WOA), are chosen to gauge
the IFDO results. The results show that IFDO is practical in some cases, and its results are improved in most cases.
Finally, to prove the practicability of the IFDO, it is used in real-world applications.
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I. INTRODUCTION 

Since computers were developed, the focus has been on the 

aspects of probing unidentified solutions and searching for the 

best solution. Alan Turing utilized a search algorithm [1] in 

1945 to break the enigma cipher of Germany during the 

Second World War. The advancement of practical methods 

and a dramatic rise in the volume of computation have caused 

difficulties in addressing real-life problems. Therefore, issues 

of quickly and proficiently solving complex problems via 

classic methods based on formal logic or mathematical 

programming have appeared [2]. Many algorithms have been 

created with a variety of methods to handle these constraints, 

and optimization problems are one of these methods. The 

optimization procedure obtains the best solution of a function 

by looking for a parameter. Existing solutions are denoted by 

sets of possible values, of which one is the best solution. 

Generally, solving optimization problems is the purpose of 

inventing optimization algorithms [3]. 

Based on the environment of the algorithms, there is a 

 

 
 

simple categorization of optimization algorithms that can 

separate them into two central groups: deterministic 

algorithms and stochastic algorithms. The first group, the 

deterministic algorithms, produces a similar set of answers 

when a similar preliminary starting point is used to begin the 

iterations; this is due to utilizing inclination, for instance, hill-

climbing with a strict move sequence. Alternatively, the 

second groups, the stochastic algorithms, regularly produce 

different answers with similar preliminary values without 

utilizing inclination. On the other hand, there is a minor 

difference in the final values; a similar best solution would 

match the specified accuracy. Stochastic algorithms are 

categorized into two types: heuristic and metaheuristic [4]. 

Heuristic algorithms utilize trial and error to look for a 

solution; it is expected that they will take a feasible amount of 

time to achieve a solution. Likewise, heuristic algorithms tend 

to use different approaches in randomization techniques and 

local explorations [5]. Additional research and improvements 

on heuristic algorithms transformed them into metaheuristic 

algorithms, and these new groups of algorithms have superior 

performance compared to the heuristic algorithms; therefore, 

the prefix of “meta”, which means “higher” or “beyond”, was 
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associated with them [6]. Nevertheless, these two terms 

(heuristic and meta-heuristic) are currently indistinguishable 

to scientists, although a slight dissimilarity exists in their 

meanings. Recently, meta-heuristic nature-inspired algorithms 

have been used professionally and effectively to solve recent 

nonlinear numerical global optimization difficulties. All meta-

heuristic algorithms attempt to build some stability between 

local exploration and randomization [7]. 

Recently, existing real-world problems have become 

complicated, and considering space, time, and cost, it is 

impractical to explore all the conceivable solutions. 

Consequently, to solve such real-world problems, reasonable 

techniques that are low-cost and fast are essential. Hence, to 

determine how to address these difficulties, scientists have 

investigated natural occurrences and animal behaviors, for 

instance, how path selection occurs for ants, how evading the 

enemy and chasing prey occur for a group of birds, flies or 

fish, and how gravity works. Therefore, the name “nature-

inspired algorithms” was selected for the algorithms that were 

inspired by nature [8]. There are many nature-inspired 

algorithms. The University of Michigan started to develop 

such algorithms in 1960 when Holland and his colleagues 

published a book about their GA and republished it in 1970 

and 1983 [9]. Simulated annealing (SA) was implemented by 

Kirkpatrick et al. The motivation for the SA algorithm was the 

annealing process of metal [10].   

PSO and ant colony optimization (ACO) are two commonly 

used swarm intelligence algorithms that were proposed by 

Kennedy and Eberhart in 1995 and Dorigo et al., 1996, 

respectively. PSO is inspired by the collective grouping 

behavior of birds in searching for food, and ACO is inspired 

by the nature of the ant, which has the ability to hold previous 

paths in its mind. [11-13]. The authors of the PSO thought 

these behaviors would help the optimization issues; then, other 

algorithms benefitted from the definitions used in the PSO 

algorithm. In the last two decades, various excellent 

intelligence swarms have been suggested, such as differential 

evolution (DE) in 1997, which was proposed by R. Storn and 

K. Price; it was a vector-based algorithm and performed better 

than GA in many applications [14].  

In 2005, the artificial bee colony (ABC) algorithm was 

proposed by Karaboga and Basturk [15, 16]. Xin-She Yang 

created the firefly algorithm (FA) in 2009 [17], and then, the 

same year, CS was suggested by the same author [18]. 

Moreover, a bat-inspired algorithm was suggested by Xin-She 

in 2010 [19]. The artificial plant optimization algorithm 

(APOA) proposed by Bing Yu et al. in 2013 is inspired by the 

natural plant growing process. [20]. Additionally, in 2014, Li 

et al., offered a newly announced algorithm, animal migration 

optimization (AMO), which is inspired by swarm migration 

behavior in animals [21]. Later, Mirjalili A. S. proposed three 

algorithms: first, DA, in 2015, based on the behaviors related 

to attraction to food and evasion of enemies; second, WOA, in 

2016; third, the salp swarm algorithm (SSA) in 2017 [22-24]. 

The novel ABC was altered with two modified ABCs created 

by Laizhong et al. In the first variant, an adaptive method for 

the population size (AMPS) was implemented by the authors 

[25], and in the second variant, the authors implemented a 

ranking-based adaptive ABC algorithm (ARABC) [26]; these 

variants were used for improvement exploitation in the 

original ABC algorithm. In 2019, Jaza Abdullah and Tarik 

Rashid developed a fitness-dependent optimizer or FDO 

algorithm. The FDO algorithm looks at the behaviors of bee 

swarms during reproduction and imitates swarm activities. 

Finding a different appropriate solution among various 

possible solutions forms a substantial part of this algorithm 

[27]. 

There are many other meta-heuristic optimization 

algorithms inspired by nature and utilized for difficult 

optimization problems, such as the evolutionary strategy (ES) 

[28], elephant herding optimization [29], fireworks algorithm 

(FWA) [30], biogeography-based optimization (BBO) [31], 

brain storm optimization [32], [33], earthworm optimization 

algorithm [34], krill herd algorithm (KH) [35-42], probability-

based incremental learning (PBIL) [43], harmony search (HS) 

[44-46], bat algorithm (BA) [47, 48], monarch butterfly 

optimization (MBO) [49], and the moth search algorithm [50]. 

These algorithms cannot use all important information from 

instances in former iterations to direct their search in the 

present and future. Therefore, these algorithms can be divided 

into two groups. The first group, for instance, BBO [31, 50] 

and BA [47], is strictly independent of previous instances, and 

the second group, for instance, KH [35, 36], FWA [30, 51], 

and MBO [49] utilizes the instances that were best in earlier 

iterations [52]. 

Researchers have extensively utilized the abovementioned 

algorithms in many areas. However, there is no specific 

algorithm that achieves the most fitting solution for all 

optimization problems. Some algorithms yield better solutions 

for some specific problems than for others. Therefore, seeking 

adaptation in optimization techniques is an open problem [53]. 

In this paper, an improvement in fitness-dependent 

optimization (IFDO) has been developed from the FDO 

algorithm. In the FDO algorithm, the authors created the 

algorithm with a few characteristics of a scout. Jaza and Tarik 

described the main operator of the scout to update its location 

with its velocity (pace). Moreover, to manage weights, this 

operator typically relies on the fitness function value, and 

then, for the phases of exploitation and exploration, search 

agents are guided via these weights [27]. However, in IFDO, a 

scout exhibits other behaviors in addition to the pace, such as 

alignment and cohesion. 

Moreover, the FDO, a weight factor (𝑤𝑓) was used to 

control the fitness weight. Nevertheless, the 𝑤𝑓 was neglected 

in most cases [27]. However, in IFDO, the weight factor (𝑤𝑓) 

is used whenever a better fitness weight is obtained.  

In the following, the papers’ main contributions are briefly 

presented: 

1) The IFDO algorithm is constructed by adding the 

behaviors of alignment and cohesion in updating the scout 

location and enhances the FDO algorithm in both the 

exploration and exploitation phases by considering 

reasonable covering of the search space to produce earlier 

convergence in the direction of global optimality. 
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2) The IFDO algorithm randomizes the 𝑤𝑓 and utilizes it for 

each scout in each of the iterations. 

3) One additional unique feature of IFDO is that when a better 

solution is obtained, a new 𝑤𝑓 is generated in a new 

range to increase the chance of achieving the best 

solution in a shorter time (this is discussed further in 

section III). 

The next sections describe this research. The second section 

presents the original algorithm FDO. The third section 

describes our improvements to the FDO algorithm. The fourth 

section shows the results and discussion; the performance 

information of the IFDO compared to the selected well-known 

and recent algorithms is specifically demonstrated, and then 

two real-world problems are addressed. The fifth section 

analyses the results and explains the role of the operators 

proposed in this study. Section 6 concludes the main points 

and suggests future research studies with the improved IFDO. 

 
II.  FITNESS-DEPENDENT OPTIMIZER 

The FDO can be divided into the scout bee searching process 

and the scout bee movement process. In the scout bee 

searching process, the algorithm makes the scout bees search 

for a suitable hive (solution) among many potential hives 

(solutions). Through the scout bee updating process, the 

algorithm utilizes a random walk and a fitness weight 

mechanism to move into a new position; accordingly, this 

section contains two parts. 

 
1) Scout Bee Searching Process 

The process of scout bees searching numerous possible hives 

to obtain a new proper hive means that the main part of this 

algorithm focuses on that process. In this algorithm, a proper 

solution is denoted by a scout bee that searches for a new hive. 

Moreover, meeting optimality means choosing the best hive 

among numerous hives. Furthermore, when the FDO begins 

execution, it defines an artificial scout population with random 

locations in an Xi (i=1, 2, …n) space search by means of upper 

and lower boundaries. Through the execution, the FDO picks 

the global best solution. Finding a new hive (solution) in this 

algorithm is represented by a scout bee position. Scouts based 

on a random walk search in the search space for a more 

suitable solution; when the more suitable solution is revealed, 

the earlier solution is ignored. Nevertheless, if the scout 

cannot achieve a more suitable solution, then it uses the 

former solution with the expectation of finding a more suitable 

solution next time. Finally, in the case of not finding a more 

appropriate solution with the former solution, the scout will 

continue with the current solution, which is the best solution at 

that time. 
 

2) Scout Bee Movement Process 
In this algorithm, the scout, to obtain a better solution, updates 

its current position by adding pace. The updated artificial 

scout bee can be calculated according to equation (1) as 

follows: 

 

 𝑋𝑖,𝑡+1 =  𝑋𝑖,𝑡 +  𝑝𝑎𝑐𝑒 (1) 

   

where 𝑖 denotes the current search agent, 𝑡 denotes the 

current iteration, 𝑋 denotes an artificial scout bee (search 

agent), and pace denotes the movement rate and direction of 

the artificial scout bee. The pace is typically reliant on the 

fitness weight 𝑓𝑤. Nevertheless, a random mechanism 

completely relies on the direction of the 𝑝𝑎𝑐𝑒. 

In FDO, the fitness weight (𝑓𝑤) value is typically utilized 

to manage the 𝑝𝑎𝑐𝑒. The algorithm determines the fitness 

weight (𝑓𝑤) for every artificial scout using equation (2).  

 

 
𝑓𝑤 = |

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗

 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠 
| –  𝑤𝑓 

(2) 

 
where xi,t fitness

∗  denotes the best global solution’s fitness 

function value that has been revealed so far. 𝑥𝑖, 𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

denotes the current solution’s value of the fitness function; 𝑤𝑓 

denotes a weight factor, randomly set between 0 and 1, which 

is used for controlling the 𝑓𝑤. 

Later, the algorithm considers some settings for (𝑓𝑤), for 

instance, if 𝑓𝑤 = 1 or 0, and xi,t fitnees = 0, the algorithm sets 

the pace randomly according to equation (3). On the other 

hand, if 𝑓𝑤 > 0 and 𝑓𝑤 < 1, then the algorithm generates a 

random number in the [-1, 1] range to make the scout search in 

every direction; when 𝑟 < 0, pace is calculated according to 

equation (4), and when 𝑟 >= 1, pace is calculated according to 

equation (5). 

 

{

𝑓𝑤 =  1 𝑜𝑟 𝑓𝑤 = 0 or 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0,    𝑝𝑎𝑐𝑒 =   𝑥𝑖,𝑡 ∗ 𝑟      (3)

 𝑓𝑤 > 0 𝑎𝑛𝑑 𝑓𝑤 < 1{
𝑟 < 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡

∗ ) ∗ 𝑓𝑤 ∗ −1 (4)

 𝑟 ≥ 0,     𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡
∗ ) ∗ 𝑓𝑤       (5)

} 
} 

 
where 𝑟 denotes a random number in the range of [-1, 1], 

𝑥𝑖, 𝑡 denotes the current solution, and xi,t
∗  denotes the global 

best solution achieved thus far. Among various applications 

for random numbers, the FDO selects Levy flight because it 

considers further stable movement via its fair distribution 

curve [7]. 

The FDO pace is saved in every iteration for the accepted 

solution, and then it can be used next time. 

 
III. THE IMPROVED FITNESS-DEPENDENT OPTIMIZER 

The IFDO is developed from the original FDO, which is an 

evolutionary optimization algorithm that was proposed by Jaza 

and Tarik [27]. The idea of this algorithm is essentially based 

on the generative process and collective decision-making used 

by bees. The bees search for many possible hives to obtain a 

new proper hive. Based on the original FDO, our proposed 

improved fitness-dependent optimizer is introduced, and it 

includes two phases: the updating of the scout bee position, 

which is improved by the functionalization of certain 

parameters, and the randomization of the weight factor (𝑤𝑓) in 

the [0, 1] range. Accordingly, this section contains two parts. 

 
1) Updating the Scout Bee Position 

The IFDO, to create a different way of movement, applies 

order and cohesion, which are two vital signifiers of group 

motion; cohesion inside a group defines the distance between 

members, whereas members' alignment inside a group can be 
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indicated by order when it is measured as divergence. 

Effective movement and maximization of the benefits of 

grouping for individual group members rely on better group 

cohesion and divergence [54]. 

In the original FDO, to achieve a more suitable solution, the 

scout bee adds pace to the current position in searching for 

new positions, as expressed in equation (1). In the IFDO, this 

equation is improved by adding two parameters, such as 

alignment and cohesion, to the pseudocode of the IFDO 

illustrated (see Figure (1)). In the following, the new 

movement of the artificial scout bee is expressed as:   

 

 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 +  𝑝𝑎𝑐𝑒 + (𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∗
1
𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛⁄ ) (6) 

   
where 𝑖 is the current artificial scout bee (search agent), 𝑡 is 

the current iteration; the pace is the rate of the movement and 

the artificial bee direction, 𝑋 is an artificial bee, and alignment 

is the pace matching of scouts to that of other scouts in 

neighborhoods, and cohesion, is the inclination of scouts in the 

direction of the center of the mass of the neighborhood. 

This improvement has been made in the light of scout bee 

behavior, which is always attracted to better solutions and 

avoids decreased chances of obtaining better solutions [27]. 

To calculate the alignment and cohesion behaviors, the scouts’ 

neighbors' search landscape should be determined as shown in 

the pseudocode of the IFDO (see Figure (1)). In the IFDO, the 

search landscape of the artificial scout's neighbors is expressed 

as follows: 

 

𝑛𝑙 =  
𝑙𝐵

2∗𝑃𝐼
          (7) 

 

where 𝑛𝑙 is the landscape of the neighbors, and 𝑙𝐵 is the 

landscape boundary. To functionalize these two suggested 

parameters to update the scout bee position, it should be 

determined whether the scouts fall into the landscape of the 

neighbors (𝑙𝑛), as shown in the pseudocode of the IFDO (see 

Figure (1)). The alignment and cohesion can be calculated 

according to equations (8) and (9). 
 

{
 
 

 
 𝑛 = 𝑋 − 𝑋𝑖 ,   𝑛 = 𝑛𝑙 𝑜𝑟 𝑛 < 𝑛𝑙 ,   𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑘 =

∑ 𝑝𝑎𝑐𝑒𝑘
𝑁
𝑘=1

𝑁
 (8)

 𝑛 = 𝑋 − 𝑋𝑖 ,   𝑛 = 𝑛𝑙 𝑜𝑟 𝑛 < 𝑛𝑙 ,   𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛𝑘 =
∑ 𝑋𝑘
𝑁
𝑘=1

𝑁
−𝑋(9)

  }
 
 

 
 

 

 

where 𝑛 represents a scout in the neighbors’ landscape and 

the role of the variable n is signifying which scout participates 

in  determining the alignment and cohesion, 𝑋 represents the 

current scout’s position, 𝑁 represents the neighborhood’s 

number, 𝑝𝑎𝑐𝑒𝑘  is the pace matching of scouts to that of other 

scouts in neighborhoods, and 𝑥𝑘 represents the position of the 

k
th 

neighboring scout. 

In the IFDO implementation, there are upper boundaries and 

lower boundaries for the dimensions of the agents to address 

weight values that are too large or small. See equations (10) 

and (11). 

{
wvb > ub,wvb = ub ∗ nrd     (10)
wvb < lb,wvb = lb ∗ nrd       (11)

} 

where 𝑤𝑣𝑏 is the weight value of a bee, 𝑢𝑏 is the upper 

boundary of the weight value of a bee, 𝑛𝑟𝑑 is the new random 

double value, and 𝑙𝑏 is the lower boundary of the weight value 

of a bee. 

The IFDO randomly moves the agents. The agent who 

remains still for finite time is the global best for this status; 

therefore, that agent randomly moves, and its movement will 

not be accepted until the agent obtains a better movement. See 

equation (3). 

Because the FDO algorithm is PSO-based, this paper tries to 

add some PSO principles, such as alignment and cohesion, to 

improve the FDO algorithm from the perspective of 

convergence. Moreover, the IFDO has the same mathematical 

complexity as that of the FDO with a slight change in space 

complexity. The IFDO has time complexity O (d*p + COF*p) 

for each iteration, where d is the dimension of the problem, p 

is the population size, and COF is the cost of the objective 

function. On the other hand, IFDO has space complexity O 

(COF*p + p*pace+(alignment*1/cohesion)) for all iterations, 

where pace+ (alignment*1/cohesion) is the best previous pace 

stored. Hence, for the total number of iterations, the time 

complexity in the IFDO is comparable. On the other hand, for 

the progress of iterations, its space complexity will be the 

same. Space complexity is slightly increased in the IFDO 

compared to the FDO due to the addition of two additional 

loops to calculate alignment and cohesion, although this 

increase is negligible, especially in modern computers, which 

have a substantial amount of memory space and computational 

time; this causes the IFDO to have decreased time complexity 

and better convergence. 

 
2) Randomization Weight Factor 
The original FDO uses pace as the degree of movement and 

the artificial bee direction. The regular fitness weight (fw) 

value is used to manage the pace. On the other hand, random 

mechanisms completely determine the pace direction. Hence, 

the minimization of fw is expressed according to equation (2). 

The authors of the FDO algorithm stated that the weight 

factor is used to control the fitness weight and that the value of 

the weight factor is either 0 or 1; if 𝑤𝑓 = 0, it is a more stable 

search, and if wf = 1, it the convergence is high, and the 

chance of coverage is weak. Nevertheless, the authors 

mentioned that while the fitness function value entirely 

depends on the optimization problem, the reverse may also 

happen. Consequently, in our improved fitness-dependent 

optimizer, we use a random mechanism to control the fitness 

weight by generating a weight factor in the [0, 1] range, as 

shown in the pseudocode of the IFDO (see Figure (1)), to 

increase the IFDO performance, as is shown from the resulting 

test in section (4). In our proposed improvement, we change 

equation (2), as shown in equation (12). 

 

 
𝑓𝑤 = |

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗

 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑒𝑠  
| 

(12) 
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With equation (12), we find the fitness weight value and 

then check if it is less than or equal to the generated weight 

factor, as shown in the pseudocode of the IFDO (see Figure 

(1)); if it is, then the weight factor is ignored in controlling the 

fitness weight. Otherwise, the weight factor participates in 

controlling the fitness weight according to equation (13). 

 

𝑓𝑤 = 𝑓𝑤 −𝑤𝑓     (13) 

 

This is a new way of finding the fitness weight, which is 

avoided by ignoring 𝑤𝑓 in most cases, and 𝑤𝑓 reasonably 

participates in many cases. In the IFDO, the weight factor is 

randomly set in every iteration for each scout, and a new 𝑤𝑓 is 

generated in the new [0, 𝑤𝑓] range when a new, better 

solution is accepted, as shown in the pseudocode of the IFDO 

(see Figure (1)). From there, new 𝑤𝑓 limited in [0, 𝑤𝑓] is 

better while for a new solution the IFDO will be more stable 

and higher coverage than the previous solution due to 

decreasing 𝑤𝑓 for each iteration, as well as, it has more 

convergence than the setting 𝑤𝑓 = 0. 

 
 

IV. RESULTS AND DISCUSSION 

This improved fitness-dependent optimizer’s performance is 

verified using various standard test functions that exist in the 

literature; readers who are interested in knowing more about 

the methods of comparison can see references [27] [ 55] [57] 

[58]. Furthermore, the FDO implementation that can be found 

through the link https://github.com/Jaza-Abdullah/FDO-Java 

was downloaded; it was coded via the Java language. Then, 

the IFDO was created with the same language, and the IFDO 

algorithm was tested with the same parameter setting, the 

same test functions, and the same number of iterations as used 

in the FDO’s tests. Moreover, the performance of the IFDO is 

evaluated against six state-of-the-art algorithms, namely, 

FDO, DA, GA, PSO, SSA, and WOA. The results of the tests 

of the 19 classical standard test functions and CEC-C06 tests 

for the different algorithms are taken from the original FDO 

work [27]. In addition, two real-world applications are 

optimized using the IFDO; therefore, this section consists of 

five parts, as follows: 

 
1) Classical Benchmark Test Functions 
The IFDO performance is tested with three groups of test 

functions [55]. There are various features for the test 

functions, such as unimodal, multimodal, and composite. To 

measure the algorithm’s specific outcomes, these groups of 

tests are utilized. The stages of exploitation and convergence 

to infer a single optimum are verified by unimodal benchmark 

functions. On the other hand, there are many optimal solutions 

for the second feature (multimodal test functions); avoidance 

of local optima and stages of exploration are verified with this 

feature. It is worth mentioning that among the many optimal 

solutions, most are local optima, and there is only one global 

optimum. Avoiding local optimal solutions and moving 

toward a global optimum solution is essential to an algorithm. 

Additionally, with the third feature (composite test functions), 

various search areas can have various forms and large 

numbers of local optima. Composite test functions are 

generally moved, amalgamated, biased, and altered 

adaptations of other test functions. Difficulties that occur in 

real-world search areas can be identified by this type of 

standard function (see Tables 3, 4 and 5 in the appendix) [27]. 

 

 
 

FIGURE 1. IFDO Pseudocode 

 

To determine the average and standard deviation for each 

algorithm in Table (1) based on searching for the optimal 

solution, the algorithms in Table (1) are tested 30 times for 

500 iterations and 30 scout bees each with 10 dimensions. 

Parameter explanations for the DA, PSO, and the GA can be 

obtained in [55]. Moreover, there is only one parameter for the 

IFDO and the standard FDO, which is 𝑤𝑓. For the FDO, in the 

test functions in Table (1), in only two of the cases (2 and 8), 

𝑤𝑓 is set to 1, and for all other cases, 𝑤𝑓 is set to 0. In 

contrast, in our proposed algorithm (IFDO), 𝑤𝑓 is set 

randomly in the [0, 1] range for all of the cases. However, this 

Initialize scout bee population 𝑋𝑡,𝑖 (i = 1, 2, ..., n) 

Generate random weight factor (wf) in [0, 1] range 

while iteration (t) limit is not reached  

     for each artificial scout bee 𝑋𝑡,𝑖 

        find best artificial scout bee 𝑥𝑡,𝑖
∗  

        generate random-walk r in [-1, 1] range 

        if( 𝑋𝑡,𝑖 fitness == 0) (avoid dividing by zero) 

             fitness weight = 0    

        else 

            calculate fitness weight, equation (12) 

if(fitness weight > wf) 

 calculate fitness weight, equation (13)  

 end if 

        end if 

 determine neighbors' search landscape (ln), equation (7) 

 if(x-xt,i < ln or x-xt,i == ln) 

 calculate alignment, equation (8) 

 calculate cohesion, equation (9) 

 end if 

        if (fitness weight = 1 or fitness weight = 0) 

            calculate pace using equation (3)  

        else 

              if (random number >= 0) 

                    calculate pace using equation (5)  

              else 

                   calculate pace using equation (4)  

              end if 

          end if 

          calculate 𝑋𝑡+1,𝑖, equation (6)  

          if( 𝑋𝑡+1,𝑖  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑋𝑡,𝑖  𝑓𝑖𝑡𝑛𝑒𝑠𝑠)  
move accepted and 𝑝𝑎𝑐𝑒 saved 

    generate new wf in [0, wf]  

          else  

             calculate 𝑋𝑡+1,𝑖, equation (6) 

                                 … with previous 𝑝𝑎𝑐𝑒   

   if (𝑋𝑡+1,𝑖  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑋𝑡,𝑖  𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 
         move accepted and save 𝑝𝑎𝑐𝑒  

       generate new wf in [0, wf] 

   else 

                    maintain current position (don’t move) 

  end if 

         end if 

   end for 

end while 
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range will change when the algorithm detects a more suitable 

solution; for more detail, see Figure (1). During the test, only 

the test function TF8 is reduced to -2917375.29380209, and 

all of the other test functions are reduced to 0.0 (details of the 

conditions of the test functions can be found in Appendix 

Tables 3, 4 and 5). To confirm that the algorithm does not 

discriminate in the direction of origin, some degree of shifting 

is utilized for some of the test functions. 

The IFDO results and the FDO, GA, DA, and PSO results are 

illustrated in Table (1). The results show that the IFDO in 

TF5, TF8, TF11, and TF12 was driven better overall in 

comparison with the selected comparator algorithms. 

However, the IFDO was worse than the other algorithms in 

TF6, TF7, and TF13. Moreover, the results of TF7, TF17, and 

TF18 showed that the IFDO was more comparable to the  

 

original FDO, whereas the results of TF10 and TF19 

demonstrated that the IFDO outperformed the other 

competitor algorithms. Additionally, the results of TF1, TF3, 

TF4, TF9, TF14, TF15, and TF16, which are highlighted in 

green in Table (1), proved that the IFDO surpassed the 

original FDO, GA, PSO, and DA in all the situations. 

 
2) CEC-C06 2019 Benchmark Test Functions 
To further evaluate the IFDO, the algorithm was tested on 10 

current test function sets of the CEC standard. Professor 

Suganthan and his colleagues enhanced these test functions for 

the optimization of a single objective problem [56]. A set of 

CEC standard test functions are planned to be used in the 

annual optimization competition “The 100-Digit Challenge”, 

which is a common name for this set of test functions (see 

Table (2)). CEC01 to CEC03 are not similar to the test 

functions CEC04 to CEC10, while CEC01 to CEC03 are not 

shifted and rotated. However, a feature of scalability is utilized 

in both CEC01 to CEC03 and CEC04 to CEC10. Regarding 

the parameters, the CEC benchmark developer provided a set 

of parameters; the various dimensions for CEC01 to CEC03 

are as shown in the Appendix in Table 6, and a 10-

dimensional minimization problem in the [-100, 100] 

boundary range was set for the functions CEC04 to CEC10. 

The CEC global optimum is entirely bound to point 1 to be 

more appropriate. With the FDO, the three other recent 

algorithms for optimization, DA, WOA, and SSA, are tested 

for competitiveness with our proposed IFDO. Various 

motivations led to choosing these recent algorithms. First, the 

improved FDO, the original FDO, and the other chosen 

algorithms are all PSO-based algorithms. Second, in previous 

works, these algorithms were obviously used. Third, on both 

real-world problems and benchmark test functions, all of these 

algorithms have exceptionally good results. Fourth, the 

authors of these algorithms freely provided the algorithms’  

 

operating methods. It is worth mentioning that the parameter 

settings of the chosen algorithms were not changed during the 

test. The same settings were used for all the opponents, as 

shown in papers [27] [55] [57] [58]. Readers can access the 

MATLAB parameter setting arrangement and their 

implementations for the algorithms in this reference if desired 

[59]. Furthermore, the generated random weight factor (wf) in 

the [0, 1] range is used for all test functions; however, this 𝑤𝑓  

is regenerated in [0,𝑤𝑓] for the next iteration if a better fitness 

weight (𝑓𝑤) is achieved (see the pseudocode in Figure (1)). 

To perform the test of IFDO and other competitors’ algorithms 

as presented in Table (2), 30 agents with 500 iterations were 

applied to each algorithm. 

In the cases of CEC02, CEC03, CEC09, and CEC10, the 

IFDO was equal to the original FDO; however, the standard 

deviation (SD) was changed somewhat. On the other hand, the 

IFDO surpasses other competitors’ algorithms in those cases. 

In cases CEC04 - CEC08, except for CEC06, the IFDO 

outperformed all of the opponents; however, in the case of 

CEC06, the IFDO performed worse than the DA, WOA, and 

TABLE 1 

FDO AND CHOSEN ALGORITHMS [27] WITH IFDO CLASSICAL BENCHMARK RESULTS 

Test 

Function 

IFDO FDO DA PSO GA 

AV. ST. AV. ST. AV. ST. AV. ST. AV. ST. 

TF1 5.38E-24 2.74E-23 7.47E-21 7.26E-19 2.85E-18 7.16E-18 4.2E-18 1.31E-17 748.5972 324.9262 

TF2 0.534345844 1.620259633 9.388E-6 6.90696E-6 1.49E-05 3.76E-05 0.003154 0.009811 5.971358 1.533102 

TF3 2.88E-07 6.90E-07 
8.5522E-

7 
4.39552E-6 1.29E-06 2.1E-06 0.001891 0.003311 1949.003 994.2733 

TF4 2.60E-04 9.11E-04 6.688E-4 0.0024887 0.000988 0.002776 0.001748 0.002515 21.16304 2.605406 

TF5 1.94E+01 3.31E+01 23.50100 59.7883701 7.600558 6.786473 63.45331 80.12726 133307.1 85,007.62 

TF6 4.22E+06 8.15E-09 
1.422E-

18 
4.7460E-18 4.17E-16 1.32E-15 4.36E-17 1.38E-16 563.8889 229.6997 

TF7 5.68E-01 3.14E-01 0.544401 0.3151575 0.010293 0.004691 0.005973 0.003583 0.166872 0.072571 

TF8 -2.92E+06 2.24E+05 -2285207 206684.91 -2857.58 383.6466 -7.1E+11 1.2E+12 -3407.25 164.4776 

TF9 1.35E+01 6.66E+00 14.56544 5.202232 16.01883 9.479113 10.44724 7.879807 25.51886 6.66936 

TF10 5.18E-15 1.67E-15 
3.996E-

15 
6.3773E-16 0.23103 0.487053 0.280137 0.601817 9.498785 1.271393 

TF11 0.525690405 8.90E-02 0.568776 0.1042672 0.193354 0.073495 0.083463 0.035067 7.719959 3.62607 

TF12 1.81E+01 2.57E+01 19.83835 26.374228 0.031101 0.098349 8.57E-11 2.71E-10 1858.502 5820.215 

TF13 4.10E+09 1.50E-05 10.2783 7.42028 0.002197 0.004633 0.002197 0.004633 68,047.23 87,736.76 

TF14 2.68E-07 4.68E-07 
3.7870E-

7 
6.3193E-7 103.742 91.24364 150 135.4006 130.0991 21.32037 

TF15 4.03E-16 9.25E-16 0.001502 0.0012431 193.0171 80.6332 188.1951 157.2834 116.0554 19.19351 

TF16 9.14E-16 3.61E-16 0.006375 0.0105688 458.2962 165.3724 263.0948 187.1352 383.9184 36.60532 

TF17 2.38E+01 1.24E-01 23.82013 0.2149425 596.6629 171.0631 466.5429 180.9493 503.0485 35.79406 

TF18 2.24E+02 2.68E-05 222.9682 9.9625E-6 229.9515 184.6095 136.1759 160.0187 118.438 51.00183 

TF19 3.15E+01 1.32E-03 22.7801 0.0103584 679.588 199.4014 741.6341 206.7296 544.1018 13.30161 
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SSA but better than the original FDO. Finally, it is clear that 

the average IFDO, FDO, and WOA results are equal, whereas 

the standard deviation of WOA is equal to 0, which means 

there is no way to promote enhancement because similar 

results are obtained in all cases. 
 
3) Quantitative Measurement Metrics 

Two quantitative metrics were used for further investigation 

and detailed observation of IFDO, as shown in Figures 2 and 

3. For each quantitative metric, among the unimodal standard 

functions TF1 to TF7, the first test function is chosen, among 

the multimodal standard test functions TF8 to TF13, the 

second test function is chosen, and among the composite 

standard functions TF14 to TF19, the third test function is 

chosen. For each investigation, searching the two-dimensional 

search space through 150 iterations was performed using 10 

search agents. 

 

The first measurement metrics test demonstrates how the 

search space is covered by the scout bee and presents the 

course of the convergence. During the test, the positions of the 

scout bees are logged from the start of the test to the end. 

Hence, this metric is simply a scout bee search history. At 

first, the whole area is rapidly discovered by the scout bee, and 

then, in the direction of optimality, they steadily move. Figure 

(2) presents the first quantitative metrics test. 

The second measurement metric test illustrates the iteration 

process that measures the agent’s global best convergence. 

When the number of iterations is increased, xi* (the global 

best agent) is more precise, and when the scout bee focuses on 

the exploitation and local search, rapid changes are observed. 

See figure (3). 

Generally, the IFDO has the ability to successfully explore 

the search space, justifiably move in the direction of 

optimality and avoid local optima. 

 

FIGURE 2. Using unimodal, multimodal, and composite test functions for the IFDO algorithm search history 

 

FIGURE 3. Using unimodal, multimodal, and composite test functions for the IFDO algorithm convergence curve

 

TABLE 2 

RESULTS OF THE IEEE ECE BENCHMARK 2019 [27] 

Test Function 
IFDO FDO DA WOA SSA 

AV. ST. AV. ST. AV. ST. AV. ST. AV. ST. 

CEC01 2651.198672 13944.10274 4585.27 20707.627 543×108 669×108 411×108 542×108 605×107 475×107 

CEC02 4.000002146 1.00E-05 4.0 3.22414E-9 78.0368 87.7888 17.3495 0.0045 18.3434 0.0005 

CEC03 13.70240422 4.82E-09 13.7024 1.6490E-11 13.7026 0.0007 13.7024 0.0 13.7025 0.0003 

CEC04 31.19516293 12.91586061 34.0837 16.528865 344.3561 414.0982 394.6754 248.5627 41.6936 22.2191 

CEC05 1.13187643 0.070551978 2.13924 0.085751 2.5572 0.3245 2.7342 0.2917 2.2084 0.1064 

CEC06 12.12714515 0.52079368 12.1332 0.600237 9.8955 1.6404 10.7085 1.0325 6.0798 1.4873 

CEC07 115.5677518 10.27465902 120.4858 13.59369 578.9531 329.3983 490.6843 194.8318 410.3964 290.5562 

CEC08 4.940001939 0.891043403 6.1021 0.756997 6.8734 0.5015 6.909 0.4269 6.3723 0.5862 

CEC09 2.0 3.10E-15 2.0 1.5916E-10 6.0467 2.871 5.9371 1.6566 3.6704 0.2362 

CEC10 2.718281828 4.44E-16 2.7182 8.8817E-16 21.2604 0.1715 21.2761 0.1111 21.04 0.078 
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According to [60], if any algorithm’s fitness value in 

minimization problems decreases with increasing iteration 

number, it reaches optimality. 
 
4) Real World Applications of the IFDO 
Real-world problems are solved via the IFDO and FDO; in 

this section, we performed two real-world applications. 

The first application is the “aperiodic antenna array design,” 

which was already tried by the original FDO. The second 

application is the "pedestrian evacuation model", which, to the 

best of our knowledge, is a new optimization problem that 

determines the best main door location inside an open area to 

evacuate people with greater efficiency. The results of the 

IFDO and FDO are evaluated for both real-world problems. 

 

A- USE OF THE IFDO ON APERIODIC ANTENNA ARRAY 
DESIGNS. 

Developments in radio astronomy and radar methods from the 

1960s drew significant attention to aperiodic antenna arrays. 

Thinned antenna arrays and non-uniform antenna arrays are 

shown in Figure (4). 

Real-number vectors are needed to express a position in 

non-uniform arrays to optimize the element position with the 

intention of achieving the highest sidelobe level (SLL).  

Additionally, as shown in equation (7), a confident 

boundary position of the element is needed to avoid discordant 

lobes. Interested readers can consult [61]. 

The 10 elements of a non-uniform isotropic array are 

shown in figure (5) and setting the outermost element to have 

an average element position of 𝑑𝑎𝑣𝑔 = 0.5λ0 at position 

2.25λ0 is a reason for optimizing the positions of the four 

elements alone. The limitations of this optimization problem 

with four dimensions are expressed in equation (14) as 

follows: 

 

x_i ∈ |x_i − x_j |(0,2.25) > min{xi} 0.25λ_0 >
0.125λ_0.  i = 1,2,3,4. i ≠ j.                   (14) 

 

Nonetheless, there is no element that can be smaller than 

0.125λ0 or larger than 2.0λ0. Due to these limitations, each 

element has a boundary between 0 and 2.25 because the 

element 2.25λ0 is fixed, and the neighboring elements do not 

have the ability to be closer than 0.25λ0. Equation (15) defines 

the problem of the fitness function: 

 

   𝑓 =   𝑚𝑎𝑥{20 𝑙𝑜𝑔 |𝐴𝐹(𝜃)| }     (15) 

 

where 

AF(θ) =  ∑cos[(cos θ − cos θs)2πxi]

4

i=1

 

                + cos[(cos θ − cos θs)2.25 × 2π] 

   

(16) 

 

For this work, Figure (5) shows that θs = 90
° [62]. 

 

 
 

FIGURE 4. A thinned antenna array and a non-uniform 

antenna array [61]. 

 

 
 

FIGURE 5. Ten-element arrangements in the array [62]. 

 

 
 

FIGURE 6. The average fitness and global optimum as a result 

of optimizing aperiodic antenna array designs in 200 iterations 

with 20 artificial scout bees using the standard FDO. 

 

Based on the limitations stated in equation (14), for twenty 

artificial scout bees within 200 iterations, the original FDO 

algorithm was utilized to optimize this problem. Moreover, 

based on equation (15), the average fitness value and the 

global best fitness in each iteration are shown in Figure (6). 

The results indicate that with the element locations 

{0.713,1.595,0.433,0.130} in iteration 78, the global best 

solution was achieved. 

Likewise, regarding the mentioned restrictions of this 

problem, similar to the original FDO, this problem was 

optimized using the IFDO algorithm in 200 iterations for 

twenty search agents (artificial bees), as shown in Figure (7), 

based on equation (15), which contains the average fitness 

value and the global best fitness in each iteration. The result 

shows that with element locations {0.701, 1.552, 0.402, 

0.103}, the global best solution was achieved in iteration 29. 

Consequently, from both the IFDO and FDO results, it clearly 

appears that the IFDO is better for optimizing this problem 

due to its increasing capability of making better decisions in 

exploring better hives among the existing potential hives by 

adding alignment and cohesion when the scout wants to go to 

a different location in the defined space search; it also avoids 
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unsuitable exploitation in achieving a better solution when, for 

every achieved better solution, the IFDO generates a new 𝑤𝑓 

to control the 𝑓𝑤 (see the pseudocode in Figure (1)). 

 

 
 

FIGURE 7. The average fitness and global optimum as a result 

of optimizing aperiodic antenna array designs in 200 iterations 

with 20 artificial scout bees using the IFDO. 

 

B- IFDO VS THE FDO ON A PEDESTRIAN EVACUATION 
MODEL. 

In the last two decades, scenarios involving the evacuation of 

crowds and pedestrians have been studied in many works to 

reduce the negative aspects of emergency situations, such as 

deaths, damages, and injuries [63]. In this part of this paper, 

we create a simple pedestrian evacuation model based on a 

cellular automata model (see Figure (8)), fuzzy logic ideas, 

and statistical equations. Readers who desire to know how this 

evacuation model is created and how the ideas of fuzzy logics 

and statistical equations are utilized to define the pedestrians’ 

desired speeds can access reference [64]. Additionally, the 

evacuation time of each pedestrian is calculated via the 

pedestrian’s desired speed and its distance from the exit door 

as expressed in equation (17), and the average of the 

evacuation time of the pedestrians is used as the average 

fitness value. 

 

𝑒𝑣𝑎𝑐𝑇𝑖𝑚𝑒 = (𝑑𝑖𝑠𝑡/2)  * 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑝𝑒𝑒𝑑 (17) 

 

where 𝑑𝑖𝑠𝑡 represents the pedestrian’s distance from the 

door exit locations, which is calculated from the equation of 

distance (18), and 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑝𝑒𝑒𝑑 represents the pedestrian's 

speed. 

 

𝑑𝑖𝑠𝑡 =  √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2  (18) 

 

where 𝑥2 and 𝑦
2
 represent the coordinates of the exit door 

location, and 𝑥1 and 𝑦
1
 represent the coordinates of the 

pedestrian's location. 

Finally, both the IFDO and FDO algorithms are applied to 

this model to achieve the global best solution by finding the 

best location of the main door through which to evacuate 

people during the evacuation process. The results showed that 

the IFDO was more efficient and reached the optimum 

solution with only 38 iterations, whereas the FDO reached the 

optimum solution with 57 iterations. Figure (9) shows the 

results of both algorithms. 

 
 

FIGURE 8. The area of the pedestrian evacuation model. 

 

The reasons behind the IFDO’s efficiency are related to the 

selected parameters, alignment, and cohesion, in updating the 

position of the artificial scout bees, which makes the algorithm 

perform better explorations in finding a suitable solution in the 

landscape. Second, the randomization in defining 𝑤𝑓 in every 

iteration for each scout bee when a better solution is achieved 

makes the algorithm avoid unnecessary exploitations to gain a 

better solution. Third, the IFDO, as regards covering a 

reasonable search space, converges sooner to global 

optimality. 

 

 
 

 

(9a) 

(9b) 
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FIGURE 9. IFDO and FDO global optimum and average 

fitness 

(a) IFDO global optimum, (b) IFDO average fitness, (c) FDO 

global optimum, and (d) FDO average fitness 

 

For both FDO and IFDO, after testing on various real-world 

applications and classical and modern benchmark test 

functions, it was found that their performance depended on the 

number of search agents. Hence, both algorithms are limited to 

using a small number of search agents; for example, the 

accuracy of the algorithms suffers noticeably when they use 

fewer than five search agents. Conversely, using a large 

number of search agents enhances the accuracy and rate with 

more space and time. 

 
5) IFDO VS FDO Execution Time 
Here, execution time is considered for various tests, such as 

classical benchmark test functions, modern IEEE CEC 2019 

benchmark test functions, and two real-world applications, 

aperiodic antenna array designs (AAAD) and pedestrian 

evacuation models (PEMs). The results of the total time are 

briefly provided in Tables 7, 8, and 9. 

 

From the results shown in table (7), the execution times of the 

modern IEEE CEC 2019 benchmark test functions for both the 

IFDO and FDO were relatively the same; for instance, the 

IFDO had a smaller total time of execution than the FDO in 

the execution of the CEC02, CEC05, CEC07, CEC08, and 

CEC10 cases; however, the IFDO took a larger portion of the 

total time to execute the CEC01, CEC03, and CEC06 cases. 

The IFDO and FDO took the same total time to execute the 

CEC04 and CEC09 cases. Moreover, the results of the 

classical benchmark test functions in table (8) show that the 

IFDO requires less time than the FDO to execute most of the 

test functions, such as TF1, TF5, TF7, TF10, TF12, TF13, 

TF15, TF18, and TF19, the same amount of time in a few 

cases, such as TF4 and TF14, and more time in some cases, 

such as TF2, TF3, TF6, TF8, TF9, TF11, TF16, and TF17. 

Finally, the execution time results of the real-world 

applications in Table (9) illustrate that the IFDO is more 

capable than the FDO from the perspective of spending time 

on PEM real-world applications, whereas it is not as powerful 

as the FDO in executing the AAAD. 

 
V. ANALYSIS OF THE RESULTS 

The IFDO modified the FDO in both scout bee movements, to 

update their positions, and weight factor (𝒘𝒇), to control the 

fitness weight (𝒇𝒘), to find a better solution. From the results 

and discussion, it appears that these changes improve both 

exploration and exploitation. From there, these changes 

improve the time complexity and convergence. To evaluate 

this idea, readers can reference subsection IV in subsections 1, 

2, 3, 4, and 5 to see that after the modifications, the IFDO was 

better in the classical benchmark test function results than the 

TABLE 8 

RESULTS OF THE IFDO VS FDO EXECUTION TIME FOR THE 

CLASSICAL BENCHMARK TEST FUNCTIONS 

Test function 
Execution time 

IFDO FDO 

TF1 15 seconds 16 seconds 

TF2 19 seconds 17 seconds 

TF3 21 seconds 18 seconds 

TF4 16 seconds 16 seconds 

TF5 14 seconds 17 seconds 

TF6 23 seconds 18 seconds 

TF7 21 seconds 24 seconds 

TF8 32 seconds 31 seconds 

TF9 34 seconds 32 seconds 

TF10 29 seconds 33 seconds 

TF11 40 seconds 35 seconds 

TF12 41 seconds 44 seconds 

TF13 55 seconds 58 seconds 

TF14 3 seconds 3 seconds 

TF15 7 seconds 9 seconds 

TF16 29 seconds 27 seconds 

TF17 25 seconds 22 seconds 

TF18 26 seconds 27 seconds 

TF19 20 seconds 24 seconds 

TABLE 9 

RESULTS OF THE IFDO VS FDO EXECUTION TIME FOR REAL-

WORLD APPLICATIONS 

Application 
Execution time 

IFDO FDO 

AAAD 47 seconds 44 seconds 

PEM 28 seconds 31 seconds 

TABLE 7 

RESULTS OF THE IFDO VS FDO EXECUTION TIME FOR THE 

IEEE ECE BENCHMARK 2019 

Test function 
Execution time 

IFDO FDO 

CEC01 15 seconds 2 seconds 

CEC02 19 seconds 20 seconds 

CEC03 21 seconds 6 seconds 

CEC04 16 seconds 16 seconds 

CEC05 14 seconds 20 seconds 

CEC06 49 minutes 46 seconds 45 minutes 38 seconds 

CEC07 21 seconds 55 seconds 

CEC08 31 seconds 32 seconds 

CEC09 34 seconds 34 seconds 

CEC10 29 seconds 35 seconds 

(9c) 

(9d) 
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other competing algorithms. For instance, in TF1, TF3, TF4, 

TF9, TF14, TF15, TF16, as well as in TF7, TF17, and TF18, 

the results showed the IFDO was more similar to the original 

FDO, while the results of TF10 and TF19 confirmed that the 

IFDO outperformed the other competing algorithms. 

Moreover, the IFDO had better results in cases CEC04-CEC08 

than the opponents, except for case CEC06, in which it had a 

worse result than the opponents and a better result than the 

FDO. On the other hand, in cases CEC02, CEC03, CEC09, 

and CEC10, although the standard deviation was different 

from that in the original FDO, the IFDO was equivalent to that 

in the original FDO. Furthermore, the results of the 

quantitative measurement metrics revealed that the IFDO had 

the ability to successfully explore the search space, move 

toward optimality, and avoid the local optima. Additionally, 

the IFDO and FDO were used with real-world applications in 

200 iterations for twenty search agents (artificial bees), and 

the IFDO outperformed the FDO algorithm. For example, in 

the aperiodic antenna array designs, the IFDO reached 

optimality with just 29 iterations, while the number of 

iterations needed in the FDO was 78. In the pedestrian 

evacuation model, the IFDO reached optimality in only 38 

iterations, while the FDO required 57 iterations. From these 

results, it is possible to say that IFDO generally had a better 

performance in reaching optimality and better exploration and 

exploitation. Finally, the IFDO was compared with the FDO 

from the perspective of execution time. For this purpose, the 

classical benchmark test functions, IEEE CEC 2019 

benchmark test functions, and two real-world applications, 

AAAD and PEM, were utilized. From the results, both IFDO 

and FDO were relatively similar in most of the results for the 

classical benchmark and the IEEE CEC 2019 benchmark test 

functions. However, the results of these algorithms in 

optimizing the two real-world applications were generally 

different. For instance, the IFDO required a shorter time than 

the FDO to optimize PEM: 28 seconds and 31 seconds, 

respectively. Conversely, the IFDO required a larger portion 

of time than the FDO to optimize AAAD: 47 seconds and 44 

seconds, respectively. 
 

VI. CONCLUSION 

Improvements have been made to the fitness-dependent 

optimizer from two main perspectives. First, for updating the 

artificial scout bee position, in the IFDO, two additional 

parameters were added to the position update equation in the 

original FDO: alignment and cohesion. Second, the weight 

factor (𝑤𝑓) was changed from a stable value to a random 

value in controlling the fitness weight of the FDO algorithm. 

These changes were made in the IFDO with the aim of moving 

the scout bees toward optimality with better performance. To 

evaluate the performance of the IFDO, it was tested with 19 

single-objective benchmark test functions (unimodal, 

multimodal and composite test functions). Moreover, the 10 

modern benchmarks of CEC-C06 were utilized to test the 

IFDO. Furthermore, quantitative measurement metrics were 

used to show that the IFDO succeeded in exploring the search 

space, moving towards optimality, and avoiding the local 

optima. Additionally, both the IFDO and FDO were used to 

execute the classical benchmark test functions, IEEE CEC 

2019 test functions, and two real-world applications. Each test 

function’s total time of execution was specified and compared.  

The results of the IFDO tests with the classic and modern test 

functions were compared to those of the FDO, two other 

distinguished algorithms (GA and PSO), and three state-of-

the-art algorithms (SSA, WOA, and DA). According to the 

results, the IFDO, except for some cases in which it had 

comparable results, outperformed the preferred algorithms in 

most cases. It could be said that this advancement was due to 

the modification in updating the artificial scout position, 

which led to more convenient exploration during the search 

for a better solution among many potential hives (solutions), 

and due to the randomization of the 𝑤𝑓 for each scout bee in 

every iteration, which led to a better 𝑓𝑤 participating in 

making better decisions in the exploitation to find better 

solutions. Additionally, the IFDO produced faster 

convergence to global optimality when considering rational 

coverage of the search space. On the other hand, the use of 

various numbers of scout bees affected the accuracy, cost, 

time, and space of the algorithm. When more than five scout 

bees were used, the enhanced accuracy of the algorithm could 

be clearly seen; however, a smaller number of scout bees led 

to decreased accuracy of the algorithm. In addition, to confirm 

that the IFDO has the ability to address real-life applications, 

two real-world problems were selected: the first problem was 

an existing real-world “aperiodic antenna array design” 

problem, and the second problem was a real-world crowd 

evacuation problem that we created. In both applications, the 

IFDO outperformed the original FDO; in the first application, 

the FDO needed 78 iterations to discover the global optimal 

solution, whereas the IFDO needed only 29 iterations to obtain 

the global optimal solution. Additionally, in the second 

application, the IFDO outperformed the original FDO; 

although the IFDO needed only 38 iterations to obtain the 

optimal global solution, the FDO needed 57 iterations to 

achieve the same result. It is worth mentioning that because 

this performance is an improvement compared with the 

original FDO, the improved fitness-dependent optimizer was 

selected as the official name of this improved algorithm. This 

proposed algorithm is more suitable for application fields of 

engineering, design, industry, helath, education, energy, and 

evacuation. 

In future studies, multiobjective and binary objective 

optimization problems will be tested with the IFDO. Finally, 

adaptation and hybridization of the IFDO with other 

algorithms will be the main focus of future work. Also, the 

performance of IFDO can be further evaluated against other 

popular algorithms, such as WOA-BAT  [65], Donkey and 

Smuggler Optimisation [66], and Modified Grey Wolf 

Optimiser [67], Modifications of Dragonfly Algorithm [68], 

Modifications of Backtracking Algorithm [69]. 
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TABLE 3 

Unimodal standard functions [𝟑𝟎].

 

 

                                                                                                                                                                       

TABLE 4 

(10 DIMENSIONAL) MULTIMODAL STANDARD FUNCTIONS [30].

 

 

 

 

 

 

 
 

Functions Dimension Range Shift position 𝒇𝒎𝒊𝒏 

𝑻𝑭𝟏(𝒙) =  ∑𝑥𝑖
2

𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0 

𝑻𝑭𝟐(𝒙) =  ∑ |𝑥𝑖

𝑛

𝑖=1

| +∏|𝑥𝑖|

𝑛

𝑖=1

 
10 

 
[-10,10] [-3, -3, … -3] 0 

𝑻𝑭𝟑(𝒙) =  ∑(∑𝑥𝑗

𝑖

𝑗−1

)

2
𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0 

𝑻𝑭𝟒(𝒙) = max
𝑖
{|𝑥|, 1 ≤ 𝑖 ≤ 𝑛} 10 [-100, 100] [-30, -30, … -30] 0 

𝑻𝑭𝟓(𝒙) = ∑[100(𝑥𝑖+1 − 𝑥1
2)2

𝑛−1

𝑖=1

+ (𝑥𝑖 − 1)
2] 

10 [-30,30] [-15, -15, … -15] 0 

𝑻𝑭𝟔(𝒙) =  ∑([𝑥𝑖 + 0.5])
2

𝑛

𝑖=1

 10 [-100, 100] [-750, … -750] 0 

𝑻𝑭𝟕(𝒙) =∑𝑖𝑥𝑖
4 + random[0, 1]

𝑛

𝑖=1

 10 [-1.28,1.28] [-0.25, …-0.25] 0 

Functions Range Shift position 𝒇𝒎𝒊𝒏 

𝑻𝑭𝟖(𝒙) =  ∑−𝑥𝑖
2

𝑛

𝑖=1

sin (√|𝑥𝑖|) [-500, 500] [-300, … -300] 
-

418.9829 

𝑻𝑭𝟗(𝒙) =  ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 [-5.12,5.12] [-2, -2, …-2] 0 

𝑻𝑭𝟏𝟎(𝒙) =  −20𝑒𝑥𝑝(−0.2√∑𝑥𝑖
2

𝑛

𝑖=1

) − 𝑒𝑥𝑝 (
1

𝑛
∑cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20

+ 𝑒 

[-32, 32]  0 

𝑻𝑭𝟏𝟏(𝒙) =
1

4000
∑ 𝑥𝑖

2

𝑛

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 [-600, 600] [-400, … -400] 0 

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 > 𝑎

0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 < −𝑎

 

𝑻𝑭𝟏𝟐(𝑥) =
𝜋

𝑛
{10 𝑠𝑖𝑛(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] +
𝑛−1
𝑖=1

(𝑦𝑛 − 1)
2} + ∑ 𝑢(𝑥𝑖 , 10, 100, 4)

𝑛
𝑖=1 . 

 

𝑦𝑖 = 1 +
𝑥+1

4
. 

[-50,50] [-30, 30, … 30] 0 

𝑻𝑭𝟏𝟑(𝑥) =  0.1{𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)
2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 +

𝑛
𝑖=1

1)] + (𝑥𝑛 − 1)
2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4).

𝑛
𝑖=1   

[-50,50] [-100, … -100] 0 
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TABLE 5 

COMPOSITE STANADRD FUNCTIONS [30].

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Functions Dimension Range 𝒇𝒎𝒊𝒏 

𝑓1, 𝑓2, 𝑓3…𝑓10 = Sphere function 

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1] 

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
5

100
,
5

100,
,
5

100
, …

5

100
] 

TF14 (CF1) 

10 [-5, 5] 0 

𝑓1, 𝑓2, 𝑓3…𝑓10 = Griewank’s function 

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1] 

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
5

100
,
5

100,
,
5

100
, …

5

100
] 

TF15 (CF2) 

10 [-5, 5] 0 

𝑓1, 𝑓2, 𝑓3…𝑓10 = Griewank’s function 

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1] 
𝜆1, 𝜆2, 𝜆3…𝜆10 = [1,1,1, … .1] 

TF16 (CF3) 

10 [-5, 5] 0 

𝑓1, 𝑓2 = Ackley’s function 

𝑓3, 𝑓4 = Rastrigin’s function 

𝑓5, 𝑓6 = Weierstrass function 

𝑓7, 𝑓8 = Griewank’s function 

𝑓9, 𝑓10 = Sphere function 

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1] 

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
5

32
,
5

32,
, 1,1,

5

0.5
,
5

0.5
,
5

100
,
5

100
,
5

100
,
5

100
] 

TF17 (CF4) 

10 [-5, 5] 0 

𝑓1, 𝑓2 = Rastrigin’s function 

𝑓3, 𝑓4 = Weierstrass function 

𝑓5, 𝑓6 = Griewank’s function 

𝑓7, 𝑓8 = Ackley’s function 

𝑓9, 𝑓10 = Sphere function 

𝛿1, 𝛿2, 𝛿3…𝛿10 = [1,1,1, … .1] 

𝜆1, 𝜆2, 𝜆3…𝜆10 = [
1

5
,
1

5,
,
5

0.5
,
5

0.5
,
5

100
,
5

100
,
5

32
,
5

32
,
5

100
,
5

100
] 

TF18 (CF5) 

10 [-5, 5] 0 

𝑓1, 𝑓2 = Rastrigin’s function 

𝑓3, 𝑓4 = Weierstrass function 

𝑓5, 𝑓6 = Griewank’s function 

𝑓7, 𝑓8 = Ackley’s function 

𝑓9, 𝑓10 = Sphere function 

𝛿1, 𝛿2, 𝛿3…𝛿10 = [0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9,1] 

𝜆1, 𝜆2, 𝜆3…𝜆10 = [0.1 ∗
1

5
, 0.2 ∗

1

5
, 0.3 ∗

5

0.5
, 0.4 ∗

5

0.5
, 0.5

∗
5

100
 ,0.6 ∗

5

100
, 0.7 ∗

5

32
, 0.8 ∗

5

32
, 0.9

∗
5

100
, 1 ∗ 5/100] 

TF19 (CF6) 

10 [-5, 5] 0 
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TABLE 6 

“THE 100-DIGIT CHALLENGE:” CEC-C06 2019 STANDARDS [31]. 
 

 

NOTE: Readers who concern to know more information about CEC benchmarks can access this paper [31].
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. Functions Dimension Range 𝒇𝒎𝒊𝒏 

1 STORN'S CHEBYSHEV POLYNOMIAL FITTING PROBLEM  9 [-8192, 8192]  1 

2 INVERSE HILBERT MATRIX PROBLEM  16 [-16384, 

16384]  

1 

3 LENNARD-JONES MINIMUM ENERGY CLUSTER  18 [-4,4]  1 

4 RASTRIGIN’S FUNCTION  10 [-100, 100] 1 

5 GRIEWANGK’S FUNCTION  10 [-100, 100] 1 

6 WEIERSTRASS FUNCTION  10 [-100, 100] 1 

7 MODIFIED SCHWEFEL’S FUNCTION  10 [-100, 100] 1 

8 EXPANDED SCHAFFER’S F6 FUNCTION  10 [-100, 100] 1 

9 HAPPY CAT FUNCTION  10 [-100, 100] 1 

10 ACKLEY FUNCTION  10 [-100, 100] 1 


